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On the Influence of the Short- and Open-circuit Condi-
tions on Stability loss of the PZT/Metal/PZT Sandwich

Circular Plate-disc Condition
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Abstract. The axisymmetric stability loss of the PZT/Metal/PZT sandwich circular plate is
investigated simultaneously within the scope of the open-circuit and short-circuit electrical con-
ditions. It is assumed that these conditions satisfy on the upper and lower face-planes of the
piezoelectric layers. Moreover, it is assumed that on the lateral-boundary cylindrical surfaces of
the piezoelectric face layers the short-circuitconditions satisfy. The 3D linearized stability loss
theory for piezoelectric materials is employed for investigation of the corresponding eigenvalue
problem. Concrete numerical results are obtained by utilizing FEM for various piezoelectric face
and metal core layers and the main attention is focused on the influence of the piezoelectricity on
the values of the compressional critical stress and the influence of the aforementioned two type
electrical boundary conditions on these stresses. According to the comparison of the results, it
is made conclusions on the significance of the influence of the electrical boundary conditions on
the values of the absolute values of the critical stresses. In particular, it is established that in the
case where the open-circuit boundary conditions satisfy the influence of the piezoelectricity of the
face layers materials on the critical stresses is more significant than that in the case where the
short-circuit boundary conditions satisfy.
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1. Introduction

Investigations of stability loss of plate type element of constructions made of piezoelec-
tric materials (shortly PZT) or made of layered composites containing PZT layers has a
great significance not only in the theoretical, but also in the practical sense. Researchers
such as [11], Jerom and Ganesan (2010) and many others listed therein can be taken as
examples for such investigations in which it was established that the piezoelectricity of the
plate or beam materials causes an increase in the values of the mechanical critical forces

Now we consider a brief review of the related recent investigations and first note the
paper by [10] in which static analysis of the simply supported rectangular plate made
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of functionally graded piezoelectric material is studied with the use of the refined plate
theories. The “open- and closed- circuit” conditions on the upper and lower face surfaces
are considered. The paper by [4] deals with the study the response of the bi-layered
circular plate made of functionally-graded piezoelectric material and resting on a Winkler-
Pasternak foundation.

[7] studies the buckling of the sandwich circular plate with piezoelectric face and porous
middle layers under radial compression within the scope of the Kirchhoff-Love plate theory
and therefore results obtained in this paper are acceptable for very thin plates. The
analytical expression for the critical force is obtained and according to this expression the
influence of the problem parameters, as well as of the piezoelectricity of the covering layer
material is discussed.

The foregoing brief review shows that all the foregoing investigations have been made
within the scope of the approximate plate theories, the accuracy of which depends signif-
icantly on the geometrical and electro-mechanical properties. It is obvious that the order
of the accuracy of these results can be estimated with the use of the corresponding results
obtained within the scope of the 3D linearized exact stability loss theories the present
level of which has been detailed in the monograph by [5] who made many fundamental
contributions to creating this theory. At the same time we note that the 3D linearized
stability loss theories for the elements of constructions made of time-dependent materials
was developed in the monograph by [1].

In the foregoing sense, in the paper by [2] the first attempt with respect to the stability
loss problems related to the system comprising elastic and piezoelectric constituents was
made. At the same time, it should be noted that the study of stability loss of elements
of constructions made of piezoelectric materials by employing 3D linearized stability loss
theories just is beginning.

One of the main question in the theory of piezoelectricity, as well as in the investigations
of a stability loss of element of constructions made of these materials, is the study the
influence of the “open-circuit” and “short-circuit” type electrical boundary conditions on
the electro-mechanical behavior of these constructions. Taking the this statement into
consideration in the present paper the aforementioned influence is studied for the circular
sandwich PZT/Metal/PZT plate within the scope of the 3D linearized stability loss theory.
Under this study it is assumed that the plate is compressed in the radial inward direction
by uniformly distributed rotationally symmetric normal forces.

We recall that the corresponding 3D stability loss problems for the circular plate
consisting of elastic and viscoelastic constituents are made in the papers by [3] and [9]
the results of which are also detailed in the monograph by [1].

2. Formulation of the problem

We consider a circular sandwich plate whose geometry is shown in Fig. 1 and assume
that the materials of the upper and lower face layer are the same and PZT.

