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On Morrey type Spaces and Some Properties
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Abstract. Subspace Mp,α

ρ
of the weighted Morrey -type space Lp,α

ρ
is defined, it is proved that

infinitely differentiable functions are dense in it. An approximation properties of the Poisson
kernel is studied in Mp,α

ρ
. A sufficient condition for belonging of the product to the space Mp,α

ρ
is

obtained. It is proved that Mp,α

ρ
is an invariant subspace of a singular integral operator.
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1. Introduction

The concept of Morrey space was introduced by C. Morrey [1] in 1938 in the study of
qualitative properties of the solutions of elliptic type equations with BMO (Bounded Mean
Oscillations) coefficients (see also [2, 3]). This space provides a large class of weak solutions
to the Navier-Stokes system [4]. In the context of fluid dynamics, Morrey-type spaces
have been used to model the fluid flow in case where the vorticity is a singular measure
supported on some sets in Rn [5]. There appeared lately a large number of research works
which considered many problems of the theory of differential equations, potential theory,
maximal and singular operator theory, approximation theory, etc in Morrey-type spaces
(for more details see [2-26]). It should be noted that the matter of approximation in
Morrey-type spaces has only started to be studied recently (see, e.g., [11, 12, 16, 17]),
and many problems in this field are still unsolved. This work is just dedicated to this
field. Subspace Mp,α

ρ of the weighted Morrey -type space Lp,α
ρ is defined, it is proved

that infinitely differentiable functions are dense in it. An approximation properties of the
Poisson kernel is studied in Mp,α

ρ . A sufficient condition for belonging of the product to
the space Mp,α

ρ is obtained. It is proved that Mp,α
ρ is an invariant subspace of a singular

integral operator .
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2. Needful Information

We will need some facts about the theory of Morrey-type spaces. Let Γ be some
rectifiable Jordan curve on the complex plane C. By |M |Γ we denote the linear Lebesgue
measure of the set M ⊂ Γ. All the constants throughout this paper (can be different in
different places) will be denoted by c.

The expression f (x) ∼ g (x), x ∈ M , means

∃δ > 0 : δ ≤

∣

∣

∣

∣

f (x)

g (x)

∣

∣

∣

∣

≤ δ−1, ∀x ∈ M.

Similar meaning is intended by the expression f (x) ∼ g (x), x → a.

By Morrey-Lebesgue space Lp, α (Γ), 0 < α ≤ 1, p ≥ 1, we mean the normed space of
all measurable functions f (·) on Γ with the finite norm

‖f‖Lp, α(Γ) = sup
B

(

∣

∣

∣
B
⋂

Γ
∣

∣

∣

α−1

Γ

∫

B
⋂

Γ
|f (ξ)|p |dξ|

)
1/p

< +∞.

Lp, α (Γ) is a Banach space with Lp,1 (Γ) = Lp (Γ), L
p, 0 (Γ) = L∞ (Γ). Similarly we define

the weighted Morrey-Lebesgue space Lp,α
µ (Γ) with the weight function µ (·) on Γ equipped

with the norm

‖f‖Lp, α
µ (Γ) = ‖fµ‖Lp, α(Γ) , f ∈ Lp,α

µ (Γ) .

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 < α1 ≤ α2 ≤ 1. Thus, Lp, α (Γ) ⊂ L1 (Γ),
∀α ∈ (0, 1], ∀p ≥ 1. For Γ = [−π, π] we will use the notation Lp,α (−π, π) = Lp, α.

More details on Morrey-type spaces can be found in [2-26].

In the sequel, we will need some auxiliary facts. Recall Minkowski’s (integral) inequal-
ity.

Let (X; Ax; ν) and (Y ; Ay; µ) be measurable spaces with σ−finite measures ν and µ,
respectively. If F (x; y) is ν × µ−measurable, then we have

∥

∥

∥

∥

∫

X

F (·; y) dν (x)

∥

∥

∥

∥

Lp(dµ)

≤

∫

X

‖F (x; ·)‖Lp(dµ) dν (x) , 1 ≤ p < +∞,

where

‖g (y)‖Lp(dµ) =

(
∫

Y

|g (y)|p dµ

)
1/p

.

Now let Y ≡ R and µ (·) be a Borel measure on R. We have

(
∫

I

∣

∣

∣

∣

∫

X

F (x; y) dν (x)

∣

∣

∣

∣

p

dµ (y)

)
1/p

≤
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≤

∫

X

(
∫

I

|F (x; y)|p dµ (y)

)
1/p

dν (x) .

Thus
(

1

|I|1−α

∫

I

∣

∣

∣

∣

∫

X

F (x; y) dν (x)

∣

∣

∣

∣

p

dµ (y)

)
1/p

≤

≤

∫

X

(

1

|I|1−α

∫

I

|F (x; y)|p dµ (y)

)
1/p

dν (x) ≤

≤

∫

X

‖F (x; y)‖Lp, α(dµ) dν (x) ,∀I ⊂ R.

