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Constructive Method for Solving the External Dirichlet
Boundary – Value Problem for the Helmholtz Equation

E.H. Khalilov

Abstract. This work presents the justification of collocation method for the boundary integral
equation of the external Dirichlet boundary – value problem for the Helmholtz equation. Besides,
the sequence of approximate solutions is built which converges to the exact solution of the original
problem and the estimate for the rate of convergence is obtained.
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1. Introduction and Problem Statement

It is known that one of the methods for solving the external Dirichlet boundary –
value problem for the Helmholtz equation is its reduction to the boundary integral equa-
tion (BIE). Integral equation methods play a central role in the study of boundary – value
problems associated with the scattering of acoustic or electromagnetic waves by bounded
obstacles. This is primarily due to the fact that the mathematical formulation of such
problems leads to equations defined over unbounded domains, and hence their reformula-
tion in terms of boundary integral equations not only reduces the dimensionality of the
problem, but also allows one to replace a problem over an unbounded domain by one over
a bounded domain. Since BIE is solved only in very rare cases, it is therefore of paramount
importance to develop approximate methods for solving BIE with an appropriate theoret-
ical justification.

Let D ⊂ R3 be a bounded domain with a twice continuously differentiable boundary
S. Consider the external Dirichlet boundary – value problem for the Helmholtz equation:
us to find a function u which is twice continuously differentiable in R3\D̄ and continuous
on S, satisfies the Helmholtz equation ∆u+ k2u = 0 in R3\D̄, the Sommerfeld radiation
condition (

x

|x|
, gradu (x)

)
− i k u (x) = o

(
1

|x|

)
, |x| → ∞,
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and the boundary condition

u (x) = f (x) on S,

where k is a wave number with Imk ≥ 0, and f is a given continuous function on S.
It is proved in [1] that the potential of double layer

u (x) =

∫
S

∂Φk (x, y)

∂~n (y)
ϕ (y) dSy, x ∈ R3\D̄,

is a solution of the external Dirichlet boundary – value problem for the Helmholtz equation
if the density ϕ is a solution of BIE

ϕ+K ϕ = 2f, (1)

where

(Kϕ) (x) = 2

∫
S

∂Φk (x, y)

∂~n (y)
ϕ (y) dSy, x ∈ S,

and Φk (x, y) is fundamental solution the Helmholtz equation, i.e.

Φk (x, y) = ei k |x−y|/ (4π |x− y|) , x, y ∈ R3, x 6= y.

Let us note that the integral equations of boundary – value problems for the Helmholtz
equation in the two – dimensional case were first considered by Kupradse [2-4]. In the
present paper, we study an approximate solution of the external Dirichlet boundary –
value problem for the Helmholtz equation by the integral equations method (1).

2. Main Results

Divide S into elementary domains S =
N⋃
l=1

SNl in such a way that:

(1) for every l = 1 , N the domain SNl is closed and the set of its internal points
0

SNl with respect to S is nonempty, with mes
0

SNl = mesSNl and
0

SNl ∩
0

SNj = ∅ for
j ∈ {1, 2, ...N} , j 6= l;

(2) for every l = 1 , N the domain SNl is a connected piece of the surface S with a
continuous boundary;

(3) for every l = 1 , N there exists a so-called control point xl ∈ SNl such that:
(3.1) rl(N) ∼ Rl(N) (rl(N) ∼ Rl(N) ⇔ C1 ≤ rl (N) /Rl (N) ≤ C2, C1 and C2

are positive constants independent of N), where rl(N) = min
x∈∂SNl

|x− xl| and Rl(N) =

max
x∈∂SNl

|x− xl|;

(3.2) Rl(N) ≤ d/2, where d is the radius of a standard sphere (see [5]);
(3.3) for every j = 1 , N , rj(N) ∼ rl(N).
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It is clear that r(N) ∼ R(N) and lim
N→∞

r(N) = lim
N→∞

R(N) = 0, where R(N) =

max
l=1, N

Rl(N), r(N) = min
l=1, N

rl(N).

Such a partition, as well as the partition of the unit sphere into elementary parts, has
been carried out earlier in [6].

Let Sd(x) and Γd(x) be the parts of the surface S and the tangential plane Γ(x),
respectively, at the point x ∈ S, contained inside the sphere Bd(x) of radius d centered at
the point x. Besides, let ỹ ∈ Γ(x) be the projection of the point y ∈ S. Then

|x− ỹ| ≤ |x− y| ≤ C1(S) |x− ỹ| andmesSd(x) ≤ C2(S)mesΓd(x), (1)

where C1(S) and C2(S) are positive constants that depend only on S (if S is a sphere,
then C1(S) =

√
2 and C2(S) = 2).

