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A Mixed Problem for a Class of Nonlinear Tymoshenko
Systems

N.A. Rzayeva

Abstract. In this paper a mixed problem for semilinear systems of equations describing the
oscillations of a thin-walled bar is considered. Reducing the problem under consideration to a
differential equation, a theorem on local solvability is proved.
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Let us consider the bars described by a system of two differential equations in the
domain Q = [0, T ]× [0, l]

EIyxxxx + ρAytt − ρAeθtt = f1(t, x, y, θ)
ECwθxxxx −GCθxx − ρAeytt + ρ

(
I +Ae2

)
θtt = f2 (t, x, y, θ)

}
(1)

with boundary conditions

y (0, t) = 0, y (l, t) = 0, yxx (0, t) = 0 , yxx (l, t) = 0
θ (0, t) = 0 , θ (l, t) = 0, θxx (0, t) = 0 , θxx (l, t) = 0

}
(2)

with initial conditions

y (x, 0) = y0 (x) , yt (x, 0) = y1 (x)
θ (x, 0) = θ0 (x) , θt (x, 0) = θ1 (x)

}
(3)

where 0 < x < l, 0 < t < T, l > 0, T > 0 are given numbers, y (x, t) is a transverse
displacement, θ (x, t) is an angle of cross-section of the bar, E is the Young’s modulus, I
is a polar moment of inertia of the cross section with respect to its center of gravity, ρ is
a density of the material of the bar, A is a cross-sectional area, e is a distance from center
of gravity to center of torsion, Cw is a sectorial moment of inertia of the cross section, G
is a shear modulus, C is a geometric rigidity of free torsion, ECw is a stiffness of bending
torsion, GC is a stiffness of free torsion. Here, f1 and f2 are functions depending on t, x, y
and θ (see e.g. [1, 2] ).
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The system of equations (1), (2) can be written as follows

Rwtt + Sw +Nw = F (t, x, y, θ), (4)

w (0) = w0, wt (0) = w1 (5)

where

R =

(
ρA −ρAe
−ρAe ρ

(
I +Ae2

) ) , S =

(
EI∂4 0

0 ECw∂
4

)
, N =

(
0 0
0 −GC∂2

)
,

w =

(
y
θ

)
, w0 =

(
y0
θ0

)
, w1 =

(
y1
θ1

)
Let us consider the functional space H = L2 (0, 1)× L2(0, 1) with a scalar product:

〈
w1, w2

〉
=
〈
w1, w2

〉
H

=
I

Cw

〈
y1, y2

〉
L2(0,1)

+
〈
θ1, θ2

〉
L2(0,1)

,

where

wi =
(
yi, θi

)
∈H , i = 1, 2.

Let us define Ĥ2
0 and Ĥ4

0 in the following way:

Ĥ2
0 =

{
u : u ∈ H2, u(0) = u(l) = 0

}
,

Ĥ4
0 =

{
u : u ∈ H4, u(0) = u(1) = uxx(0) = uxx(l) = 0

}
.

Denote by H1 the space Ĥ2
0 × Ĥ2

0 , and by H2 the space Ĥ4
0 × Ĥ4

0 .

Let the operator L be defined in the space H :

D (L) = H .

Lw = R−1Sw =

[
E(I+Ae2)

ρA
∂4

∂x4
eECw
ρI

∂4

∂x4

eE
ρ

∂4

∂x4
ECw
ρI

∂4

∂x4

]
w, where w =

(
y
θ

)
∈ D(L).

We also define the linear operator L1 as follows:

D (L1) = H1.

L1w = R−1Cw =

[
0 − eGC

ρI
∂2

∂x2

0 −GC
ρI

∂2

∂x2

]
w, where w =

(
y
θ

)
∈ D(L1) ∈H1.

We define the nonlinear operator G(.) in the following way

G (t, w) =

(
g1(t, x, w)
g2(t, x, w)

)
,
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where

g1 (t, x, w) =
I +Ae2

ρAI
f1 (t, x, y, θ) +

e

ρI
f2 (t, x, y, θ) ,

g2 (t, x, w) =
e

ρI
f1 (t, x, y, θ) +

1

ρI
f2 (t, x, y, θ) .

Then the problem (4), (5) can be written in the form

wtt + Lw + L1w = G(t, w), (6)

w (0) = w0, w
′ (0) = w1. (7)

Lemma 1. L is a positive self-adjoint operator in H .

Proof. Let wi = (yi, θi) ∈ D(L).

