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Free Vibrations of Fluid-containing Spheres

F.A. Seyfullayev ∗, S.R. Agasiyev

Abstract. In the paper free vibrations of a spherical shell containing compressed fluid are studied.
Its natural frequencies of vibrations are determined under some values of the parameters of the
system, influence of geometrical and physical parameters of the system ”spherical shell-fluid” on
free vibrations of the sphere is studied.
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1. Introduction

Shells as elements of machines and constructions are widely used in aircraft and ship-
building, etc. Therefore, recently the researchers are interested in the issues associated
with dynamic behavior of thin-shelled constructions that in working conditions are in con-
tact with external medium. The problems of free vibrations of elastic thin shells contacting
with elastic medium and fluid, occupy important place among dynamical contact prob-
lems of shell theory. Filled shells may be used in practice for storage and transportation
of products. As the problems of strength and life of the shells of tanks are very actual in
connection with oil and gas recovery, necessity of storage, transportation and processing
of different chemical mixtures. Furthermore, the Earth may be considered as a special
shells with a filler.

Frequencies and forms of free vibrations of spherical and cylindrical shells contacting
with elastic and liquid medium are studied in [1]-[3]. Approximate simple formulas for
calculating frequency and determination of vibration forms of the systems under consid-
eration that restricts the use of the obtained results, as in a number of important cases it
excludes the possibility of conducting qualitative analysis of the studied processes, are ob-
tained by approximate methods. These investigations are connected with great difficulties
as it is necessary to solve transcendental system of equations.

Free vibrations of a thin-walled shell containing compressible fluid, are studied in [4]-
[6]. Under some values of the parameters of the system, its eigenvalues of the frequencies
of vibrations were determined, influence of geometrical and physical parameters of the
system ”cylindrical shell-fluid” on free vibrations of the cylinder is studied.
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In [7], a problem of free vibrations of a thin-walled elastic spherical shell containing
an elastic medium with different properties, usually with modulus of elasticity that is
significantly less than the elasticity modulus of the shell material, is studied.

Analysis of vibrations of fluid-containing sphere with regard to finite thickness differs
from the analysis of a very thin sphere with the fact that loads are not introduced into
the equation of motion, and in the equations of motion the terms containing derivatives
along the radius, are not ignored. The external load on the shell enters into the bound-
ary conditions. The results may be used when analyzing the tanks subjected to seismic
impacts, at transportation and also when studying the Earth vibrations.

In this connection, in this paper we consider free vibrations of a finitely-thickened
sphere of radius r1 and r2, respectively and filled with compressible fluid. The equation
of motion of a spherical shell is disconnected into two parts: the system describing the
potential motion, and the equation describing the vortex motion [8].
The first system is of the form:
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Here r is the distance from the center of the sphere, w is radial displacement, φ is
displacement potential, G is shear modulus, ν is Poisson’s ratio, q is density of the shell’s
material.
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ω is the frequency of vibrations.
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According to the problem under consideration the solutions are represented by means
of spherical harmonics Yn:

w = ωnYn, φ = φnYn, p = pnYn. (4)

Then
∆0w = −n (n+ 1)w, ∆0φ = −n (n+ 1)φ, (n = 0, 1, 2) ,

equations (1) and (2) take the form:
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For the case of potential motion, the pressure of the compressed fluid is determined as
follows [10]:

p = −ρ
∂Π

∂t
(6)

where ρ is the fluid density, Π is velocity potential satisfying the equation:

a2∆Π = ∂2Π/∂t2 (7)

∆ is the Laplace operator, a is the velocity of perturbation propagation.
Radial velocity of the shell and potential of fluid’s velocity on the contact surface are

connected with the relations:
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Taking into account that under vibrations the relations (6) and (8) take the form:
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Equation (7) turns into the Helmholtz equation. Then the solution of the problem
under consideration will have the form:
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here n = 2, then
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Having integrated the first two equations in (5) within r1 and r2 and assuming that
the thickness of the solid body of the sphere is small compared with the radius, we get:
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Here the values of quantities without indication of the limit, are average.
Connect the deformation in radial direction with inner pressure p, assuming the layer

as centrally-symmetric static. Then preserving in the first equation of the system (5) two
terms, we have:

w1
2n − w1

1n +
2

r
(w2n − w1n) = 0 (14)

or

εr2n − εr1n +
2

r
(w2n − w1n) = 0 (15)

here εin is deformation.



