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A Mixed Problem for a Class of Nonlinear Tymoshenko
Systems

N.A. Rzayeva

Abstract. In this paper a mixed problem for semilinear systems of equations describing the
oscillations of a thin-walled bar is considered. Reducing the problem under consideration to a
differential equation, a theorem on local solvability is proved.
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Let us consider the bars described by a system of two differential equations in the
domain @ = [0,T] x [0, ]

ElYyzpes + pAytt - pAe‘gtt = fl (t, z,y, 9) (1)
ECw0sp0e — GClyy — pAeyy + p (I + Ae?) by = fo (t,x,y,0)

with boundary conditions

0(0,t)=0, 0(, t) =0, 0,,(0,t)=0, 6Ox(,t)=0

v 0 =), (@0) =) } (3)

where 0 < 2 < [,0 <t <T,1 > 0,T > 0 are given numbers, y (x,t) is a transverse
displacement, 0 (z,t) is an angle of cross-section of the bar, E is the Young’s modulus, I
is a polar moment of inertia of the cross section with respect to its center of gravity, p is
a density of the material of the bar, A is a cross-sectional area, e is a distance from center
of gravity to center of torsion, C,, is a sectorial moment of inertia of the cross section, G
is a shear modulus, C' is a geometric rigidity of free torsion, EC,, is a stiffness of bending
torsion, GC is a stiffness of free torsion. Here, fi and fy are functions depending on ¢, =, y
and 6 (see e.g. [1, 2] ).
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The system of equations (1), (2) can be written as follows
Rwy + Sw+ Nw = F(t, =, y, 0), (4)

w (0) = wo, wy (0) = wy (5)

where

B pA —pAe [ EI* 0 (0 0
R_<—pAe p(I—i—Aez))’S_( 0 EC,0* V= 0 —GCo? )’

e (5 ) ()= (50)

Let us consider the functional space . = Ly (0,1) x L2(0,1) with a scalar product:

I
<w1, w2> = <w1, w2>%ﬁ ~Cu <yl’ 3/2>L2(0,1) + <01’ 92>L2(0,1) ’

where
w' = (yi,Hi) e, i1=12.

Let us define ﬁg and ﬁg in the following way:
ﬁgz{u . ue€ H? u(0) = u(l) =0},
Hy={u: uwe H, u0)=u(l)= uy(0) = uz(l) = 0}.

Denote by 7 the space H3 x HZ, and by 7% the space Hj x Hg.
Let the operator L be defined in the space J7:

D(L) = .

E(I+A€e?) 94 eEC, 9*
Lw=R 1Sw= pA w0 Ll 0rt L where w = ( Zé ) € D(L).

ECy 0%
p Ozt pl 9zt

We also define the linear operator L; as follows:

D (Ly) = 4.
7eG[C 822 y
-1 i —
Liw=R C’w:[O _GZICE)QQ]w, where w-(a)eD(Ll)E%ﬁ.

We define the nonlinear operator G(.) in the following way

Gt w) = ( g1(t, z,w) ))

ga(t, z,w)
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where o2
I+ Ae e
gl(t,.’E,UJ) pA fl(txy70)+ﬁf2(taxay70)7

g2 (t,z,w) = p—elfl (t,z,y,0) + pllfQ (t,z,y,0).
Then the problem (4), (5) can be written in the form
wy + Lw + Lyw = G(t, w), (6)
w (0) = wp, w' (0) = w. (7)
Lemma 1. L is a positive self-adjoint operator in J€.

Proof. Let w' = (3%,0%) € D(L).

Lol (E(I+Ae2) . €EC,., ¢eE EC ECy 5 )

pA Yzxax p[ TTITT? 7yma}x:c

Hence we obtain that

E (I + Ae?
<L’LU1, ’LU2> = L <(+e)yéxmp + cECy ealcmx:m > +
Cu pA pl
L»(0,1)
+ <6Eyal:a:mc EC 9;5050937 9 > -
P pl Lo(0,1)
E (I + Ae?)
= W <yggx7 yxg:>L2 0 1) + <0;17 y923x>L2(0’1) +
el EC,
oV (Yazr O22) L0 T 7 pl <991”“ O2n) 120 ®)

Similarly we obtain that

E (I + Ae? eECy, 22 EC

E (I + Ae?
(', Lw?) = 2 << A >y§m+eEC e>
Cuw pA pl .
2(071)

eE EC
pl L2(0,1)

CE(I+A) e
T T pCeA e ) o

<yalca:a 0§x> L2(0,1) +
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el 1 2 Ecw 1 2
—{—7 <911" y$$>L2(0,1) + 710[ <9$$7 09317>L2(0,1) . (9)

Comparing (8) and (9), we obtain that
<Lw1, w2> = <w1, Lw2> .