We associate with the lower face layer of the plate the cylindrical coordinate system
Orθz(Fig. 1) and the position of the points of the plate we determine through the La-
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grange coordinates in this system. Thus, according to Fig.1, in the selected coordinate
system, the plate occupies the region {0 ≤ r ≤ `/2; 0 ≤ θ ≤ 2π; 0 ≤ z ≤ h} . Investigate
the axisymmetris (rotationally symmetric) stability loss of the mentioned plate under
compression of that in the inward radial direction by uniformly distributed rotationally
symmetric normal forces with intensity p acting on the lateral boundary-surface.

a
b

Fig. 1. The geometry of the considered circular plate (a) and the cross
section of this plate with loading condition and some geometric values (b).

Below we will denote the values related to the upper and lower face layers by upper
indices (3) and (1) respectively, whereas the values related to the core layer are denoted
by (2). Moreover, the values related to the pre-critical stress-strain state are denoted by
additional upper index 0.

Under investigations we will consider two type boundary conditions on the upper and
lower face planes of the PZT layers. The first type of these conditions are the “open-
circuit” ones, according to which it is assumed that D1

z = 0 at z = 0 and hF , and D3
z = 0

at z = hc + hF and hc + 2hF , D
(k)
z is a normal component of the electric displacement.

The second type conditions are the “short-circuit” ones, according to which, φ1 = 0 at
z = 0 and hF , and φ3 = 0 at z = hc + hF and hc + 2hF , where φ(k) is a potential of an

electric field and E
(k)
r = −∂φ(k)/∂r, E
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z = −∂φ(k)/∂z. Here E

(k)
r and E

(k)
z are the radial

and normal component of the electric field vector.
In the case where the “open-circuit” conditions take place the pre-critical stress state

is determined according to the following expressions:
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In (1) σ
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rr ,. . . , are the components of the stress and Green strain

tensors, respectively, u
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In the case where the aforementioned “short-circuit” conditions are satisfied, the pre-

critical state is determined according to the following expressions.
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Note that the expressions in (1) and (2) are approximate in the near vicinity of the
lateral boundary surface on which the external compressional radial forces act. Never-
theless, as we will consider the cases where h

/

` ∼ 10−1 (where h = 2hF + hC (Fig. 1),
therefore the influence of the mentioned proximity on the values of the critical parameters
can be taken as insignificant one. Moreover, note that the expressions in (1) are ob-
tained within the scope of the “open-circuit” condition satisfied on the face layers upper
and lower plane-boundaries, according to which, the normal component of the electrical
displacement vector on these planes is equal to zero.

Thus, within the scope of the foregoing assumptions, according to [5], [11], [2] the
3D linearized stability loss equations and relations for the case under consideration are
obtained as follows:

3D linearized stability loss equations



30 F.I. Jafarova, O.A. Rzayev
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Linearized strain-displacement relations
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Linearized electro-mechanical relations
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Note that the relations in (1) - (3) are written for the piezoelectric materials and

supposing that e
(k)
ij = 0 and ε

(k)
ij = 0 we can obtain the mechanical relations for the elastic

materials. Moreover, note that under writing of the relations in (5) it is assumed that the
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polled direction of the piezoelectric material is the Oz axis direction (Fig. 1). At the same
time, we assume that the contact and boundary conditions given below satisfy.
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Note that the conditions given in (6) relate to the mechanical quantities and the
corresponding conditions for the electrical quantities are given for the components of the

electrical displacements D
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z and D
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r , or for the electric potential φ(k). In the case where

we assume that the “open-circuit” conditions satisfy the following relations take place
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However in the case where we assume that the ”short-circuit” conditions satisfy the rela-
tions in (7) are replaced with the following ones.

φ(3)
∣

∣

∣

z=2hF+hC

= 0, φ(3)
∣

∣

∣

z=hF+hC

= 0, φ(1)
∣

∣

∣

z=0
= 0, φ(1)

∣

∣

∣

z=hF

= 0. (9)

Consequently, in the present investigation we consider simultaneously two cases deter-
mined by conditions in (7) and (9).

