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Global Bifurcation from Zero and Infinity in Nonlinear
Beam Equation with Indefinite Weight

R.A. Huseynova

Abstract. We consider a nonlinear eigenvalue problem for the beam equation with an indefinite
weight function. We investigate the bifurcation from zero and infinity for this problem and prove
the existence of unbounded continua bifurcating from the principal eigenvalues of the corresponding
linear problem contained in the classes of positive and negative functions.

Key Words and Phrases: nonlinear eigenvalue problem, bifurcation point, principal eigenvalues,
global continua, indefinite weight.

2010 Mathematics Subject Classifications: 34C10, 34C23, 47J10, 47J15

1. Introduction

We consider the following fourth order boundary value problem

(`u)(t) ≡ (p(t)u′′(t))′′(t)− (q(t)u′(t))′ = λg(t)f(u(t)), t ∈ (0, 1), (1)

u′(0) cosα− (pu′′)(0) sinα = 0,
u(0) cosβ + Tu(0) sinβ = 0,
u′(1) cos γ + (pu′′)(1) sin γ = 0,
u(1) cos δ − Tu(1) sin δ = 0,

(2)

where λ ∈ R is a spectral parameter, Ty ≡ (pu′′)′−qu′, p ∈ C2[0, 1] with p(t) > 0, t ∈ [0, 1],
q ∈ C1[0, 1] with q(t) ≥ 0, t ∈ [0, 1], g ∈ C[0, l] is a sign-changing weight function (i.e.
meas{t ∈ (0, 1) : σu(t) > 0} > 0 for each σ ∈ {+ , −}) and α, β, γ, δ ∈ [0, π2 ] with
except the cases α = γ = 0, β = δ = π /2 and α = β = γ = δ = π /2. The nonlinear
term f ∈ C(R;R) and satisfies the conditions: tf(t) > 0 for t ∈ R\{0} and there exist
f0, f∞ ∈ (0, +∞) such that

f0 = lim
|t|→0

f(t)

t
, f∞ = lim

|t|→∞

f(t)

t
. (3)

It is well known that fourth-order problems arise in many applications (see [8, 24]
and the references therein); problem (1)-(2) in particular, is often used to describe the
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deformation of an elastic beam, which is subject to axial forces (see [8]). Problems with
sign-changing weight arise from population modeling. In this model, weight function g
changes sign corresponding to the fact that the intrinsic population growth rate is positive
at same points and is negative at others, for details, see [10, 15].

The purpose of this work is to study the global bifurcation of solutions of problem
(1)-(2) in the classes of positive and negative functions, emanating from the zero and
infinity.

It should be noted that the nonlinear problem (1)-(2) is closely related to the following
linear eigenvalue problem

(p(t)u′′(t))′′(t)− (q(t)u′(t))′ = λg(t)u(t), t ∈ (0, 1),
u ∈ B.C. , (4)

where by B.C. we denote the set of boundary conditions (2). The nonlinear problem
(1)-(2) and linear problem (4) in the case p ≡ 1, q ≡ 0 and α = γ = π

2 , β = δ = 0 was
previously considered in [23] the results of which contain gaps.

The problems (4) and (1)-(2) in the case when the first condition in (3) is satisfied
are studied in [18], where, in particular, it was shown that there exist two positive and
negative principal eigenvalues, λ1 and λ−1, respectively, of the linear problem (4) and
the corresponding eigenfunctions have no zeros in (0, 1); moreover, also proved that for
each k ∈ { 1 , −1 } and each ν ∈ {+ , −} there exists a continuum (connected closed set)
Lνk of solutions of problem (1)-(2) bifurcating from the point (λk, 0), which is unbounded
in R × C3[0, 1], and ν sgn y(x) = 1, x ∈ (0, 1) for each (λ, y) ∈ Lνk. Note that, similar
problems have been considered before in, for example, [10] and [30], but the results of
these works are not true (see [4]).

In Section 2, a family of sets to exploit oscillatory properties of eigenfunctions of prob-
lem (4) and their derivatives is introduced. The existence of global continua of solutions of
the problem (1)-(2) bifurcating simultaneously from the zero and infinity, and contained
in these sets is proved in Section 3. Here we give the application of global bifurcation
technique to the study of positive or negative solutions for the some nonlinear boundary
value problems.

