A Mixed Problem for a Class of Nonlinear Tymoshenko Systems

N.A. Rzayeva

Abstract

In this paper a mixed problem for semilinear systems of equations describing the oscillations of a thin-walled bar is considered. Reducing the problem under consideration to a differential equation, a theorem on local solvability is proved.

Key Words and Phrases: system of equations of a bar vibration, mixed problem, local solvability.
2010 Mathematics Subject Classifications: 35B40, 35G15, 49K20
Let us consider the bars described by a system of two differential equations in the domain $Q=[0, T] \times[0, l]$

$$
\left.\begin{array}{c}
E I y_{x x x x}+\rho A y_{t t}-\rho A e \theta_{t t}=f_{1}(t, x, y, \theta) \tag{1}\\
E C_{w} \theta_{x x x x}-G C \theta_{x x}-\rho A e y_{t t}+\rho\left(I+A e^{2}\right) \theta_{t t}=f_{2}(t, x, y, \theta)
\end{array}\right\}
$$

with boundary conditions

$$
\left.\begin{array}{c}
y(0, t)=0, y(l, t)=0, y_{x x}(0, t)=0, \quad y_{x x}(l, t)=0 \tag{2}\\
\theta(0, t)=0, \theta(l, t)=0, \quad \theta_{x x}(0, t)=0, \quad \theta_{x x}(l, t)=0
\end{array}\right\}
$$

with initial conditions

$$
\left.\begin{array}{rc}
y(x, 0)=y_{0}(x), & y_{t}(x, 0)=y_{1}(x) \tag{3}\\
\theta(x, 0)=\theta_{0}(x), & \theta_{t}(x, 0)=\theta_{1}(x)
\end{array}\right\}
$$

where $0<x<l, 0<t<T, l>0, T>0$ are given numbers, $y(x, t)$ is a transverse displacement, $\theta(x, t)$ is an angle of cross-section of the bar, E is the Young's modulus, I is a polar moment of inertia of the cross section with respect to its center of gravity, ρ is a density of the material of the bar, A is a cross-sectional area, e is a distance from center of gravity to center of torsion, C_{w} is a sectorial moment of inertia of the cross section, G is a shear modulus, C is a geometric rigidity of free torsion, $E C_{w}$ is a stiffness of bending torsion, $G C$ is a stiffness of free torsion. Here, f_{1} and f_{2} are functions depending on t, x, y and θ (see e.g. [1, 2]).

The system of equations (1), (2) can be written as follows

$$
\begin{gather*}
R w_{t t}+S w+N w=F(t, x, y, \theta), \tag{4}\\
w(0)=w_{0}, \quad w_{t}(0)=w_{1} \tag{5}
\end{gather*}
$$

where

$$
\begin{gathered}
R=\left(\begin{array}{cc}
\rho A & -\rho A e \\
-\rho A e & \rho\left(I+A e^{2}\right)
\end{array}\right), S=\left(\begin{array}{cc}
E I \partial^{4} & 0 \\
0 & E C_{w} \partial^{4}
\end{array}\right), N=\left(\begin{array}{cc}
0 & 0 \\
0 & -G C \partial^{2}
\end{array}\right), \\
w=\binom{y}{\theta}, w_{0}=\binom{y_{0}}{\theta_{0}}, w_{1}=\binom{y_{1}}{\theta_{1}}
\end{gathered}
$$

Let us consider the functional space $\mathscr{H}=L_{2}(0,1) \times L_{2}(0,1)$ with a scalar product:

$$
\left\langle w^{1}, w^{2}\right\rangle=\left\langle w^{1}, w^{2}\right\rangle_{\mathscr{H}}=\frac{I}{C_{w}}\left\langle y^{1}, y^{2}\right\rangle_{L_{2}(0,1)}+\left\langle\theta^{1}, \theta^{2}\right\rangle_{L_{2}(0,1)}
$$

where

$$
w^{i}=\left(y^{i}, \theta^{i}\right) \in \mathscr{H}, \quad i=1,2
$$

Let us define \hat{H}_{0}^{2} and \hat{H}_{0}^{4} in the following way:

$$
\begin{gathered}
\hat{H}_{0}^{2}=\left\{u: u \in H^{2}, u(0)=u(l)=0\right\} \\
\hat{H}_{0}^{4}=\left\{u: u \in H^{4}, u(0)=u(1)=u_{x x}(0)=u_{x x}(l)=0\right\}
\end{gathered}
$$

