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(Lp, Lq)-boundedness of the Fractional Integral Operator
with Rough Kernels on Heisenberg Groups

G.A. Dadashova

Abstract. Let Ω is an homogeneous of degree zero function on Heisenberg group Hn, integrable
to a power s > 1 on the unit sphere generated by the corresponding Heisenberg metric. We study
Lp(Hn)-boundedness of the maximal operator MΩ with rough kernels Ω in Heisenberg groups and
the

(
Lp(Hn), Lq(Hn)

)
-boundedness of the fractional maximal and integral operators MΩ,α and

IΩ,α, 0 < α < Q with rough kernels.
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1. Introduction

The Heisenberg group [3, 4, 7, 9] appears in quantum physics and many fields of
mathematics, including harmonic analysis, the theory of several complex variables and
geometry. In this paper, we establish the norm inequalities for the maximal operator
on the Heisenberg group in Lebesgue spaces. We begin with some basic notation. The
Heisenberg group Hn a non-commutative nilpotent Lie group with the product spaces
R2n+1 that have the multiplication

xy =
(
x′ + y′, x2n+1 + y2n+1 + 2

n∑
k=1

xkyn+k − xn+kyk

)
,

where x = (x′, x2n+1), and y = (y′, y2n+1). By the definition, the identity element on Hn

is 0 ∈ R2n+1, while the inverse element of x = (x′, t) is x−1 = (−x′,−t).
The corresponding Lie algebra is generated by the left-invariant vector fields:

Xj =
∂

∂xj
+ 2xn+j

∂

∂x2n+1
, j = 1, . . . , n,

Xn+j =
∂

∂xn+j
− 2xj

∂

∂x2n+1
, j = 1, . . . , n,
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X2n+1 =
∂

∂x2n+1
.

The only non-trivial commutator relations are[
Xj , Xn+j

]
= −4X2n+1, j = 1, . . . , n.

The non-isotropic dilation on Hn is defined as δt(x
′, x2n+1) = (tx′, t2x2n+1) for t > 0.

The Haar measure dx on this group coincides with the Lebesgue measure on R2n+1. It is
easy to check that

d
(
δtx
)

= rQdx.

In the above, Q = 2n+ 2 is the homogeneous dimension of Hn.
The norm of x = (x′, x2n+1) ∈ Hn is given by

|x|h = (|x′|4 + x2
2n+1)1/4,

where |x′|2 =
2n∑
k=1

x2
k. The norm satisfies the triangle inequality and leads to the left-

invariant distance d(x, y) = |xy−1|h. With this norm we define the Heisenberg ball,

B(x, r) = {y ∈ Hn : |xy−1| < r},

where x is the center and r is the radius. The volume of B(x, r) is Cnr
2n+2, where Cn is

the volume of the unit ball B1 ≡ B(e, 1), i.e.,

Cn =
2πn+ 1

2 Γ
(

1
2

)
(n+ 1)Γ(n)Γ

(
n+1

2

) .
Let SH = {x ∈ Hn : |x|h = 1} be the unit sphere in Hn equipped with the normalized

Haar surface measure dσ and Ω be δt-homogeneous of degree zero, i.e. Ω(δtx) ≡ Ω(x),
x ∈ Hn, t > 0. The fractional maximal function MΩ,αf and the fractional integral IΩ,αf
by with rough kernels, 0 < α < Q of a function f ∈ Lloc

1 (Hn) are defined by

MΩ,αf(x) = sup
t>0
|B(x, t)|−1+ α

Q

∫
B(x,t)

|Ω(y−1x)| |f(y)|dy,

Iαf(x) =

∫
Rn

Ω(y−1x) f(y)∣∣y−1x
∣∣Q−α
h

dy.

If Ω ≡ 1, then Mα ≡ M1,α and Iα ≡ I1,α are the fractional maximal operator and
the fractional integral operator, respectively. If α = 0, then MΩ ≡ MΩ,0 is the maximal
operator with rough kernel. It is well known that the fractional maximal operator on
Heisenberg groups play an important role in harmonic analysis (see [4, 8]).

The boundedness of classical operators of the real analysis, such as the maximal oper-
ator and singular integral operators etc, from one Lebesgue space to another one is well
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studied by now, and there are well known various applications of such results in partial
differential equations. In this paper, we study the Lp-boundedness of the maximal opera-
tor with rough kernels in Heisenberg groups, including also the case of weak boundedness.
Also we obtain

(
Lp(Hn), Lq(Hn)

)
-boundedness of the fractional maximal and integral op-

erators MΩ,α and IΩ,α, 0 < α < Q with rough kernels.
Throughout the paper, for a measurable set E, |E| denotes the normalized Haar mea-

sure of E, i.e., |B1| =
∫
B1
dx = 1. By A . B we mean that A ≤ CB with some positive

constant C independent of appropriate quantities. If A . B and B . A, we write A ≈ B
and say that A and B are equivalent. For a number p, p′ denotes the conjugate exponent
of p. d B are equivalent.