2. Preliminary

In [23] the authors note that there are few papers discussing the existence and multi-
plicity of positive solutions to (4), the main reason of which is that the spectrum of the
linear eigenvalue problem is not clear. They showed that the problem (4) has exactly two
principal eigenvalues, one positive and one negative, and the corresponding eigenfunctions
do not change its sign on (0, 1). But it should be noted that in the proof of this fact, the
authors did not give a correct reference to the work [16]. However until recently there no
results on the multiplicities of the first m (m > 2) (for the definition of m, see [19, 21])
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eigenvalues and on the oscillatory properties for the corresponding eigenfunctions of the
following problem

(p(t)u′′(t))′′(t)− (q(t)u′(t))′ + h(t)u(t) = µu(t), t ∈ (0, 1),
u ∈ B.C. , (5)

where h ∈ C([0, 1];R). In [19, 21] it was shown that, in the case of h(t) not identically
vanishing on any subinterval of [0, 1], the eigenvalues of problem (5) are real, and simple,
except, possibly, the first m eigenvalues, and the corresponding eigenfunctions with num-
bers larger than m have the Sturm oscillation properties, i.e. the eigenfunction has only
simple nodal zeros and the number of zeros of the eigenfunction is equal to the serial num-
ber of the corresponding eigenvalue increased by 1. But, in [23], the authors in proving
Theorem 2.1 recall the work [16] and claim that the eigenfunction, corresponding to the
first eigenvalue of the problem (5), has no zeros in the interval (0, 1). Unfortunately in
[16] oscillatory properties of eigenfunctions of the problem (4) were not studied. Recently,
in [3] (see also [5, 6]) it was established that all eigenvalues of the problem (5) are simple
and the corresponding eigenfunctions have the Sturm oscillation properties.

For the linear eigenvalue problem (4) we have the following result.

Theorem 1. [18, Theorem 2.1] . The spectral problem (4) has two sequences of real
eigenvalues

0 < λ+1 ≤ λ+2 ≤ ... ≤ λ+k 7→ +∞,

and

0 > λ−1 ≥ λ−2 ≥ ... ≥ λ−k 7→ −∞

and no other eigenvalues. Moreover, λ+1 and λ−1 are simple principal eigenvalues, i.e. the
corresponding eigenfunctions u+1 (t) and u−1 (t) have no zeros in the interval (0, 1).

Similar problems have been considered in [9, 13, 14, 17, 22].

Let E be the Banach space of all continuously three times differentiable functions
on [0, 1] which satisfy the conditions B.C. and is equipped with its usual norm ||u||3 =
||u||∞ + ||u′||∞ + ||u′′||∞ + ||u′′′||∞, where ||u||∞ = max

t∈[0,1]
|u(t)|.

Let

S = S1 ∪ S2,

where

S1 = {u ∈ E : u(i)(t) 6= 0, Tu(t) 6= 0, t ∈ [0, 1], i = 0, 1, 2 }

and

S2 = {u ∈ E : there exists i0 ∈ {0, 1, 2} and t0 ∈ (0, 1) such that u(i0)(t0) = 0,
or Tu(t0) = 0 and if u(t0)u

′′(t0) = 0, thenu′(t)Tu(t) < 0 in a neighborhood of t0,
and if u′(t0)Tu(t0) = 0, thenu(t)u′′(t) < 0 in a neighborhood of t0}.
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Note that if u ∈ S then the Jacobian J = ρ3 cosψ sinψ (see [1-3, 5, 6, 20]) of the Prüfer-
type transformation 

u(x) = ρ(x) sinψ(x) cos θ(x),
u′(x) = ρ(x) cosψ(x) sinϕ(x),
(pu′′)(x) = ρ(x) cosψ(x) cosϕ(x),
Tu(x) = ρ(x) sinψ(x) sin θ(x),

(6)

does not vanish on (0, 1).