Taking sup over I ⊂ R, we get
∥

∥

∥

∥

∫

X

F (x; y) dν (x)

∥

∥

∥

∥

Lp, α(dµ)

≤

∫

X

‖F (x; y)‖Lp, α(dµ) dν (x) . (1)

So the Minkowski inequality (1) holds in the Morrey-type space Lp, α (dµ).
Thus, the following Minkowski’s inequality regarding Morrey type spaces is true.

Statement 1. Let (X; Ax; ν) be a measurable space with a σ−finite measure ν and
(R; B;; µ ) be a measurable space with a Borel measure µ on σ−algebra of Borel sets B of
R. Then, for ν × µ− measurable function F (x; y), the following analog of Minkowski’s
inequality is valid

∥

∥

∥

∥

∫

X

F (x; ·) dν (x)

∥

∥

∥

∥

Lp, α(dµ)

≤

∫

X

‖F (x; ·)‖Lp, α(dµ) dν (x) .

By SΓ we denote the following singular integral operator

(SΓf) (τ) =
1

2πi

∫

Γ

f (ζ) dζ

ζ − τ
, τ ∈ Γ,

where Γ ⊂ C is some rectifiable curve on complex plane C. Let ω = {z ∈ C : |z| < 1} be
the unit disk on C and ∂ω = γ be its boundary. Define the Morrey-Hardy space Hp, α

+ of
analytic functions f (z) inside ω equipped with the following norm

‖f‖Hp, α
+

= sup
0<r<1

∥

∥f
(

reit
)
∥

∥

Lp, α .

In what follows, we assume that the function f (·) periodically continued on the whole
axis R .

We will also use the following concepts. Let Γ ⊂ C be some bounded rectifiable curve,
t = t (σ), 0 ≤ σ ≤ 1, be its parametric representation with respect to the arc length σ,
and l be the length of Γ. Let dµ (t) = dσ, i.e. let µ (·) be a linear measure on Γ. Let

Γt (r) = {τ ∈ Γ : |τ − t| < r} ,Γt(s) (r) = {τ (σ) ∈ Γ : |σ − s| < r} .

It is absolutely clear that Γt(s) (r) ⊂ Γt (r).
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Definition 1. Curve Γ is said to be Carleson if ∃c > 0:

sup
t∈Γ

µ (Γt (r)) ≤ cr,∀r > 0.

Curve Γ is said to satisfy the chord-arc condition at the point t0 = t (s0) ∈ Γ if there
exists a constant m > 0 independent of t such that |s− s0| ≤ m |t (s)− t (s0)|, ∀t (s) ∈ Γ.
Γ satisfies a chord-arc condition uniformly on Γ if ∃m > 0 : |s− σ| ≤ m |t (s)− t (σ)|,
∀t (s) , t (σ) ∈ Γ.

Let’s state the following lemma of [10] which is of independent interest.

Lemma 1. [10] Let Γ be a bounded rectifiable curve. If the power function |t− t0|
γ, t0 ∈ Γ,

belongs to the space Lp, α (Γ), 1 ≤ p < ∞, 0 < α < 1, then the inequality γ ≥ −α
p
holds. If

Γ is a Carleson curve, then this condition is also sufficient.

We will extensively use the following theorem of N.Samko [10].

Theorem 1. [10] Let the curve Γ satisfy the chord-arc condition and the weight ρ (·) be
defined by

ρ (t) =
m
∏

k=1

|t− tk|
αk ; {tk}

m
1 ⊂ Γ, ti 6= tj , i 6= j. (2)

A singular operator SΓ is bounded in the weighted space Lp, α
ρ (Γ), 1 < p < +∞, 0 < α ≤ 1,

if the following inequalities are satisfied

−
α

p
< αk < −

α

p
+ 1, k = 1, m. (3)

Moreover, if Γ is smooth in some neighborhoods of the points tk, k = 1, m, then the validity
of inequalities (3) is necessary for the boundedness of the operator SΓ in Lp, α

ρ (Γ).

In what follows, as Γ we will consider a boundary of unit disk: γ = ∂ω. Consider the
weighted space Lp,α

ρ (γ) =: Lp,α
ρ with the weight ρ ( · ). In an absolutely similar way to the

non-weighted case, we define the space Mp, α
ρ with the weight ρ (·). Denote by M̃p, α

ρ the
set of functions whose shifts are continuous in Lp, α

ρ , i.e.

