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Oscillatory Integral Operators in Morrey Spaces with
Variable Exponent
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Abstract. In case of unbounded sets Ω ⊂ Rn we prove the boundedness of the conditions
in terms of Calderón-Zygmund-type integral inequalities for oscillatory integral operators in the
Morrey spaces with variable exponent.
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1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [18] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [8, 9, 10, 18].

As it is known, last two decades there is an increasing interest to the study of vari-
able exponent spaces and operators with variable parameters in such spaces, we refer for
instance to the surveying papers [7, 14, 20], on the progress in this field, including top-
ics of Harmonic Analysis and Operator Theory, see also references therein. For mapping
properties of maximal functions and singular integrals on Lebesgue spaces with variable
exponent we refer to [3, 5, 6].

Variable exponent Morrey spaces Lp(·),λ(·)(Ω) , were introduced and studied in [2] in
the Euclidean setting in case of bounded sets. The boundedness of the maximal operator
in variable exponent Morrey spaces Lp(·),λ(·)(Ω) under the log-condition on p(·) , λ(·)
was proved in [2]. P. Hästö in [12] used his new ”local-to-global” approach to extend the
result of [2] on the maximal operator to the case of the whole space Rn . The boundedness
of the maximal operator and the singular integral operator in variable exponent Morrey
spaces Lp(·),λ(·) in the general setting of metric measure spaces was proved in [13].

In the case of constant p and λ , the results on the boundedness of potential operators
and classical Calderón-Zygmund singular operators go back to [1] and [19], respectively,
while the boundedness of the maximal operator in the Euclidean setting was proved in [4].
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A distribution kernel K(x, y) is a ”standard singular kernel”, that is, a continuous
function defined on {(x, y) ∈ Ω× Ω : x 6= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C |y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C |x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|

Calderón-Zygmund type singular operator and the oscillatory integral operator are
defined by

Tf(x) =

∫
Ω
K(x, y)f(y)dy, (1)

Sf(x) =

∫
Ω
eP (x,y)K(x, y)f(y)dy, (2)

where P (x, y) is a real valued polynomial defined on Ω × Ω . Lu and Zhang [17] used
L2 -boundedness of T to get Lp - boundedness of S with 1 < p <∞ .

Let

T ∗f(x) = sup
ε>0
|Tεf(x)|

be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫
{y∈Ω:|x−y|≥ε}

K(x, y)f(y)dy.

We use the following notation: Rn is the n -dimensional Euclidean space, Ω ⊂ Rn
is an open set, χE(x) is the characteristic function of a set E ⊆ Rn , B(x, r) = {y ∈
Rn : |x− y| < r}), B̃(x, r) = B(x, r) ∩Ω , by c , C, c1, c2 etc, we denote various absolute
positive constants, which may have different values even in the same line.

2. Preliminaries on variable exponent weighted Lebesgue and Morrey
spaces

We refer to the book [5] for variable exponent Lebesgue spaces but give some basic
definitions and facts. Let p(·) be a measurable function on Ω with values in (1,∞) . An
open set Ω which may be unbounded throughout the whole paper. We mainly suppose
that

1 < p− ≤ p(x) ≤ p+ <∞, (3)
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where p− := ess inf
x∈Ω

p(x) , p+ := ess sup
x∈Ω

p(x) . By Lp(·)(Ω) we denote the space of all

measurable functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω
|f(x)|p(x)dx <∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent.

The space Lp(·)(Ω) coincides with the space{
f(x) :

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ <∞ for all g ∈ Lp′(·)(Ω)

}
(4)

up to the equivalence of the norms

‖f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp
′(·)≤1

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ (5)

see [15, Theorem 2.3], or [21, Theorem 3.5].

For the basics on variable exponent Lebesgue spaces we refer to [22], [15].