For each u ∈ S we define ρ(u, t), θ(u, t), ϕ(u, t) , w(u, t) to be the continuous functions
on [0, 1] satisfying

ρ(u, t) = u2(t) + u′2(t) + (p(t)u′′(t))2 + (Tu(t))2,

θ(u, t) = arctg
Tu(t)

u(t)
, θ(u, 0) = β − π/2 ,

ϕ(u, t) = arctg
u′(t)

(pu′′)(t)
, ϕ(u, 0) = α ,

w(u, t) = ctgψ(u, t) =
u′(t) cos θ(u, t)

u(t) sinϕ(u, t)
, w(u, 0) =

u′(0) sinβ

u(0) sinα
,

and ψ(u, t) ∈ (0, π/2), t ∈ (0, 1), in the cases of u(0)u′(0) > 0; u(0) = 0; u′(0) =
0 and u(0)u′′(0) > 0, ψ(u, t) ∈ (π/2, π), t ∈ (0, 1), in the cases u(0)u′(0) < 0; u′(0) =
0 and u(0)u′′(0) < 0; u′(0) = u′′(0) = 0, β = π/2 in the case ψ(u, 0) = 0 and α = 0 in the
case ψ(u, 0) = π/2.

It is apparent that ρ, θ, ϕ, w : S × [0, 1]→ R are continuous.

Remark 3.1. By (7) for each u ∈ S the function w(u, t) can be determined by one of
the following relations

a) w(u, x) = ctgψ(u, x) =
(pu′′)(x) cos θ(u, x)

u(x) cosϕ(u, x)
, w(u, 0) =

(pu′′)(0) sinβ

u(0) cosα
,

b) w(u, x) = ctgψ(u, x) =
(pu′′)(x) sin θ(u, x)

Tu(x) cosϕ(u, x)
, w(u, 0) = −(pu′′)(0) cosβ

Tu(0) cosα
,

c) w(u, x) = ctgψ(u, x) =
u′(x) sin θ(u, x)

Tu(x) sinϕ(u, x)
, w(u, 0) = − u′(0) cosβ

Tu(0) sinα
.

For each ν ∈ {+ , −} let Sν1 denotes the subset of such u ∈ S that:

1) θ(u, 1) = π/2− δ, where δ = π/2 in the case ψ(u, 1) = 0 ;

2) ϕ(u, 1) = 2π − γ or ϕ(u, 1) = π − γ in the case ψ(u, 0) ∈ [0, π/2); ϕ(u, 1) = π − γ
in the case ψ(y, 0) ∈ [π/2, π), where γ = 0 in the case ψ(y, l) = π/2 ;

3) for fixed u, as t increases from 0 to 1, the function θ(u, t) (ϕ(u, t)) strictly increasingly
takes values of mπ/2, m ∈ {−1, 0, 1} (sπ, s ∈ {0, 1, 2}) ; as t decreases from 1 to 0,
the function θ(u, t) (ϕ(u, t)), strictly decreasing takes values of mπ/2, m ∈ {−1, 0, 1}
(sπ, s ∈ {0, 1, 2}) ;
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4) the function νu(t) is positive in a neighborhood of t = 0.

By [2; Theorem 4.4], [6; Theorem 1.1], [7; Lemma 2.2, Theorems 5.1, 5.2, 6.1, 6.3-
6.5] and Theorem 2.1 we have u+1 , u

−
1 ∈ S1, i.e the sets S+

1 and S−1 are nonempty. It
immediately follows from the definition of these sets that they are disjoint and open in E.
Moreover, by [2; Lemma 2.2] if u(t) ∈ ∂Sν1 ∩ C4[0, 1], ν ∈ {+ , −}, then u(t) has at least
one zero of multiplicity 4 in (0, 1).

Let u+1,+ (u−1,+) denote the unique eigenfunction of (4) corresponding to the eigenvalue

λ+k (λ−k ) such that u+1,+ ∈ S
+
1 (u−1,+ ∈ S

+
1 ) and ||u+1,+||3 = 1 (||u−1,+||3 = 1).

Lemma 1. (see [1, 2]) If (λ, u) ∈ R×E is a solution of (1)-(2) and u ∈ ∂Sν1 , ν ∈ {+ , −},
then u ≡ 0.

3. Global bifurcation from zero and infinity for the problem (1)-(2)

It should be noted that in order to prove the existence of at least one solution of
the problem (1)-(2) in the class of positive functions, in [23], the authors used global
bifurcation results (see [23, p. 6598]) which also contains gaps. This result is similar to
that for the nonlinear Sturm-Liouville problems which has been obtained by Rabinowitz
[26]. In the nonlinear Sturm-Liouville problem considered in [26] nodal properties are
preserved on the continuous branch of nontrivial solutions emanating from bifurcation
points and this prevents the first alternative in part (ii) of [29; Lemma 2.6] occurring. But
for the nonlinear fourth order eigenvalue problem nodal properties need not be preserved,
so we must considered this alternative. Therefore, in the study of nonlinear fourth-order
eigenvalue problem there is a need to study the following questions: to construct the
classes of functions that preserve the oscillation properties of eigenfunctions of the linear
problem (4) and their derivatives, such that if the solution of the nonlinear problem is
contained on the boundary of this set, then this must be identically zero (if means that
continuous branch of solutions can not go from the boundary of this set). This question
was solved in a recent paper [3] (see also [2]), in which global bifurcation from zero of
solutions of the nonlinear eigenvalue problems for ordinary differential equations of fourth
order was studied.