2. Boundedness of the fractional integral
operators in the spaces Lp(Hn)

In this section we prove the Lp(Hn)-boundedness of the operatorMΩ and the
(
Lp(Hn), Lq(Hn)

)
-

boundedness of the operators IΩ,α and MΩ,α.

Theorem 1. Let Ω ∈ Ls(SH), 1 < s ≤ ∞, be δt-homogeneous of degree zero. Then the
operator MΩ is bounded in the space Lp(Hn), p > s′.

Proof.
In the case s =∞ the statement of Theorem 1 is known and may be found in [2] and

[8]. So we assume that 1 < s <∞.
Note that

‖Ω(·−1x)‖Ls(B(x,t)) =
(∫

B(0,t)
|Ω(y)|sdy

)1/s

=
(∫ t

0
rQ−1dr

∫
SH

|Ω(ω)|sdσ(ω)
)1/s

(1)

= c0 ‖Ω‖Ls(SH) |B(x, t)|1/s,

where c0 =
(
QvH

)−1/s
and vH = |B(0, 1)|.

The case p =∞ is easy. Indeed, making use of (1), we get

‖MΩf‖L∞(Hn) ≤ ‖f‖L∞(Hn) sup
t>0
|B(x, t)|−1+ 1

s′ ‖Ω(·−1x)‖Ls(B(x,t))

≤ c0 ‖Ω‖Ls(SH) ‖f‖L∞(Hn).

So we assume that s′ < p <∞. Applying Hölder’s inequality, we get

MΩf(x) ≤ sup
t>0
|B(x, t)|−1‖Ω(·−1x)‖Ls(B(x,t)) ‖f‖Ls′ (B(x,t)). (2)

Then from (2) and (1) we have

MΩf(x) ≤ c0 ‖Ω‖Ls(SH) sup
t>0
|B(x, t)|−1+1/s ‖f‖Ls′ (B(x,t))
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= c0 ‖Ω‖Ls(SH)

(
sup
t>0
|B(x, t)|−1‖|f |s′‖L1(B(x,t))

)1/s′

= c0 ‖Ω‖Ls(SH)

(
M(|f |s′)(x)

)1/s′

. (3)

Therefore, from (3) for 1 ≤ s′ < p <∞ we get

‖MΩf‖Lp(Hn) ≤ c0 ‖Ω‖Ls(SH)

∥∥(M(|f |s′)(·)
)1/s′∥∥

Lp(Hn)

= c0 ‖Ω‖Ls(SH)

∥∥M(|f |s′)∥∥1/s′

Lp/s′ (Hn)
. ‖|f |s′‖1/s

′

Lp/s′ (Hn) = ‖f‖Lp(Hn).

We prove the boundedness of the fractional maximal and integral operators MΩ,α, IΩ,α

with rough kernel from Lp(Hn) to Lq(Hn), 1 < p < q < ∞, 1/p − 1/q = α/Q, and from
the space L1(Hn) to Lq(Hn), 1 ≤ q <∞, 1− 1/q = α/Q.

Theorem 2. Suppose that 0 < α < Q and the function Ω ∈ L Q
Q−α

(SH) is δt-homogeneous

of degree zero. Let 1 ≤ p < Q
α and 1/p − 1/q = α/Q. Then the fractional integration

operator IΩ,α is bounded from Lp(Hn) to Lq(Hn) for p > 1 and from L1(Hn) to WLq(Hn)
for p = 1.

Proof. We denote

K(x) :=
Ω(x)

|x|Q−αh

for brevity, and may assume that K(x) ≥ 0. We have∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ∣∣∣{x ∈ Hn : IΩ,αf(x) > C−1

Q,αλ}
∣∣∣ ≤ I1 + I2,

where

I1 :=
∣∣∣{x ∈ Hn : |K1

µ ∗ f(x)| > λ

2

}∣∣∣, I2 :=
∣∣∣{x ∈ Hn : |K2

µ ∗ f(x)| > λ

2

}∣∣∣,
K1
µ(x) = (K(x)− µ)χ

E(µ)
(x) and K2

µ(x) = K(x)−K1
µ(x),

µ > 0 and E(µ) = {x ∈ Hn : |K(x)| > µ}. Note that

|E(µ)| ≤ Bµ
Q

Q−α . (4)

where B = 1
α‖Ω‖

Q
Q−α
L Q
Q−α

(SH) as seen from the following estimation:

|E(µ)| ≤ 1

µ

∫
E(µ)

|Ω(x)|
|x|Q−αh

dx

=
1

µ

∫
SH

Ω(x′)dσ(x′)

∫ ( |Ω(x′)|
µ

) 1
Q−α

0
rα−1dr = Bµ

Q
Q−α .
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By means of (4) we can prove the estimate

‖K2
µ‖Lp′ (Hn) ≤

(Q− α
Q

Bq
) 1
p′
µ

Q
(Q−α) q , 1 ≤ p < Q

α
.