Lw1 =

(
E
(
I +Ae2

)
ρA

y1xxxx +
eECw
ρI

θ1xxxx,
eE

ρ
y1xxxx +

ECw
ρI

θ1xxxx

)
.

Hence we obtain that

〈
Lw1, w2

〉
=

I

Cw

〈
E
(
I +Ae2

)
ρA

y1xxxx +
eECw
ρI

θ1xxxx, y
2
〉
L2(0,1)

+

+

〈
eE

ρ
y1xxxx +

ECw
ρI

θ1xxxx, θ
2
〉
L2(0,1)

=

=
E
(
I +Ae2

)
ρCwA

〈
y1xx, y

2
xx

〉
L2(0,1)

+
eE

ρ

〈
θ1xx, y

2
xx

〉
L2(0,1)

+

+
eE

ρ

〈
y1xx, θ

2
xx

〉
L2(0,1)

+
ECw
ρI

〈
θ1xx, θ

2
xx

〉
L2(0,1)

. (8)

Similarly we obtain that

Lw2 =

(
E
(
I +Ae2

)
ρA

y2xxxx +
eECw
ρI

θ2xxxx,
eE

ρ
y2xxxx +

ECw
ρI

θ2xxxx

)
.

〈
w1, Lw2

〉
=

I

Cw

〈
u1,

E
(
I +Ae2

)
ρA

y2xxxx +
eECw
ρI

θ2xxxx

〉
L2(0,1)

+

〈
v1,

eE

ρ
y2xxxx +

ECw
ρI

θ2xxxx

〉
L2(0,1)

=

=
E
(
I +Ae2

)
ρCwA

〈
y1xx, y

2
xx

〉
L2(0,1)

+
eE

ρ

〈
y1xx, θ

2
xx

〉
L2(0,1)

+



A Mixed Problem for a Class of Nonlinear Tymoshenko Systems 121

+
eE

ρ

〈
θ1xx, y

2
xx

〉
L2(0,1)

+
ECw
ρI

〈
θ1xx, θ

2
xx

〉
L2(0,1)

. (9)

Comparing (8) and (9), we obtain that〈
Lw1, w2

〉
=
〈
w1, Lw2

〉
.

On the other hand, the operator L is invertible.

Indeed, let h = (h1, h2) ∈H . Consider the equation

Lw = h, w = (y, θ) ∈ D(L). (10)

Equation (10) has the following form{
E(I+Ae2)

ρA yxxxx + eECw
ρI θxxxx = h1,

eE
ρ yxxxx + ECw

ρI θxxxx = h2.
(11)

Hence we obtain that { EI
ρAuxxxx = h1 − eh2,

y (0) = y (l) = yxx (0) = yxx (l) = 0.
(12)

The problem (11) has a unique solution y ∈ Ĥ4
0 . Similarly we obtain that the problem

(11) has a unique solution

w = (y, θ) , where y, θ ∈ Ĥ4
0 , i.e. w ∈H .

From the definition of L and from the scalar product in H , we get that

〈Lw, w〉 =
EI
(
I +Ae2

)
ρCwA

‖yxx‖2L2(0,1)
+

2eE

ρ
〈yxx, θxx〉L2(0,1)

+
ECw
ρI
‖θxx‖2L2(0,1)

. (13)

Using the Holder’s and Young’s inequality, we obtain that

|2e 〈yxx, θxx〉| = 2

∣∣∣∣∣
〈
e

√
I

Cw
yxx,

√
Cw
I
θxx

〉∣∣∣∣∣ ≤ e2 I

Cw
‖yxx‖2L2

+
Cw
I
‖θxx‖2L2

. (14)

From (13) and (14) we obtain that

〈Lw, w〉 ≥ 0.

Thus, L is a positive self-adjoint operator.

Lemma 2. Linear operator L1 is subjected to the operator L
1
2 .
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Proof. From the definition of L1 it follows that

‖Lw‖2H =
(e+ 1)G2C2

ρ2I2

∫ ∂

0

∣∣∣∣∂2θ∂x2

∣∣∣∣2dx ≤ c∥∥∥ L 1
2w
∥∥∥2

H
,

i.e. L1 is subjected to the operator L
1
2 .

Applying the general theory of nonlinear hyperbolic differential equations, we obtain.

Theorem 1. Let L be a positive self-adjoint operator and L1 is subjected to the operator
L

1
2 . Suppose that G (t, w) acts from [0, T ] ×H1 to H and satisfies the local Lipschitz

condition, i.e. if for any t1, t2 ∈ [0, T ] and w1, w2 ∈H1∥∥G (t1, w1
)
−G

(
t2, w

2
)∥∥

H
≤ c

(∥∥w1
∥∥

H1
,
∥∥w2

∥∥
H1

)
×
[
|t1 − t2|+

∥∥w1 − w2
∥∥

H1

]
.