Let L denotes the closure of the set of nontrivial solutions of (1)-(2).

Theorem 2. For each k ∈ {−1, 1} and each ν ∈ {− , + } there exists a continuum Lνk

of solutions of problem (1)-(2) in (R× S1) ∪
{(

λsgnk1
f0

, 0

)}
∪
{(

λsgnk1
f∞

,∞
)}

which meets(
λsgnk1
f0

, 0

)
and

(
λsgnk1
f∞

,∞
)

in Rsgnk × E, where Rsgnk = {χ ∈ R : 0 < χsgnk ≤ +∞}.

Proof. By virtue of (3) there exists the functions τ ∈ C(R,R) and ε ∈ C(R,R) such
that

f(u) = f0u+ τ(u), f(u) = f∞u+ ε(u), (7)
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and

lim
|u|→ 0

τ(u)

u
= 0, lim

|u|→+∞

ε(u)

u
= 0. (8)

It follows from (7) that the problem (1)-(2) can be rewritten in the following form

(`u)(t) = λf0g(t)u(t) + λg(t)τ(u(t)), t ∈ (0, 1),
u ∈ B.C. (9)

or
(`u)(t) = λf∞g(t)u(t) + λg(t)ε(u(t)), t ∈ (0, 1),
u ∈ B.C. . (10)

Since λ = 0 is not eigenvalue of the linear problem (5) for h ≡ 0 it follows that the
problems (9) and (10) are equivalent to the following integral equations

u(t) = λf0

1∫
0

K(t, s)g(s)u(s)ds+λ

1∫
0

K(t, s) g(s) τ(u(s)) ds, (11)

u(t) = λf∞

1∫
0

K(t, s)g(s)u(s)ds+λ

1∫
0

K(t, s) g(s) ε(u(s)) ds, (12)

respectively, where K(t, s) is a Green’s function of differential expression `(u) with respect
to the B.C. .

Define L : E → E by

(Lu)(t) =

1∫
0

K(t, s) g(s)u(s) ds

F : R× E → E by

(F(u))(t) =

1∫
0

K(t, s) g(s) τ(u(s)) ds.

and G : R× E → E by

(G(u))(t) =

1∫
0

K(t, s) g(s) ε(u(s)) ds.

It is easily seen that the operator L is compact in E and the operators F : R×E → E
and G : R× E → E are completely continuous. Thus problems (11) (or (9)) and (12) (or
(10)) can be rewritten in the following equivalent forms

u = λf0Lu+ λF(u) (13)
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and

u = λf∞Lu+ λG(u). (14)

By (3) we have

F(u) = o(||u||3) as ||u||3 → 0, (15)

and

G(u) = o(||u||3) as ||u||3 → +∞ . (16)

By virtue of (15) and (16) the linearization of (13) at u = 0 and of (14) at u = ∞ are
spectral problems

u = λf0Lu (17)

and

u = λf∞Lu, (18)

respectively. Obviously, the problem (17) and (18) are equivalent to the spectral problems

`u(t) = λf0g(t)u(t), t ∈ (0, 1),
u ∈ B.C. (19)

and
`u(t) = λf∞g(t)u(t), t ∈ (0, 1),
u ∈ B.C. , (20)

respectively.

The principal eigenvalues
λsgnk1
f0

, k ∈ {−1, 1}, of problem (19) are the characteristic
values of problem (17) and are simple. Hence all the conditions of Theorem 1.3 from [26]
are satisfied and there exists a continua L

λ
sgnk
1
f0

≡ Lk, k ∈ {−1, 1}, of the set of solutions

of problem (13), as in Theorem 1.3 in [26]. By virtue of [3, Theorem 1.1] (see also [12,
Theorem 2]) continua Lk, k ∈ {−1, 1}, decomposes into two subcontinua L−k and L+

k with

meets

(
λsgnk1
f0

, 0

)
, are contained in (R×S−1 ) ∪

{(
λsgnk1
f0

, 0

)}
and (R×S+

1 ) ∪
{(

λsgnk1
f0

, 0

)}
,

respectively, and both are unbounded in Rsgnk × E.