Lemma 2.1 ([6]). There exist the constants C ′0 > 0 and C ′1 > 0, independent of N ,
such that for ∀ l, j ∈ {1, 2, ..., N} , j 6= l, and ∀ y ∈ SNj the inequality
C ′0 |y − xl| ≤ |xj − xl| ≤ C ′1 |y − xl| holds.

For a continuous function ϕ (x) on S, we introduce the modulus of continuity, which
has the following form:

ω(ϕ, δ) = δ sup
τ≥δ

ω(ϕ, τ)

τ
, δ > 0,

where ω̄(ϕ, τ) = max
|x−y|≤τ
x, y∈S

|ϕ (x)− ϕ (y)|.

Let

kl j = 2 |sgn (l − j) | ∂Φk (xl, xj)

∂~n (xj)
mesSNj for l , j = 1 , N.

It is proved in [7] that the expression

(
KNϕ

)
(xl) =

N∑
j=1

kl j ϕ (xj)

are cubature formula at the points xl, l = 1, N , for the integral (Kϕ) (x), with

max
l=1, N

∣∣ (Kϕ) (xl)−
(
KNϕ

)
(xl)

∣∣ ≤M∗ ( ‖ϕ‖∞ R (N) | lnR (N) |+ ω (ϕ,R (N))) (2)

Let CN − be a space of vectors zN =
(
zN1 , z

N
2 , . . . , z

N
N

)T
, zNl ∈ C, l = 1, N , equipped

with the norm
∥∥zN∥∥ = max

l=1,N

∣∣zNl ∣∣, and

KN
l zN =

N∑
j=1

kl j z
N
j , l = 1, N , KN zN =

(
KN

1 zN , KN
2 zN , . . . ,KN

N zN
)
.

∗Here and after, M denotes positive constants which can be different in different inequalities.
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Then the BIE (1) by the system of algebraic equations with respect to zNl , approximate
values of ϕ (xl) , l = 1, N , stated as follows:

zN +KN zN = 2pNf, (3)

where pNf = (f (x1) , f (x2) , . . . , f (xN )).

To justify the collocation method, we will use Vainikko’s convergence theorem for linear
operator equations (see [8]). To formulate that theorem, we need some definitions and a
theorem from [8].

Definition 2.1 ([8]). A system Q =
{
qN
}

of operators qN : C (S)→ CN is called a
connecting system for C (S) and CN if∥∥qNϕ∥∥→ ‖ϕ ‖∞ as N →∞ , ∀ϕ ∈ C (S) ;∥∥qN (aϕ+ a′ϕ′

)
−
(
a qNϕ+ a′qNϕ′

) ∥∥→ 0 as N →∞ , ∀ϕ , ϕ′ ∈ C (S) , a , a′ ∈ C.

Definition 2.2 ([8]). A sequence {ϕN} of elements ϕN ∈ CN is called Q−convergent

to ϕ ∈ C (S) if
∥∥ϕN − qNϕ∥∥→ 0 as N →∞. We denote this fact by ϕN

Q→ϕ .

Definition 2.3 ([8]). A sequence {ϕN} of elements ϕN ∈ CN is called Q−compact

if every subsequence of it {ϕNm} contains a Q−convergent subsequence
{
ϕNmk

}
.

Proposition 2.1 ([8]). Let qN : C (S) → CN be linear and bounded. Then the
following conditions are equivalent:

(1) the sequence {ϕN} is Q−compact and the set of its Q−limit points is compact in
C (S) ;

(2) there exists a relatively compact sequence
{
ϕ(N)

}
⊂ C (S) such that∥∥∥ϕN − qNϕ(N)

∥∥∥→ 0 as N →∞.

Definition 2.4 ([8]). A sequence of operators EN : CN → CN is called QQ−convergent
to the operator E : C (S)→ C (S) if for every Q−convergent sequence {ϕN} the relation

ϕN
Q→ϕ ⇒ ENϕN

Q→Eϕ holds. We denote this fact by EN
QQ→ E .

Definition 2.5 ([8]). We say that a sequence of linear bounded operators EN : CN →
CN converges compactly to the linear bounded operator E : C (S) → C (S) if EN

QQ→ E
and the following compactness condition holds:

ϕN ∈ CN , ‖ϕN‖ ≤M ⇒
{

ENϕN
}
is Q− compact.