This completes the formulation of the problem, according to which, the determination
of the critical values of the pre-critical quantities is reduced to the solution of the eigenvalue
problem (1), (3) – (8) for the “open-circuit” case, and (2),(3) – (6), (8) and (9) for the
“short-circuit” case.
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3. FEM modelling of the problem

We attempt to solve to the problem formulated in the previous section by employing
FEM and for this purpose, according to [5], [11], [2] and others, we introduce the following
functional.
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and after well-known mathematical manipulations we obtain the first three equations in
(3). The boundary and contact conditions in (6) and (7) are given with respect to the
forces and electrical displacements. In this way it is proven that the first three equations in
(3) are the Euler equations for the functional (10) and the boundary and contact conditions
in (6) and (7) which are given with respect to the forces and electrical displacements, are
the related natural boundary and contact conditions.

According to FEM modelling, the solution domains indicated in (11) are divided into
a finite number of finite elements. For the considered problem each of the finite elements
is selected as a standard rectangular Lagrange family quadratic finite element (i.e. with

nine nodes) and each node has three degrees of freedom, i.e. radial displacement u
(k)
r ,

transverse displacement u
(k)
z and electric potential φ(k). Employing the standard Ritz

technique detailed in many references, for instance, in the book by [13], we determine
the displacements and electrical potential at the selected nodes. After this determination,
from the equation

det(K) = 0 (13)

the values of the critical compressional forces are determined, where Kis a corresponding
stiffness matrix. The solution procedure of the equation (13) is made according to the
well-know “bi-section” method which basis on the sign change of the det(K).
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Note that in the “open-circuit” case under FEM modeling the nodes on the planes
z = 0, hF , hF + hC and 2hF + hCthe electrical potentials φ(1) and φ(3) are taken as
unknown ones, however in the “short-circuit” case these potentials are taken as known
ones and are equated to zero. Namely with these the FEM modeling in the “short-circuit”
case is distinguished with that in the “open-circuit” case.

This completes the consideration of the method of solution.

4. Numerical results and discussions

Note that in the present paper, the piezoelectric materials PZT -5H, PZT -4 and
BaTiO3 are taken as the face layer materials, however the metal materials - aluminum (Al)
and steel (St) are taken as the core layer materials. The values of the elastic, piezoelectric
and dielectric constants of the selected piezoelectric materials and the references used are
given in Table 1.

Table 1. The values of the mechanical, piezoelectrical and dielectrical constants of
the selected piezoelectric materials

Materials
(Source Ref)

c
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11 c
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13 c

(r1)
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31 e
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33

PZT-4
[11]

13.9 7.78 7.40 11.5 2.56 3.06 -5.2 15.1 12.7 0.646 .562

PZT-5H
[11]

12.6 7.91 8.39 11.7 2.30 2.35 -6.5 23.3 17.0 1.505 1.302

BaTiO3
[8]

16.6 7.66 7.75 16.2 4.29 4.29 -4.4 18.6 11.6 1.434 1.182

×1010N/m2 C/m2 ×1010C/V m

Table 2. The values of the critical dimensionless stresses σ1
cr, σ

2
cr and p̄cr obtained for

the case where the material of the core layer is Steel in the cases where the piezoelectric
constants of PZT are equated to zero (upper number), the “short-circuit” (middle num-
ber) and the “open-circuit” conditions (lower number) satisfy and the piezoelectric and
dielectric constants are equal to the corresponding data given in Table 1
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0.1816

0.1296
0.1304
0.2165

0.1206
0.1208
0.1381

σ
(2.2)
cr

0.2866
0.2890
0.3377

0.2888
0.2908
0.3258

0.1940
0.1944
0.2000

p̄cr
0.2046
0.2063
0.2727

0.2225
0.2240
0.2803

0.1635
0.1638
0.1743

1/20 σ1
cr

0.0867
0.0881
0.1800

0.1274
0.1290
0.2156

0.1202
0.1206
0.1379

σ2
cr

0.2774
0.2818
0.3345

0.2841
0.2875
0.3243

0.1933
0.1939
0.1998

p̄cr
0.1821
0.1850
0.2573

0.2058
0.2083
0.2700

0.1568
0.1573
0.1689

According to [6], the values of Lame’s constants of the core layer material is selected
as follows: for the Al: λ = 48.1GPa and µ = 27.1GPa; for the St: λ = 92.6GPa and
µ = 77.5GPa.