P(Ω) is the set of bounded measurable functions p : Ω→ [1,∞) ;

P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Ω, (6)

where A = A(p) > 0 does not depend on x, y ;

Alog(Ω) is the set of bounded exponents p : Ω→ Rn satisfying the condition (6);

Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− ≤ p+ <∞ ;

for Ω which may be unbounded, by P∞(Ω) , P log∞ (Ω) , Plog∞ (Ω) , Alog∞ (Ω) we denote
the subsets of the above sets of exponents satisfying the decay condition (when Ω is
unbounded)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn. (7)

where p∞ = lim
x→∞

p(x) > 1 .

We will also make use of the estimate provided by the following lemma ( see [5],
Corollary 4.5.9).

‖χ
B̃(x,r)

(·)‖p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ Plog∞ (Ω), (8)
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where θp(x, r) =

{
n
p(x) , r ≤ 1,
n

p(∞) , r ≥ 1
.

A locally integrable function ω : Ω → (0,∞) is called a weight. We say that ω ∈
Ap(Ω) , 1 < p <∞ , if there is a constant C > 0 such that(

1

|B̃(x, t)|

∫
B̃(x,t)

ω(x)dx

)(
1

|B̃(x, t)|

∫
B̃(x,t)

ω1−p′(x)dx

)p−1

≤ C,

where 1/p + 1/p′ = 1 . We say that ω ∈ A1(Ω) if there is a constant C > 0 such that
Mω(x) ≤ Cω(x) almost everywhere.

The extrapolation theorems (Lemma 1 and Lemma 2 below) are originally due to
Cruz-Uribe, Fiorenza, Martell and Pérez [3]. Here we use the form in [5], see Theorem
7.2.1 and Theorem 7.2.3 in [5].

Lemma 1. ([5]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 <∞ , every (f, g) ∈ F and every ω ∈ A1 ,∫

Ω
|f(x)|p0ω(x)dx ≤ C0

∫
Ω|g(x)|p0ω(x)dx.

Let p(·) ∈ P (Ω) with p0 ≤ p− . If maximal operator is bounded on L

(
p(·)
p0

)′
(Ω) , then

there exists a constant C > 0 such that for all (f, g) ∈ F ,

‖f‖Lp(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Lemma 2. ([5]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 < q0 <∞ , every (f, g) ∈ F and every ω ∈ A1 ,(∫

Ω
|f(x)|q0ω(x)dx

) 1
q0

≤ C0

(∫
Ω
|g(x)|p0ω

p0
q0 (x)dx

) 1
p0

.

Let p(·) ∈ P (Ω) with p0 ≤ p− and 1
p0
− 1

q0
< 1

p+
, and define q(x) by

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
.

If maximal operator is bounded on L

(
q(·)
q0

)′
(Ω) , then there exists a constant C > 0 such

that for all (f, g) ∈ F ,
‖f‖Lq(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Singular operators within the framework of the spaces with variable exponents were
studied in [6]. From Theorem 4.8 and Remark 4.6 of [6] and the known results on the
boundedness of the maximal operator, we have the following statement, which is formu-
lated below for our goals for a bounded Ω , but valid for an arbitrary open set Ω under
the corresponding condition in p(x) at infinity.
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Theorem 1. ([6, Theorem 4.8]) Let Ω ⊂ Rn be a unbounded open set and p ∈ Plog(Ω) .
Then the singular integral operator T is bounded in Lp(·)(Ω) .

Let λ(x) be a measurable function on Ω with values in [0, n] . The variable Morrey
space Lp(·),λ(·)(Ω) is defined as the set of integrable functions f on Ω with the finite
norms

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
λ(x)
p(x)
−θp(x,t)‖fχ

B̃(x,t)
‖Lp(·)(Ω),

respectively.
We will use the following results on the boundedness of the weighted Hardy operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following theorem was proved in [11].

Theorem 2. Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞.