Then for any w0 ∈ H1, w1 ∈ H there exists T ′, such that the problem (6), (7) has a
unique solution

w ∈ C(
[
0, T ′

]
,H

1
) ∩ C1(

[
0, T ′

]
,H ).

If Tmax is the length of the maximum interval of existence of solutions, then one of the
following alternatives is fulfilled

i) limt→Tmax−0
[
‖w′(t)‖H + ‖w(t)‖H1

]
= +∞

or
ii)Tmax = T .
Note that if w0 ∈H0 and w1 ∈H1,

then
w ∈ C(

[
0, T ′

]
,H

0
) ∩ C1(

[
0, T ′

]
,H1) ∩ C2(

[
0, T ′

]
,H ).

Lemma 3. Let
fi (t, x, y, θ)∈ C1([0, T ]× [0, l]×R2).

Then G (t, w) =

(
g1(t, x, w)
g2(t, x, w)

)
acts from H1 to H and satisfies the local Lipschitz

condition.

Proof. Let ti ∈ [0, T ] , wi = (yi, θi) ∈H . Then∥∥G (t1, w1
)
−G

(
t2, w

2
)∥∥2

H
≤

≤ c
∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
+ c

∥∥f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
,

where c = max
{
I+Ae+Ae2

ρAI , e+1
ρI

}
, on the other hand∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
=

=

∫ l

0

∣∣∣∣∫ 1

0
f ′1t
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2dx |t1 − t2|+
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+

∫ l

0

∣∣∣∣∫ 1

0
f ′1u
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2 ∣∣y1 − y2∣∣2dx+

+

∫ l

0

∣∣∣∣∫ 1

0
f ′1u
(
t1 + τ (t2 − t1) , y1 + τ

(
y2 − y1

)
, θ1 + τ

(
θ2 − θ1

))
dτ

∣∣∣∣2 ∣∣θ1 − θ2∣∣2dx ≤
≤ sup[|f1t (t1, x, ξ, η)|+ |f1t (t1, x, ξ, η)|+ |f1t (t1, x, ξ, η)|]×

0 ≤ t ≤ T
x ∈ [0, l]
|ξ| ≤ r0
|η| ≤ r1

×[l |t1 − t2|+
∫ l

0

∣∣y1 (x)− y2 (x)
∣∣2dx+

∫ l

0

∣∣θ1 (x)− θ2 (x)
∣∣2dx].

Hence we obtain that∥∥f1 (t1, x, y1, θ1)− f2 (t2, x, y2, θ2)∥∥2

L2(0,l)
≤

≤ c
(∥∥y1∥∥

H1
,
∥∥y2∥∥

H1
,
∥∥θ1∥∥

H1
,
∥∥θ2∥∥

H1

)
× [|t1 − t2|+

∥∥ y1 − y2∥∥2
L2(0,l)

+
∥∥ θ1 − θ2∥∥2

L2(0,l)
] ≤

≤ c
(∥∥w1

∥∥
H1
,
∥∥w2

∥∥
H1

)
· [|t1 − t2|2 +

∥∥ w1 − w2
∥∥2

H1
],

where

r0 =
max

x ∈ [0, l]
[
∣∣y1 (x)

∣∣+
∣∣y2 (x)

∣∣
r1 =

max

x ∈ [0, l]
[
∣∣θ1 (x)

∣∣+
∣∣θ2 (x)

∣∣
Using Lemmas 1-3 from the Theorem 1, we obtain the following result:

Theorem 2. Let

fi (t, x, y, θ)∈ C1([0, T ]× [0, l]×R2).

Then for any y0, θ0 ∈ Ĥ2
0 , y1, θ1 ∈ L2 (0, 1) there exists T ′ > 0 , such that the problem

(1) -(3) has a unique solution (y, θ) , where

y, θ ∈ C1(
[
0, T ′

]
, L2(0, 1)) ∩ C(

[
0, T ′

]
, Ĥ2

0 ).

Moreover, if Tmax is the length of the maximum interval of existence of solutions, then
one of the following alternatives is fulfilled

i)limt→Tmax−0

[
‖yt(t, ·)‖2L2(0,l)

+ ‖θt(t, ·)‖2L2(0,l)
+ ‖y(t, ·)‖2

Ĥ2
0

+ ‖θ(t, ·)‖2
Ĥ2

0 (0,l)

]
=

+∞
or

ii)Tmax = T.
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