For p = 1 it easily follows from (4), and for p > 1 we have∫
Rn
|K2

µ(x)|p′dx = p′
∫ µ

0
tp
′−1|E(t)|dt

≤ p′B
∫ µ

0
t
p′−1− Q

Q−αdt

=
Q− α
Q

Bqµ
Q

Q−α
p′
q .

Then by the Young inequality we obtain

‖K2
µ ∗ f‖L∞(Hn) ≤ ‖K2

µ‖Lp′‖f‖Lp(Hn) ≤
(Q− α

Q
Bq
) 1
p′
µ

Q
(Q−α) q ‖f‖Lp(Hn).

Now for a λ > 0, we choose µ such that(Q− α
Q

Bq
) 1
p′
µ

Q
(Q−α) q ‖f‖Lp(Hn) =

λ

2
,

then ∣∣∣{x ∈ Hn : |K2
µ ∗ f(x)| > λ

2

}∣∣∣ = 0.

Thus ∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ∣∣∣{x ∈ Hn : |K1

µ ∗ f(x)| > λ

2

}∣∣∣
≤
( 2

λ
‖K1

µ ∗ f‖Lp(Hn)

)p
. (5)

The following estimations take (4) into account:∫
Hn
|K1

µ(x)|dx =

∫
E(µ)

(
|K(x)| − µ

)
dx

≤
∫ ∞

0
|E(t+ µ)|dt

≤ B
∫ ∞
µ

t
− Q
Q−αdt (6)

=
αB

Q− α
µ
− α
Q−α .
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For all f ∈ L∞(Hn) and x ∈ Hn, from (6) it follows that

|K1
µ ∗ f(x)| ≤ ‖f‖L∞(Hn)

∫
Hn
|K1

µ(x)|dx ≤ αB

Q− α
µ
− α
Q−α ‖f‖L∞(Hn). (7)

For all f ∈ L1(Hn), from (6) follows

‖K1
µ ∗ f‖L1(Hn) ≤

∫
Hn

∫
Hn
|K1

µ(x− y)||f(y)|dxdy

≤ αB

Q− α
µ
− α
Q−α ‖f‖L1(Hn). (8)

Thus from (7) and (8) follows that the operator T1 : f → K1
µ∗f is of (∞,∞) and (1, 1)-

type. Then by the Riesz-Thorin theorem the operator T1 is also of (p, p)-type, 1 < p <∞,
and

‖T1f‖Lp(Hn) ≤
αB

Q− α
µ
− α
Q−α ‖f‖Lp(Hn). (9)

From (5) and (9) we get∣∣∣{x ∈ Hn : IΩ,αf(x) > λ}
∣∣∣ ≤ ( 2

λ
‖K1

µ ∗ f‖Lp(Hn)

)p
≤ C

( 1

λ
‖f‖Lp(Hn)

)q
, (10)

where C is independent of λ and f .

To finish the proof, i.e. prove that the operator IΩ,α is bounded from Lp(Hn) to Lq(Hn)

for 1 < p < Q
α and 1/p − 1/q = α/Q, observe that the inequality (10) tells us that IΩ,α

is bounded from L1(Hn) to WLq(Hn) with 1 − 1/q = α/Q. We choose any p0 such that

p < p0 <
Q
α , and put 1

q0
= 1

p0
− α
Q . By (10) the operator IΩ,α is of weak (p0, q0)-type. Since

it is also of weak (1, q)-type by the Marcinkiewicz interpolation theorem, we conclude that
IΩ,α is of

(
Lp, Lq

)
-type.

Corollary 1. Under the assumptions of Theorem 2, the fractional maximal operator MΩ,α

is bounded from Lp(Hn) to Lq(Hn) for p > 1 and from L1(Hn) to WLq(Hn) for p = 1.

Proof. It suffices to refer to the known fact that

MΩ,αf(x) ≤ CQ,αIΩ,αf(x), CQ,α = |B(0, 1)|
Q−α
Q ,
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