Under FEMmodelling using the symmetry with respect to the plane z = hF+hC/2 and
the axial symmetry with respect to the Oz (Fig. 1a) axis of the mechanical and geometrical
properties of the plate, we consider only the region {0 ≤ r ≤ `/2; 0 ≤ z ≤ hF + hC} and
this region is divided into 40 finite elements along the radial direction and 12 finite elements
along the plate’s thickness direction, resulting in 31022 NDOF. Such selection of the finite
elements numbers is established according to the convergence of the numerical results. All
the corresponding PC programs are composed by the authors of the paper.

The algorithm and programs employed in the present investigations are some modifi-
cations and development of the corresponding algorithm and programs used and testing in
the many investigations and discussed in the monograph by [1]. Consequently, the validity
and trustiness of the used in the present investigations PC programs and algorithm cause
no doubt.

For simplification of the consideration, we introduce the following notation for the
dimensionless critical radial stresses and critical compressive forces:

σ(1)
cr = σ(1),0

rr.cr

/

c
(1)
44 , σ

(2)
cr = σ(2),0

rr.cr

/

c
(1)
44 , p̄cr = p/c

(1)
44 . (14)

Thus, according to (14), we estimate the work carrying capacity of the plate under con-
sideration with respect to the stability loss by simultaneous use of the values of three
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dimensionless critical parameters which are the dimensionless radial compressive stress

σ
(1)
cr in the face piezoelectric layer, the dimensionless radial compressive stress σ

(2)
cr in the

core metal layer and the dimensionless intensity p̄cr of the external compressive force.
Such an approach for estimation of the buckling delamination allows us to have more pre-
cise information on the influence of the problem parameters such as the piezoelectricity of
the face layers’ materials, the face layers’ thickness and the mechanical properties of the
layers’ materials.

Thus, we consider the numerical results obtained for the critical parameters indicated
in (14) and detailed above. Note that these results are given in Tables 2 and 3 which
are obtained for the cases where the material of the core layer is St and Al respectively.
Moreover, note that these results are obtained for the cases where face layers materials
are PZT-5H, PZT-4 and BaTiO3. For estimation of the influence of the face layers’
piezoelectricity on the values of the critical stresses in the tables, three types of results
are presented simultaneously, the first of which (upper number) relates to the case where
the values of the piezoelectric and dielectric constants of the face layer materials are
equated to zero, i.e. coupling of the mechanical and electrical fields is not taken into
consideration. However, under obtaining the second (third type) of results indicated by
the middle numbers (by the lower numbers) the values of the piezoelectric and dielectric
constants are taken into consideration as given in Table 1 and the coupling effect between
the electrical and mechanical fields is taken into consideration completely and the “short-
circuit” (9) (the “open-circuit” (7)) condition is satisfied.

Analysis of the results shows that for all the cases under consideration the piezoelec-
tricity of the face layers causes an increase in the values of the dimensionless critical
stressesσ1

cr. σ2
crand p̄cr. However this increase is more significant for the PZT-5H and

PZT-4 than that for the BaTiO3. At the same time, this increase is very significant for
the “open-circuit” case than that for the “short-circuit” case.

Table 3. The values of the critical dimensionless stresses σ1
cr, σ

(2)
cr and p̄cr obtained

for the case where the material of the core layer is Aluminum in the cases where the piezo-
electric constants of PZT are equated to zero (upper number), the “short-circuit” (middle
number) and the “open-circuit” conditions (lower number) satisfy and the piezoelectric
and dielectric constants are equal to the corresponding data given in Table 1
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hF / l Crit.
Param.