Denote by \mathscr{H}_{1} the space $\widehat{H_{0}^{2}} \times \widehat{H_{0}^{2}}$, and by \mathscr{H}_{2} the space $\widehat{H_{0}^{4}} \times \widehat{H_{0}^{4}}$.
Let the operator L be defined in the space \mathscr{H} :

$$
\begin{gathered}
D(L)=\mathscr{H} . \\
L w=R^{-1} S w=\left[\begin{array}{cc}
\frac{E\left(I+A e^{2}\right)}{\rho A} \frac{\partial^{4}}{\partial x^{4}} & \frac{e E C_{w}}{\rho I} \frac{\partial^{4}}{\partial x^{4}} \\
\frac{e E}{\rho} \frac{\partial^{4}}{\partial x^{4}} & \frac{E C_{w}}{\rho I} \frac{\partial^{4}}{\partial x^{4}}
\end{array}\right] \text { where wher } w=\binom{y}{\theta} \in D(L) .
\end{gathered}
$$

We also define the linear operator L_{1} as follows:

$$
\begin{gathered}
D\left(L_{1}\right)=\mathscr{H}_{1} \\
L_{1} w=R^{-1} C w=\left[\begin{array}{cc}
0 & -\frac{e G C}{\rho I} \frac{\partial^{2}}{\partial x^{2}} \\
0 & -\frac{G C}{\rho I} \frac{\partial^{2}}{\partial x^{2}}
\end{array}\right] w, \text { where } w=\binom{y}{\theta} \in D\left(L_{1}\right) \in \mathscr{H}_{1} .
\end{gathered}
$$

We define the nonlinear operator $G($.$) in the following way$

$$
G(t, w)=\binom{g_{1}(t, x, w)}{g_{2}(t, x, w)}
$$

where

$$
\begin{gathered}
g_{1}(t, x, w)=\frac{I+A e^{2}}{\rho A I} f_{1}(t, x, y, \theta)+\frac{e}{\rho I} f_{2}(t, x, y, \theta), \\
g_{2}(t, x, w)=\frac{e}{\rho I} f_{1}(t, x, y, \theta)+\frac{1}{\rho I} f_{2}(t, x, y, \theta) .
\end{gathered}
$$

Then the problem (4), (5) can be written in the form

$$
\begin{gather*}
w_{t t}+L w+L_{1} w=G(t, w), \tag{6}\\
w(0)=w_{0}, w^{\prime}(0)=w_{1} . \tag{7}
\end{gather*}
$$

Lemma 1. L is a positive self-adjoint operator in \mathscr{H}.
Proof. Let $w^{i}=\left(y^{i}, \theta^{i}\right) \in D(L)$.

$$
L w^{1}=\left(\frac{E\left(I+A e^{2}\right)}{\rho A} y_{x x x x}^{1}+\frac{e E C_{w}}{\rho I} \theta_{x x x x}^{1}, \frac{e E}{\rho} y_{x x x x}^{1}+\frac{E C_{w}}{\rho I} \theta_{x x x x}^{1}\right)
$$