‖Sδf − f‖p, α; ρ = ‖f (·+ δ) − f (·)‖p, α; ρ → 0, δ → 0,

where Sδ is a shift operator: (Sδf) (x) = f (x+ δ) and we will consider that the function
f (·) (in sequel also) periodically continued to the whole real axis R. It is not difficult to
see that M̃p, α

ρ is a linear subspace of Lp, α
ρ . Denote the closure of M̃p, α

ρ in Lp, α
ρ by Mp, α

ρ .
Consider the following class

L̃p,α
ρ =:

{

f ∈ Lp, α
ρ : ‖Tδf − f‖p, α; ρ → 0, δ → 0

}

.

It is evident that the class L̃p,α
ρ is a linear subspace of Lp, α

ρ . Let us denote by Mp, α
ρ the

closure of L̃p, α
ρ in Lp, α

ρ .
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Let us remember the following properties of Poisson kernel Pr (ϕ):

Pr (ϕ) =
1

2π

1− r2

1− 2r cosϕ+ r2
, 0 < r < 1.

(a) sup
|t|<δ

Pr (t) → 0 as |r| → 1;

(b)
∫

|t|>δ
Pr (t) dt → 0 as |r| → 1 for ∀δ > 0.

These properties directly follows from the expression for Pr (ϕ). We have

‖(Pr ∗ f) (·)− f (·)‖p,α; ρ =

∥

∥

∥

∥

1

2π

∫

−π

Pr (t) f (t− s) dt−
1

2π

∫ π

−π

Pr (t) f (s) dt

∥

∥

∥

∥

p,α; ρ

≤

≤
1

2π

∫ π

−π

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt =

=
1

2π

[

∫

|t|>δ

Pr (t) ‖f (t− ·)− f (·)‖p,α; ρ dt+

∫

|t|<δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt

]

.

Regarding the second integral in the right-hand side, we have

1

2π

∫

|t|<δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt ≤

≤ sup
|t|<δ

‖f (t− ·)− f (·)‖p, α; ρ , as δ → 0.

To estimate the first integral, consider

‖f (t− ·)− f (·)‖p, α; ρ ≤ ‖f‖p, α; ρ + ‖f (t− ·)‖p, α; ρ = 2 ‖f‖p, α; ρ .

We have

‖f (t− ·)‖pp, α; ρ = sup
B

1

|B
⋂

γ|1−α

∫

B
⋂

γ

|f (t− s)|p ds =

= sup
B

1

|B
⋂

γ|1−α

∫

(B
⋂

γ)t

|f (s)|p ds,

where (B
⋂

γ)t ≡ {s : t− s ∈ B
⋂

γ}. It is clear that
∣

∣

∣
B
⋂

γ
∣

∣

∣
=
∣

∣

∣

(

B
⋂

γ
)

t

∣

∣

∣
,

holds. Therefore
‖f (t− ·)‖p,α; ρ = ‖f‖p, α; ρ .

As a result
∫

|t|>δ

Pr (t) ‖f (t− ·)− f (·)‖p, α; ρ dt ≤

≤ 2 ‖f‖p, α; ρ

∫

|t|>δ

Pr (t) dt → 0 as |r| → 1.

So we have proved the following
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Theorem 2. If f ∈ Mp, α
ρ , 1 ≤ p < +∞ ∧ 0 ≤ α ≤ 1, then ‖Pr ∗ f − f‖p,α; ρ → 0 as

|r| → 1.

From Theorem 2 we immediately get the validity of the following

Theorem 3. Let f ∈ Mp, α
ρ , 0 < α ≤ 1, 1 < p < +∞. Then it holds

∥

∥(Kf) (rξ)− f+ (ξ)
∥

∥

p, α; ρ
→ 0, r → 1− 0.

Similar assertion is true in case of f− (ξ) when r → 1 + 0.

3. Subspace M
p, α
ρ

Let ρ : [−π, π] → (0, +∞) be some weight function and consider the space Mp, α
ρ . It

is easy to see that if ρ ∈ Lp, α, then C [−π, π] ⊂ Mp, α
ρ is true. Indeed, let f ∈ C [−π, π].

Without loss of generality, we assume that the function f periodically continued on the
whole axis. We have

|f (x+ δ)− f (x)| ≤ ‖f (·+ δ) − f (·)‖∞ → 0, δ → 0.

Consequently

‖f (·+ δ)− f (·)‖p, α; ρ = ‖(f (·+ δ)− f (·)) ρ (·)‖p, α ≤

≤ ‖f (·+ δ) − f (·)‖∞ ‖ρ (·)‖p, α → 0, δ → 0.

Hence, we have f ∈ Mp, α
ρ .

Let us show that the set of infinitely differentiable functions is dense in Mp, α
ρ . Consider

the following averaged function

ωε (t) =

{

cε exp
(

− ε2

ε2−|t|2

)

, |t| < ε,

0, |t| ≥ ε,

where

cε

∫ +∞

−∞
ωε (t) dt = 1.