Theorem 2.3 ([8]). Let the following conditions hold:

1) Ker (I + E) = { 0 } ;

2) IN + EN
′
s (N ≥ N0) are Fredholm operators of index zero;

3) ϑN
Q→ϑ, ϑN ∈ CN , ϑ ∈ C (S) ;

4) EN → E compactly.
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Then the equation (I + E) ϕ = ϑ has a unique solution ϕ̃ ∈ C (S), the equation(
IN + EN

)
ϕN = ϑN (N ≥ N0) has a unique solution ϕ̃N ∈ CN , and ϕ̃N

Q→ ϕ̃ with

c1
∥∥ (IN + EN

)
qN ϕ̃− ϑN

∥∥ ≤ ∥∥ϕ̃N − qN ϕ̃ ∥∥ ≤ c2 ∥∥ (IN + EN
)
qN ϕ̃− ϑN

∥∥ ,
where

c1 = 1/ sup
N≥N0

∥∥ IN + EN
∥∥ > 0 , c2 = sup

N≥N0

∥∥∥ (IN + EN
)−1∥∥∥ < +∞.

Theorem 2.2. Let Imk > 0, then the equations (1) and (3) have unique solutions
ϕ∗ ∈ C (S) and zN∗ ∈ CN (N ≥ N0), respectively, and

∥∥ zN∗ − pNϕ∗∥∥ → 0 as N → ∞
with the following estimate for the rate of convergence:∥∥ zN∗ − pNϕ∗∥∥ ≤M [ ‖f ‖∞ R (N) | lnR (N) |+ ω (f,R (N)) ] .

Proof. Let’s verify that the conditions of Theorem 2.1 are satisfied. It is proved in
[1] that if Imk > 0, then Ker (I +K) = { 0 }. Obviously, the operators IN + BN are
Fredholm operators of index zero and the system operators P =

{
pN
}

is a connecting

system for the spaces C (S) and CN . Then IN + KN PP→ I + K. By Definition 2.5, it
remains only to verify the compactness condition, which in view of Proposition 2.1 is
equivalent to the following one: ∀

{
zN
}

, zN ∈ CN ,
∥∥zN∥∥ ≤ M , there exists a relatively

compact sequence
{
KN z

N
}
⊂ C (S) such that∥∥KN zN − pN

(
KN z

N
) ∥∥→ 0 as N →∞.

As
{
KN z

N
}

, we choose the sequence

(
KN z

N
)

(x) = 2
N∑
j=1

zNj

∫
SNj

∂Φk (x, y)

∂~n (y)
dSy.

Take arbitrary points x′ , x′′ ∈ S such that |x′ − x′′ | = δ < d/2. Then∣∣ (KN z
N
) (

x′
)
−
(
KN z

N
) (

x′′
) ∣∣ ≤ M

∥∥zN∥∥ ∫
S

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)
− ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy ≤
M
∥∥zN∥∥ ∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)

∣∣∣∣ dSy +M
∥∥zN∥∥ ∫

Sδ/2(x
′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy +M
∥∥zN∥∥ ∫

Sδ/2(x
′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)

∣∣∣∣ dSy+
M
∥∥zN∥∥ ∫

S\(Sδ/2(x′)∪Sδ/2(x′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)
− ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy.
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Using the inequality∣∣∣∣ ∂Φk (x, y)

∂~n (y)

∣∣∣∣ ≤ M

|x− y|
, ∀x , y ∈ S, x 6= y,

and the formula for reducing surface integral to a double integral, we obtain:∫
Sδ/2(x

′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x

′)

1

|x′ − y |
dSy ≤ Mδ,

∫
Sδ/2(x

′′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy ≤ Mδ.

Besides, taking into account the inequalities |x′′ − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x′) and
|x′ − y | ≥ δ/2 , ∀y ∈ Sδ/2 (x′′), we have:∫

Sδ/2(x
′)

∣∣∣∣ ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy ≤M ∫
Sδ/2(x

′)

1

|x′′ − y |
dSy ≤

2M

δ
mes

(
Sδ/2

(
x′
))
≤Mδ,

∫
Sδ/2(x

′′)

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)

∣∣∣∣ dSy ≤Mδ.

It is easy to show that∣∣∣∣ ∂Φk (x′, y)

∂~n (y)
− ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ ≤ Mδ

|x′ − y|2
, ∀y ∈ S\

(
Sδ/2

(
x′
)
∪ Sδ/2

(
x′′
))
.

Hence we find ∫
S\(Sδ/2(x′)∪Sδ/2(x′′))

∣∣∣∣ ∂Φk (x′, y)

∂~n (y)
− ∂Φk (x′′, y)

∂~n (y)

∣∣∣∣ dSy ≤M δ | ln δ | .