On the other hand, the operator L is invertible.
Indeed, let h = (h;, ha) € . Consider the equation

Lw=h, w=/(y,0) € D(L). (10)

Equation (10) has the following form

2
%%ﬁxmx + %ax:ﬁxx = Iy, 11
el EC’we —h ( )
7ymcxa: + “pl Yawzxz — 102
Hence we obtain that
{ %uxmxx = h1 — eho, (12)
Y(0) =y (1) = Y2z (0) = yzz (1) = 0.

The problem (11) has a unique solution y € E[\é. Similarly we obtain that the problem
(11) has a unique solution

w = (y,60), where y, HEP}%, i.e. weA.

From the definition of L and from the scalar product in 7, we get that

EI (I+ Ae?)

2eE ECy
<Lw, w> = W ||y:m?”iQ(0,1) +

(Yaws boz) 1,00,1) T e ||9m||%2(0,1) - (13)

Using the Holder’s and Young’s inequality, we obtain that

1 Cw 2 1 2 Cw 2
12€ (Yo, Oa)| = 2 <e\/ Ciwym; \/ I(ng> <e Cu HymHLg + T HQMHLQ : (14)
From (13) and (14) we obtain that
(Lw, w) > 0.

Thus, L is a positive self-adjoint operator.

Lemma 2. Linear operator L1 is subjected to the operator L3,
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Proof. From the definition of L it follows that

(e 4+ 1)G?C? [?
p212

29 2
4 dr < cH L%w‘

2
0z2 ra

2
[ Lw|% =

i.e. L is subjected to the operator L3,

Applying the general theory of nonlinear hyperbolic differential equations, we obtain.

T?eorem 1. Let L be a positive self-adjoint operator and L1 is subjected to the operator
Lz. Suppose that G (t, w) acts from [0,T] x JA4 to A and satisfies the local Lipschitz
condition, i.e. if for any t1,te € [0, T] and w!, w? € 74

16ty w') =G (tas w?)l]p < e ([l e 0%l]) > [Ita = tel + [ = w?]] 4,

Then for any wg € J4, w1 € H there exists T, such that the problem (6), (7) has a
unique solution
we C([0,7],2,)nC*([0,T'] 7).

If ooz 18 the length of the mazimum interval of existence of solutions, then one of the
following alternatives is fulfilled

)l 7y, -0 [0/ O] + [ 4] =+o0

or
1) Tz = T'-
Note that if wy € 74 and wy € FA4,
then

we C([0,T],,)nCH[0,T'] , 74) N C*([0,T'] , ).

Lemma 3. Let
fi(t,2,y,0) € CH([0,T] x [0,1) x R?).

Then G (t, w) = < glg’i’zg ) acts from A to € and satisfies the local Lipschitz
2\, &4,
condition.

Proof. Let t; € [0,T] , w' = (y*,0") € 5 . Then
|G (. wh) =G (12 )|, <
< CH fl (tlvxaylvel) - f2 (t251:7y2’02)H22(0’l) + CH f2 (t25$ay2502) Hig(o,l)’

where c:mam{”’;‘f#,%} , on the other hand
Hfl (tlax7y1701) - f2 (t27$7927€2)||iz(07l) =
1) r1 2
:/ / fl.ti+rt—t). v +7 (2 —y"), 00 +7 (02— 0")) dr| da|ti —to] +
o IJo
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2 2
’yl — y2’ dx+

LT =),y +T (P =y, 0 7 (0°—0"))dr

2 2
0 — 6| d <

(e —t).y 7 (% —yt), 0t +7 (62— 6Y))dr

< Sup“flt (’51:3775777)\ + ’flt (tlﬂx7§777)| + ‘flt (tlawvéan)’]x
0<tLT
x € [0,]
€] <o
In| <7

l l
X[l |t1 — ta +/0 ‘yl (z) — 12 (:r)‘de —I—/O ‘91 (z) — 62 (:E)}zdx]

Hence we obtain that

| 1 (t1, 2,90, 0") = fo (t2>$7112>92)”iz(0,1) <

2 2
=€ (Hylijl’ 1“;2017 }QQHﬁﬂl) *[ltr = t2| + [ y' — y2HL2(O,Z)+ | 6"~ GQHLZ(O,Z)] <
2
< ('l 102l ) - Lt = 22 + || 0! = w?]% ),
where
0= eyl @1+ 17 @)
_ 1 2
rl_me()l‘e )‘—i—‘@ (a;)‘

Using Lemmas 1-3 from the Theorem 1, we obtain the following result:

Theorem 2. Let
fi(t,2,y,0) € CH([0,T] x [0,1) x R?).

Then for any yo, 6y € f/I\g, y1, 01 € Lo (0,1) there exists T' > 0 , such that the problem
(1) -(3) has a unique solution (y,0), where

—

y,0 € C'([0,T"], Ly(0,1)) N C([0,T'] , HY).

Moreover, if Tmae is the length of the maximum interval of existence of solutions, then
one of the following alternatives is fulfilled

Olime7,,,—0 [Ilyt( W2 Laoy + 106 Loon + 1y )N +||9(
“+00
or

i) Tnae = T
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