Free Vibrations of Fluid-containing Spheres 61

From the third and fourth equations of the system (5) it follows:
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γ1 =
n (n+ 1) (4ν − 3)

2 (1− ν)
h

β2 = 2

{

4
(1− 2ν) (1− ν)

ν · n (n+ 1)

[

1− 2ν

2 (1− ν)
+ 1− ν

]

+ 1− 2ν

}

h

r2
+

+

[

1− 2ν

2 (1− ν)
+ 1− ν

]

(1− 2ν)

νn (n+ 1)

ρω a j

2Gj1

γ1 =
n (n+ 1)

r2
h.

Then (23) has the following form:

{ (

αλ2 − β1
)

wn + γ1φn = 0

β2wn +
(

αλ2 − n(n+1)
r2

)

φn = 0
(24)

The equation of the system (24) is a system of homogeneous linear equation with respect
to variables wn and φn. For nontrivial solution, its determinant should equal zero. Then
the frequency equation has the form:

α2λ4 − (γ2 + β1)αλ
2 + β1γ2 − β2γ1 = 0. (25)

Here γ2 =
n(n+1)

r2
h.

The solution of the last equation with respect to λ has the form:

λ2 =
α (γ2 + β1) +

√

α (γ2 + β1)
2 + 4 (β2γ1 − β1γ2)α2

2α2
. (26)

In the case when the sphere is not filled and having denoted by λ = λ0 , β1 = β0
1 , β2 = β0

2

we get the following dependence:

λ2
0 = λ2

α
(

γ2 + β0
1

)

+

√

α2
(

γ2 + β0
1

)2
+ 4

(

β0
2γ1 − β0

1γ2
)

α2

α (γ2 + β1) +
√

α2
(

γ2 + β0
1

)2
+ 4 (β2γ1 − β1γ2)α

2

(27)

β0
1 = β1|ρ=0 ; β0

2 = β2|ρ=0 .

In this case we use the following denotation:

z (ω) =
ω · r

a

ζ (ω) =
z (ω) ·

[

(z (ω))2 − 2
]

· sin (z (ω)) + 2 (z (ω))2 cos (z (ω))
[

(z (ω))2 − 6
]

· z (ω) · cos (z (ω))− 3
[

(z (ω))2 − 2
]

· sin (z (ω))

β1 = L (ω) =
− (1− 2ν)

r2
·

[

n · (n+ 1)

2 · (1− ν)
− 4

]

· h+ ω ·
ρ · a · (n+ 1) · (1− 2 · ν)

4 · (1− ν) ·G
· ζ (ω)



64 F.A. Seyfullayev, S.R. Agasiyev
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This expression shows dependence of mω frequency of unfilled sphere on the ω fre-
quency of the system.

The graphs of dependences were constructed for different values of parameters. Dif-
ferent parameters of the sphere’s thickness were taken into account (fig.1., fig. 2., fig. 3.,
fig. 4.)

When calculating, the following parameters were taken into account:

γ = ω = 0, 3; n = 2; r = 100 m; ρ = 1000
kg

m3
; a = 1400

m

sec.
.
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Fig. 1. h = 0, 2m

Fig. 2. h = 0, 5m
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Fig. 3. h = 1m

Fig. 4. h = 5m

As is seen from the graphs, the frequency of the system for the first mode is linearly
connected with the frequency of the empty shell. The system’s frequency reaches approx-
imately 30 hertz.

However, for different thicknesses h of the shell for greater thickness, the frequency
of the empty shell has the least value (for h = 0, 3m, ω0 = 37hertz, for h = 5m,
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ω0 = 27hertz). At the end of the mentioned interval, the system’s frequency asymp-
totically approaches to the constant value. Passage to the second mode is accompanied
by the “failure” 30 hertz. Then with the same interval the picture of the first mode is
repeated. At the ends of the second interval, the system’s frequency passes to the constant
value.
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