Hence we obtain that

$$
\begin{align*}
\left\langle L w^{1}, w^{2}\right\rangle= & \frac{I}{C_{w}}\left\langle\frac{E\left(I+A e^{2}\right)}{\rho A} y_{x x x x}^{1}+\frac{e E C_{w}}{\rho I} \theta_{x x x x}^{1}, y^{2}\right\rangle_{L_{2}(0,1)}+ \\
& +\left\langle\frac{e E}{\rho} y_{x x x x}^{1}+\frac{E C_{w}}{\rho I} \theta_{x x x x}^{1}, \theta^{2}\right\rangle{ }_{L_{2}(0,1)}= \\
= & \frac{E\left(I+A e^{2}\right)}{\rho C_{w} A}\left\langle y_{x x}^{1}, y_{x x}^{2}\right\rangle_{L_{2}(0,1)}+\frac{e E}{\rho}\left\langle\theta_{x x}^{1}, y_{x x}^{2}\right\rangle_{L_{2}(0,1)}+ \\
+ & \frac{e E}{\rho}\left\langle y_{x x}^{1}, \theta_{x x}^{2}\right\rangle_{L_{2}(0,1)}+\frac{E C_{w}}{\rho I}\left\langle\theta_{x x}^{1}, \theta_{x x}^{2}\right\rangle_{L_{2}(0,1)} . \tag{8}
\end{align*}
$$

Similarly we obtain that

$$
\begin{aligned}
L w^{2}= & \left(\frac{E\left(I+A e^{2}\right)}{\rho A} y_{x x x x}^{2}+\frac{e E C_{w}}{\rho I} \theta_{x x x x}^{2}, \frac{e E}{\rho} y_{x x x x}^{2}+\frac{E C_{w}}{\rho I} \theta_{x x x x}^{2}\right) \\
\left\langle w^{1}, L w^{2}\right\rangle= & \frac{I}{C_{w}}\left\langle u^{1}, \frac{E\left(I+A e^{2}\right)}{\rho A} y_{x x x x}^{2}+\frac{e E C_{w}}{\rho I} \theta_{x x x x}^{2}\right\rangle_{L_{2}(0,1)} \\
& +\left\langle v^{1}, \frac{e E}{\rho} y_{x x x x}^{2}+\frac{E C_{w}}{\rho I} \theta_{x x x x}^{2}\right\rangle_{L_{2}(0,1)}= \\
= & \frac{E\left(I+A e^{2}\right)}{\rho C_{w} A}\left\langle y_{x x}^{1}, y_{x x}^{2}\right\rangle_{L_{2}(0,1)}+\frac{e E}{\rho}\left\langle y_{x x}^{1}, \theta_{x x}^{2}\right\rangle_{L_{2}(0,1)}+
\end{aligned}
$$

$$
\begin{equation*}
+\frac{e E}{\rho}\left\langle\theta_{x x}^{1}, y_{x x}^{2}\right\rangle_{L_{2}(0,1)}+\frac{E C_{w}}{\rho I}\left\langle\theta_{x x}^{1}, \theta_{x x}^{2}\right\rangle_{L_{2}(0,1)} \tag{9}
\end{equation*}
$$

Comparing (8) and (9), we obtain that

$$
\left\langle L w^{1}, w^{2}\right\rangle=\left\langle w^{1}, L w^{2}\right\rangle
$$

On the other hand, the operator L is invertible.
Indeed, let $h=\left(h_{1}, h_{2}\right) \in \mathscr{H}$. Consider the equation

$$
\begin{equation*}
L w=h, \quad w=(y, \theta) \in D(L) \tag{10}
\end{equation*}
$$

Equation (10) has the following form

$$
\left\{\begin{array}{c}
\frac{E\left(I+A e^{2}\right)}{\rho A} y_{x x x x}+\frac{e E C_{w}}{\rho I} \theta_{x x x x}=h_{1}, \tag{11}\\
\frac{e E}{\rho} y_{x x x x}+\frac{E C_{w}}{\rho I} \theta_{x x x x}=h_{2} .
\end{array}\right.
$$

Hence we obtain that

$$
\left\{\begin{array}{c}
\frac{E I}{\rho A} u_{x x x x}=h_{1}-e h_{2} \tag{12}\\
y(0)= \\
y(l)=y_{x x}(0)=y_{x x}(l)=0 .
\end{array}\right.
$$