Materials of the face layers

PZT-
5H

PZT-4 BaTiO3

1/40 σ
(1)
cr

0.1264
0.1268
0.2430

0.1772
0.1776
0.2828

0.1586
0.1587
0.1793

σ
(2)
cr

0.1491
0.1495
0.1667

0.1458
0.1461
0.1570

0.0941
0.0942
0.0958

p̄cr
0.1435
0.1439
0.1858

0.1537
0.1540
0.1884

0.1103
0.1104
0.1167

1/30 σ
(1)
cr

0.1259
0.1267
0.2434

0.1777
0.1786
0.2823

0.1590
0.1593
0.1792

σ
(2)
cr

0.1485
0.1494
0.1670

0.1461
0.1469
0.1567

0.0944
0.0946
0.0957

p̄cr
0.1410
0.1419
0.1925

0.1567
0.1575
0.1986

0.1160
0.1162
0.1236

1/24 σ
(1)
cr

0.1259
0.1274
0.2422

0.1773
0.1790
0.2795

0.1580
0.1584
0.1775

σ
(2)
cr

0.1485
0.1503
0.1662

0.1458
0.1472
0.1552

0.0938
0.0940
0.0948

p̄cr
0.1391
0.1408
0.1979

0.1590
0.1605
0.2070

0.1206
0.1209
0.1293

1/25 σ1
cr

0.1261
0.1288
0.2402

0.1762
0.1791
0.2750

0.1559
0.1567
0.1746

σ2
cr

0.1488
0.1519
0.1647

0.1449
0.1474
0.1527

0.0926
0.0930
0.0933

p̄cr
0.1375
0.1404
0.2205

0.1606
0.1633
0.2139

0.1243
0.1249
0.1340

The discussed above character of the influence of the piezoelectricity of the face layers
materials on the values of the dimensionless critical stresses can be explained with the
so-called “piezoelectric stiffening” effect of the piezoelectric materials, i.e. with the in-
crease of the material stiffness as a result of the piezoelectricity of that. The mentioned
“piezoelectric stiffening” effect in the “open-circuit” case is more significant than that in
the “short-circuit” case.

Consequently, the fact that an increase of the thickness of the face layers also increases
the stiffness of the piezoelectric layers. However, under fixed h/l (=0.2) thickness of the
plate an increase hF /l cases a decrease of the hC/l as a result of which the whole stiffness
of the plate depends on the ratio of stiffnesses of the core and face layers materials. Under
explanation of the results discussed above it is also necessary to take into consideration
of the complicate character of the dependence between the selected dimensionless critical
stress and the ratio of the stiffnesses of the layers.

Namely with the foregoing statements it can be explained the character of the influence
of the change hF /l on the values of the critical stresses. According to the results given in
Tables 2 and 3 this character can be formulated as follows:

1. For the pairs of materials consisting of PZT + St an increase in the values of hF /l
causes to decrease in all the values of the critical stresses under consideration;

2. For the pairs of materials consisting of PZT + Al the values of p̄cr increase with
hF /l, however dependence among σ1

cr, σ
2
cr and hF / l has non-monotonic character;
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3. The foregoing conclusions take place not only in the “open-circuit” case but also in
the “short-circuit” case.

This completes the discussions of the obtained numerical results.

5. Conclusions

Thus, in the present paper within the scope of 3D linearized theory of stability for
piezoelectric materials, the axisymmetric stability loss of the PZT/Metal/PZT sandwich
circular plate has been investigated. The cases where “open-circuit” and “short-circuit”
conditions with respect to the electrical displacement and electric potential respectively
on the upper and lower surfaces, and short-circuit conditions with respect to the electri-
cal potential on the lateral surface of the face layers are satisfied, are considered. The
corresponding eigenvalue problem is solved numerically by employing FEM. Numerical
results are presented in Tables 2 and 3 for the PZT-5H/Al/PZT-5H, PZT-4/Al/PZT-4,
BaTiO3/Al/BaTiO3, PZT-5H/St/PZT-5H, PZT-4/St/PZT-4 and BaTiO3/St/ BaTiO3
plates, respectively. These results illustrate simultaneously the values of the critical di-

mensionless radial compressive stress σ
(1)
cr acting in the face piezoelectric layer, the values

of the dimensionless critical compressive radial stress σ
(2)
cr acting in the core-metal layer

and the values of the dimensionless critical stress of the intensity p̄cr of the external com-
pressive forces obtained in the case where the piezoelectricity, i.e. the coupling effect, are
taken into consideration (middle and lower numbers in the tables) and in the case where
the coupling effect is not taken into consideration (upper number in the tables). According
to these results, the concrete conclusions on the influence of the electro-mechanical and
geometrical parameters of the sandwich circular plate under consideration on the values
of the dimensionless stresses are made. Note that these conclusions are formulated in the
text of the previous section and the main of them is the increase of the critical stresses as
a result of the piezoelectricity of the face layers materials and the great magnitude of this
increase in the “open-circuit” case than that in the “short-circuit” case.
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