3. Oscillatory integral operators in Lp(·),λ(Ω)

Lemma 3. (see [16]). If K is a standard Calderón-Zygmund kernel and the Calderón-
Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)) , then for any real poly-
nomial P (x, y) and ω ∈ Ap (1 < p < ∞) , there exists constants C > 0 independent
of the coefficients of P such that

‖Sf‖Lpω(Ω) ≤ C‖f‖Lpω(Ω).

Theorem 1. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) . Then the operator S
is bounded in the space Lp(·)(Ω) .

Proof. By the Lemma 1 and Lemma 3, we derive the operator S is bounded in the
space Lp(·)(Ω) .

The following local estimates are valid.
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Theorem 2. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and f ∈ Lp(·)(Ω) .
Then

‖Sf‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
, (1)

where C does not depend on f , x ∈ Ω and t .

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χ
B̃(x,2t)

(y), f2(y) = f(y)χ
Ω\B̃(x,2t)

(y), t > 0, (2)

and have
‖Sf‖

Lp(·)(B̃(x,t))
≤ ‖Sf1‖Lp(·)(B̃(x,t))

+ ‖Sf2‖Lp(·)(B̃(x,t))
.

By the Theorem 1 we obtain

‖Sf1‖Lp(·)(B̃(x,t))
≤ ‖Sf1‖Lp(·)(Ω) ≤ C‖f1‖Lp(·)(Ω),

so that
‖Sf1‖Lp(·)(B̃(x,t))

≤ C‖f‖
Lp(·)(B̃(x,2t))

.

Taking into account the inequality

‖f‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,

we get

‖Sf1‖Lp(·)(B̃(x,t))
≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (3)

To estimate ‖Sf2‖Lp(·)(B̃(x,t))
, we observe that

|Sf2(z)| ≤ C
∫

Ω\B(x,2t)

|f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x − z| ≤ t , |z − y| ≥ 2t imply 1
2 |z − y| ≤

|x− y| ≤ 3
2 |z − y| , and therefore

|Sf2(z)| ≤ C
∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy,

To estimate Sf2 , we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (4)
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To this end, we choose δ > 0 and proceed as follows∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy ≤ δ
∫

Ω\B̃(x,t)
|x− y|−n+δ|f(y)|dy

∫ ∞
|x−y|

s−δ−1ds

≤ C
∫ ∞
t

s−n
ds

s

∫
{y∈Ω:2t≤|x−y|≤s}

|f(y)|dy ≤ C
∫ ∞
t

s−n‖f‖
Lp(·)(B̃(x,s))

‖χ
B̃(x,s)

‖Lp′(·)(Ω)

ds

s

≤ C
∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (5)

Hence by inequality (5), we get

‖Sf2‖Lp(·)(B̃(x,t))
≤ C‖χ

B̃(x,t)
‖Lp(·)(Ω)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

= Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (6)

From (3) and (6) we arrive at (1).

Theorem 3. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and 0 ≤ λ(x) < n .
Then the singular integral operator S is bounded from the space Lp(·),λ(Ω) to the space
Lp(·),λ(Ω) .

Proof. Let f ∈ Lp(·),λ(Ω) . As usual, when estimating the norm

‖Sf‖Lp(·),λ(Ω) = sup
x∈Ω, t>0

t
λ(x)
p(x)
−θp(x,t)‖Sfχ

B̃(x,t)
‖Lp(·)(Ω). (7)

We estimate ‖Sfχ
B̃(x,t)

‖Lp(·)(Ω) in (7) by means of Theorems 2, 2 and obtain

‖Sf‖Lp(·),λ(Ω)

≤ C sup
x∈Ω, t>0

t
λ(x)
p(x)
−θp(x,t)

tθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ C sup
x∈Ω, t>0

t
λ(x)
p(x)
−θp(x,t)‖f‖

Lp(·)(B̃(x,t))
= C‖f‖Lp(·),λ(Ω).
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[5] L. Diening, P. Harjulehto, Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable
exponents, Springer-Verlag, Lecture Notes in Mathematics, 2017, Berlin, 2011.
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