The problem (11) has a unique solution $y \in \widehat{H_{0}^{4}}$. Similarly we obtain that the problem (11) has a unique solution

$$
w=(y, \theta), \text { where } y, \theta \in \widehat{H_{0}^{4}}, \quad \text { i.e. } w \in \mathscr{H} .
$$

From the definition of L and from the scalar product in \mathscr{H}, we get that

$$
\begin{equation*}
\langle L w, w\rangle=\frac{E I\left(I+A e^{2}\right)}{\rho C_{w} A}\left\|y_{x x}\right\|_{L_{2}(0,1)}^{2}+\frac{2 e E}{\rho}\left\langle y_{x x}, \theta_{x x}\right\rangle_{L_{2}(0,1)}+\frac{E C_{w}}{\rho I}\left\|\theta_{x x}\right\|_{L_{2}(0,1)}^{2} \tag{13}
\end{equation*}
$$

Using the Holder's and Young's inequality, we obtain that

$$
\begin{equation*}
\left|2 e\left\langle y_{x x}, \theta_{x x}\right\rangle\right|=2\left|\left\langle e \sqrt{\frac{I}{C_{w}}} y_{x x}, \sqrt{\frac{C_{w}}{I}} \theta_{x x}\right\rangle\right| \leq e^{2} \frac{I}{C_{w}}\left\|y_{x x}\right\|_{L_{2}}^{2}+\frac{C_{w}}{I}\left\|\theta_{x x}\right\|_{L_{2}}^{2} \tag{14}
\end{equation*}
$$

From (13) and (14) we obtain that

$$
\langle L w, w\rangle \geq 0
$$

Thus, L is a positive self-adjoint operator.

Lemma 2. Linear operator L_{1} is subjected to the operator $L^{\frac{1}{2}}$.

Proof. From the definition of L_{1} it follows that

$$
\|L w\|_{\mathscr{H}}^{2}=\frac{(e+1) G^{2} C^{2}}{\rho^{2} I^{2}} \int_{0}^{\partial}\left|\frac{\partial^{2} \theta}{\partial x^{2}}\right|^{2} d x \leq c\left\|L^{\frac{1}{2}} w\right\|_{\mathscr{H}}^{2},
$$

i.e. L_{1} is subjected to the operator $L^{\frac{1}{2}}$.

Applying the general theory of nonlinear hyperbolic differential equations, we obtain.
Theorem 1. Let L be a positive self-adjoint operator and L_{1} is subjected to the operator $L^{\frac{1}{2}}$. Suppose that $G(t, w)$ acts from $[0, T] \times \mathscr{H}_{1}$ to \mathscr{H} and satisfies the local Lipschitz condition, i.e. if for any $t_{1}, t_{2} \in[0, T]$ and $w^{1}, w^{2} \in \mathscr{H}_{1}$

$$
\left\|G\left(t_{1}, w^{1}\right)-G\left(t_{2}, w^{2}\right)\right\|_{\mathscr{H}} \leq c\left(\left\|w^{1}\right\|_{\mathscr{H}_{1}},\left\|w^{2}\right\|_{\mathscr{H}_{1}}\right) \times\left[\left|t_{1}-t_{2}\right|+\left\|w^{1}-w^{2}\right\|_{\mathscr{H}_{1}}\right] .
$$

Then for any $w_{0} \in \mathscr{H}_{1}, w_{1} \in \mathscr{H}$ there exists T^{\prime}, such that the problem (6), (7) has a unique solution

$$
w \in C\left(\left[0, T^{\prime}\right], \mathscr{H}_{1}\right) \cap C^{1}\left(\left[0, T^{\prime}\right], \mathscr{H}\right) .
$$

If $T_{\text {max }}$ is the length of the maximum interval of existence of solutions, then one of the following alternatives is fulfilled
i) $\lim _{t \rightarrow T_{\max }-0}\left[\left\|w^{\prime}(t)\right\|_{\mathscr{H}}+\|w(t)\|_{\mathscr{H}_{1}}\right]=+\infty$
or
ii) $T_{\max }=T$.