On the other hand, since the principal eigenvalues
λsgnk1
f∞

, k ∈ {−1, 1}, of problem
(20) are the characteristic values of problem (18) and are simple, by the discussion above
and [25; Theorem 2.4] (see also [27, 28]) for each k ∈ {−1, 1} there exists an unbounded

component D
λ
sgnk
1
f∞

≡ Dk ⊂ Rsgnk × E of L which contains

(
λsgnk1
f∞

,∞
)

. In addition, if

Λ ⊂ Rsgnk is an interval such that Λ ∩ σ(L, g) =
λsgnk1
f∞

(σ(L, g) is a set of eigenvalues of

problem (4)) andM is a neighborhood of

(
λsgnk1
rf∞

,∞
)

whose projection on Rsgnk lies in Λ

and whose projection on E is bounded away from 0, then either

(i) Dk\M is bounded in Rsgnk × E, in which case Dk\M meets Rsgnk × {0}, or
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(ii) Dk\M is unbounded; if additionally Dk\M has a bounded projection on Rsgnk,

then Dk\M contains
(
λsgnkm
f∞

,∞
)

, where m ∈ N and m > 1.

Moreover, Dk, k ∈ {− , + }, can be decomposed into two subcontinua D−k , D+
k and

there exists a neighborhood Q ⊂ M of

(
λsgnk1
f∞

,∞
)

such that (λ, u) ∈ D−k (D+
k ) ∩ Q and

(λ, u) 6=
(
λsgnk1
f∞

,∞
)

implies

(λ, u) = (λ, susgnk1,+ + w),

where
s < 0 (s > 0) and |λ− λk1| = o(1), w = o(|s|) at |s| =∞.

Consequently,
if (λ, u) ∈ Dνk\Q, then (λ, u) ∈ Rsgnk × Sν1 . (21)

Let
(λn, un) ∈ Lνk and |λn|+ ||un||3 →∞ as n→∞.

We note that λnsgnk > 0 for all n ∈ N, since L ∩ ({ 0} × E\{ 0}) = ∅. As in the proof of
Theorem 1.1 from [23] we can prove that there exists a positive constant M such that

|λn| ≤M, n ∈ N,

which implies
||un||3 →∞ as n→∞.

It is obvious that
un = λnf∞Lun + λnG(un). (22)

Let vn = un
||un||3 . Then by (22) vn satisfies the relations

vn = λnf∞Lvn + λn
G(un)

||un||3
(23)

By virtue of completely continuity of operators L and G, and the boundedness of {λn}∞n=1

it follows from (23) that there exists a subsequence of the sequence {(λn, vn)}∞n=1 (which
we will relabel as {(λn, vn)}∞n=1) which is convergent to (λ̃, v) in Rsgnk×E, with ||v||3 = 1,
v ∈ Sν1 and

v = λ̃f∞Lv. (24)

Then by Theorem 2.1 it follows from (24) that

λ̃ =
λsgnk1

f∞
.

Hence

(λn, un)→

(
λsgnk1

f∞
,∞

)
as n→∞ ,
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which by (21) implies that

Dνk\Q ⊂ Lνk. (25)

Moreover, it follows from the proof of [25; Corollary of Theorem 2.4] that Dνk contains a
subcontinuum Dν

k lying in R × Sν1 such that either Dν
k\Q is unbounded or intersects the

line R = {(λ, 0) ∈ R× E} of trivial solutions at

(
λsgnk1
f0

, 0

)
. Consequently, by (25) we

have Lνk = Dν
k. The proof of this theorem is complete.

Corollary 1. Let r be a real constant such that

r ∈

(
λsgnk1 sgnk

f∞
,
λsgnk1 sgnk

f0

)
or

r ∈

(
λsgnk1 sgnk

f0
,
λsgnk1 sgnk

f∞

)
, k = −1 or k = 1.

where f0 6= f∞. Then the problem

(`u)(t) = rg(t)f(u(t)), t ∈ (0, 1),
u ∈ B.C.

has at least one negative and one positive solutions.
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