Then ∣∣ (KN z
N
) (

x′
)
−
(
KN z

N
) (

x′′
) ∣∣ ≤M ∥∥zN∥∥ δ | ln δ | , (4)

and, consequently,
{
KN z

N
}
⊂ C (S).

The relative compactness of the sequence
{
KN z

N
}

follows from the Arzela theorem.
In fact, the uniform boundedness follows directly from the condition

∥∥zN∥∥ ≤ M , and
the equicontinuity follows from the estimate (4). Then, applying Theorem 2.1 we obtain
that the equations (1) and (3) have unique solutions ϕ∗ ∈ C (S) and zN∗ ∈ CN (N ≥ N0),
respectively, with

c1 δN ≤
∥∥ zN∗ − pNϕ∗∥∥ ≤ c2 δN ,



62 E.H. Khalilov

where

c1 = 1/ sup
N≥N0

∥∥ IN +KN
∥∥ > 0 , c2 = sup

N≥N0

∥∥∥ (IN +KN
)−1∥∥∥ < +∞,

δN = max
l=1,N

∣∣(Kϕ∗) (xl)−
(
KNϕ∗

)
(xl)

∣∣ .
Using the inequality (2), we obtain:

δN ≤M [‖ϕ∗‖∞R(N) |lnR(N)|+ ω (ϕ∗, R(N)) +

‖f‖∞ R(N) |lnR(N)|+ ω (f,R(N))] .

As ϕ∗ = 2 (I +K)−1 f , we have

‖ϕ∗‖∞ ≤ 2
∥∥∥ (I +K)−1

∥∥∥ ‖f‖∞ .
Besides, taking into account the estimate

ω (Kϕ∗, R (N)) ≤M ‖ϕ∗‖∞ R (N) | ln R (N) | ,

we obtain:

ω (ϕ∗ , R (N)) = ω (2f −Kϕ∗, R (N)) ≤ 2ω (f,R (N)) + ω (Kϕ∗, R (N)) ≤

M ‖f ‖∞ R (N) | ln R (N) | ,

consequently
δN ≤M [ ‖f ‖∞ R (N) | ln R (N) |+ ω (f,R (N)) ] .

Theorem is proved.
Let’s state the main result of this work.
Theorem 2.3. Let Imk > 0, x0 ∈ R3\D̄ and zN∗ = (z∗1 , z

∗
2 , . . . , z

∗
N )T be a solution of

the system of algebraic equations (3). Then the sequence

uN (x0) =
N∑
j=1

∂Φk (x0, xj)

∂~n (xj)
z∗j mesS

N
j

converges to the value of the solution u (x) of the external Dirichlet boundary - value
problem for the Helmholtz equation at the point x0, with

|uN (x0)− u (x0)| ≤M [ ‖f ‖∞ R (N) | ln R (N) |+ ω (f,R (N)) ] .

Proof. Let the function ϕ∗ ∈ C (S)be a solution of the equation (1). Then, as is
known, the function

u (x) =

∫
S

∂Φk (x, y)

∂~n (y)
ϕ∗ (y) dSy , x ∈ R3\D̄,
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is a solution of the external Dirichlet boundary – value problem for the Helmholtz equation.
Evidently,

u (x0)− uN (x0) =
N∑
j=1

∫
SNj

∂Φk (x0, y)

∂~n (y)

(
ϕ∗ (xj)− z∗j

)
dSy+

N∑
j=1

∫
SNj

(
∂Φk (x0, y)

∂~n (y)
− ∂Φk (x0, xj)

∂~n (xj)

)
ϕ∗ (y) dSy+

N∑
j=1

∫
SNj

∂Φk (x0, y)

∂~n (y)
(ϕ∗ (y)− ϕ∗ (xj)) dSy+

N∑
j=1

∫
SNj

(
∂Φk (x0, xj)

∂~n (xj)
− ∂Φk (x0, y)

∂~n (y)

) (
ϕ∗ (xj)− z∗j

)
dSy+

N∑
j=1

∫
SNj

(
∂Φk (x0, xj)

∂~n (xj)
− ∂Φk (x0, y)

∂~n (y)

)
(ϕ∗ (y)− ϕ∗ (xj)) dSy .

As x0 /∈ S, then∣∣∣∣∂Φk (x0, xj)

∂~n (xj)
− ∂Φk (x0, y)

∂~n (y)

∣∣∣∣ ≤M R (N) , ∀ y ∈ SNj .

As a result, taking into account Theorem 2.2, we obtain the proof of Theorem 2.3.
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