Note that if $w_{0} \in \mathscr{H}_{0}$ and $w_{1} \in \mathscr{H}_{1}$, then

$$
w \in C\left(\left[0, T^{\prime}\right], \mathscr{H}_{0}\right) \cap C^{1}\left(\left[0, T^{\prime}\right], \mathscr{H}_{1}\right) \cap C^{2}\left(\left[0, T^{\prime}\right], \mathscr{H}\right) .
$$

Lemma 3. Let

$$
f_{i}(t, x, y, \theta) \in C^{1}\left([0, T] \times[0, l] \times R^{2}\right) .
$$

Then $G(t, w)=\binom{g_{1}(t, x, w)}{g_{2}(t, x, w)}$ acts from \mathscr{H}_{1} to \mathscr{H} and satisfies the local Lipschitz condition.

Proof. Let $t_{i} \in[0, T], w^{i}=\left(y^{i}, \theta^{i}\right) \in \mathscr{H}$. Then

$$
\begin{gathered}
\left\|G\left(t_{1}, w^{1}\right)-G\left(t_{2}, w^{2}\right)\right\|_{\mathscr{H}}^{2} \leq \\
\leq c\left\|f_{1}\left(t_{1}, x, y^{1}, \theta^{1}\right)-f_{2}\left(t_{2}, x, y^{2}, \theta^{2}\right)\right\|_{L_{2}(0, l)}^{2}+c\left\|f_{2}\left(t_{2}, x, y^{2}, \theta^{2}\right)\right\|_{L_{2}(0, l)}^{2},
\end{gathered}
$$

where $c=\max \left\{\frac{I+A e+A e^{2}}{\rho A I}, \frac{e+1}{\rho I}\right\}$, on the other hand

$$
\begin{gathered}
\left\|f_{1}\left(t_{1}, x, y^{1}, \theta^{1}\right)-f_{2}\left(t_{2}, x, y^{2}, \theta^{2}\right)\right\|_{L_{2}(0, l)}^{2}= \\
=\int_{0}^{l}\left|\int_{0}^{1} f_{1_{t}}^{\prime}\left(t_{1}+\tau\left(t_{2}-t_{1}\right), y^{1}+\tau\left(y^{2}-y^{1}\right), \theta^{1}+\tau\left(\theta^{2}-\theta^{1}\right)\right) d \tau\right|^{2} d x\left|t_{1}-t_{2}\right|+
\end{gathered}
$$

$$
\begin{gathered}
+\int_{0}^{l}\left|\int_{0}^{1} f_{1_{u}}^{\prime}\left(t_{1}+\tau\left(t_{2}-t_{1}\right), y^{1}+\tau\left(y^{2}-y^{1}\right), \theta^{1}+\tau\left(\theta^{2}-\theta^{1}\right)\right) d \tau\right|^{2}\left|y^{1}-y^{2}\right| d x+ \\
+\int_{0}^{l}\left|\int_{0}^{1} f_{1_{u}}^{\prime}\left(t_{1}+\tau\left(t_{2}-t_{1}\right), y^{1}+\tau\left(y^{2}-y^{1}\right), \theta^{1}+\tau\left(\theta^{2}-\theta^{1}\right)\right) d \tau\right|^{2}\left|\theta^{1}-\theta^{2}\right| d x \leq \\
\leq \sup \left[\left|f_{1_{t}}\left(t_{1}, x, \xi, \eta\right)\right|+\left|f_{1_{t}}\left(t_{1}, x, \xi, \eta\right)\right|+\left|f_{1_{t}}\left(t_{1}, x, \xi, \eta\right)\right|\right] \times \\
0 \leq t \leq T \\
x \in[0, l] \\
|\xi| \leq r_{0} \\
|\eta| \leq r_{1} \\
\times\left[l\left|t_{1}-t_{2}\right|+\int_{0}^{l}\left|y^{1}(x)-y^{2}(x)\right|^{2} d x+\int_{0}^{l}\left|\theta^{1}(x)-\theta^{2}(x)\right|^{2} d x\right] .
\end{gathered}
$$

Hence we obtain that

$$
\begin{gathered}
\left\|f_{1}\left(t_{1}, x, y^{1}, \theta^{1}\right)-f_{2}\left(t_{2}, x, y^{2}, \theta^{2}\right)\right\|_{L_{2}(0, l)}^{2} \leq \\
\leq c\left(\left\|y^{1}\right\|_{\mathscr{H}_{1}},\left\|y^{2}\right\|_{\mathscr{H}_{1}},\left\|\theta^{1}\right\|_{\mathscr{H}_{1}},\left\|\theta^{2}\right\|_{\mathscr{H}_{1}}\right) \times\left[\left|t_{1}-t_{2}\right|+\left\|y^{1}-y^{2}\right\|_{L_{2}(0, l)}^{2}+\left\|\theta^{1}-\theta^{2}\right\|_{L_{2}(0, l)}^{2}\right] \leq \\
\leq c\left(\left\|w^{1}\right\|_{\mathscr{H}_{1}},\left\|w^{2}\right\|_{\mathscr{H}_{1}}\right) \cdot\left[\left|t_{1}-t_{2}\right|^{2}+\left\|w^{1}-w^{2}\right\|_{\mathscr{H}_{1}}^{2}\right]
\end{gathered}
$$

where

$$
\begin{aligned}
& r_{0}=\max _{x \in[0, l]}\left[\left|y^{1}(x)\right|+\left|y^{2}(x)\right|\right. \\
& r_{1}=\max _{x \in[0, l]}\left[\left|\theta^{1}(x)\right|+\left|\theta^{2}(x)\right|\right.
\end{aligned}
$$

Using Lemmas 1-3 from the Theorem 1, we obtain the following result:
Theorem 2. Let

$$
f_{i}(t, x, y, \theta) \in C^{1}\left([0, T] \times[0, l] \times R^{2}\right) .
$$

Then for any $y_{0}, \theta_{0} \in \widehat{H_{0}^{2}}, \quad y_{1}, \theta_{1} \in L_{2}(0,1)$ there exists $T^{\prime}>0$, such that the problem (1) -(3) has a unique solution (y, θ), where

$$
y, \theta \in C^{1}\left(\left[0, T^{\prime}\right], L_{2}(0,1)\right) \cap C\left(\left[0, T^{\prime}\right], \widehat{H_{0}^{2}}\right) .
$$

Moreover, if $T_{\text {max }}$ is the length of the maximum interval of existence of solutions, then one of the following alternatives is fulfilled
$i) \lim _{t \rightarrow T_{\max }-0}\left[\left\|y_{t}(t, \cdot)\right\|^{2}{ }_{L_{2}(0, l)}+\left\|\theta_{t}(t, \cdot)\right\|^{2}{ }_{L_{2}(0, l)}+\|y(t, \cdot)\|^{2}{\widehat{H_{0}^{2}}}+\|\theta(t, \cdot)\|^{2}{\widehat{H_{0}^{2}}(0, l)}\right]=$ $+\infty$
or
ii) $T_{\max }=T$.

References

[1] S.S. Kokhmanyuk, E.G. Yanyutin, L.G. Romanenko, Oscillations of Deformable Sys- temsunder Impulse and Moving Loads, Naukova Dumka, Kiev (1980), 231 p. [in Russian].
[2] V. Komkov, Optimal Control Theory for the Damping of Vibrations of Simple Elastic Systems, Moscow, Mir, 1975, 158 p.
[3] A.B. Aliev, The Cauchy problem for high-order quasilinear equations of hyperbolic type with the Volter operator, DAN SSSR, 280(1), 1985, 15-18.

[^0]Received 21 October 2017
Accepted 17 November 2017

[^0]: Nigar A. Rzayeva
 Institute of Mathematics and Mechanics of NAS of Azerbaijan, 9. B. Vahabzade St, Az1141, Baku, Azerbaijan
 E-mail: n.rzayev.92@mail.ru