Take ∀f ∈ Mp, α
ρ and consider the convolution f ∗ g:

(f ∗ g) (t) =

∫ +∞

−∞
f (t− s) g (s) ds,

and let

fε (t) = (ωε ∗ f) (t) = (f ∗ ωε) (t) .
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It is clear that fε is infinitely differentiable on [−π, π]. We have

‖fε − f‖p, α; ρ =

∥

∥

∥

∥

∫ +∞

−∞
ωε (s) f (· − s) ds− f (·)

∥

∥

∥

∥

p, α; ρ

=

=

∥

∥

∥

∥

∫ +∞

−∞
ωε (s) [f (· − s)− f (·)] ds

∥

∥

∥

∥

p, α; ρ

.

Applying Minkowski inequality (1) to this expression, we obtain

‖fε − f‖
p, α; ρ

≤

∫ +∞

−∞
ωε (s) ‖f (· − s)− f (·)‖p, α; ρ ds =

=

∫ ε

−ε

ωε (s) ‖f (· − s)− f (·)‖p,α; ρ ds ≤

= sup
|s|≤ε

‖f (· − s)− f (·)‖p, α; ρ → 0, ε → 0.

Thus, the following theorem is true.

Theorem 4. Let ρ ∈ Lp, α, 1 < p < +∞, 0 < α ≤ 1. Then infinitely differentiable
functions are dense in Mp, α

ρ .

Consider the singular operator S (·):

Sf (t) =
1

π

∫

γ

f (τ) dτ

τ − t
, t ∈ γ.

Applying Theorem 1 [10] to the operator S we obtain the following result.

Theorem 5. Let the weight ρ (·) be defined by the expression (2), where Γ = γ. Then the
operator S is bounded in Lp,α

ρ ,1 < p < +∞, 0 < α ≤ 1, i.e. the following inequality holds

‖Sf‖p, α; ρ ≤ c ‖f‖p, α; ρ ,∀f ∈ Lp, α
ρ ,

if and only if the following inequalities are fulfilled

−
α

p
< αk < −

α

p
+ 1, k = 1, m. (4)

Let us show that the subspace Mp, α
ρ is an invariant with respect to the operator S. It

is sufficient to prove that the shift operator S is continuous in Mp, α
ρ . So, let f ∈ Mp, α

ρ

and δ ∈ R. Consider the shift operator S:

(Sf)
(

teiδ
)

=
1

2πi

∫

γ

f (τ) dτ

τ − teiδ
, t ∈ γ.

We have

(Sf)
(

teiδ
)

=
1

2πi

∫

γ

f (τ) dτe−iδ

τe−iδ − t
=
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=
1

2πi

∫

γ

f
(

τe−iδeiδ
)

dτe−iδ

τe−iδ − t
=

1

2πi

∫

γ

f
(

ξeiδ
)

dξ

ξ − t
.

Consequently

(Sf)
(

teiδ
)

− (Sf) (t) =
1

2πi

∫

γ

f
(

ξeiδ
)

− f (ξ)

ξ − t
dξ =

=
(

S
(

f
(

·eiδ
)

− f (·)
))

(t) .

Paying attention to Theorem 5, hence we immediately obtain

∥

∥

∥
(Sf)

(

teiδ
)

− (Sf) (t)
∥

∥

∥

p,α; ρ
≤

≤ c
∥

∥

∥
f
(

eiδ
)

− f (·)
∥

∥

∥

p, α; ρ
→ 0, δ → 0,

as f ∈ Mp, α
ρ . Thus, the following theorem is true.

Theorem 6. Let the weight ρ be defined by the expression

ρ (t) =
m
∏

k=1

|t− tk|
αk , t ∈ γ, (5)

where {tk}k=1,m ⊂ γ−are different points. If the inequalities (4) hold, then the operator
S boundedly acts in Mp, α

ρ , 1 < p < +∞, 0 < α ≤ 1.

Remark 1. In previous statements and in their proofs the spaces Lp, α
ρ , Mp, α

ρ (−π, π) and
Lp, α
ρ , Mp, α

ρ , are naturally identified, respectively, i.e. Lp,α
ρ = Lp, α

ρ (−π, π) = Lp,α
ρ (γ) &

Mp, α
ρ = Mp, α

ρ (−π, π) = Mp, α
ρ (γ).

Consider the following Cauchy integral

(Kf) (z) =
1

2πi

∫

γ

f (ξ) dξ

ξ − z
, z /∈ γ.

Let f ∈ Lp,α
ρ , where the weight ρ (·) is defined by the expression (5). Applying Holder’s

inequality we obtain

‖f‖L1
=
∥

∥fρρ−1
∥

∥

L1
≤ c ‖fρ‖p, α

∥

∥ρ−1
∥

∥

q, α
=

= c ‖f‖p, α; ρ
∥

∥ρ−1
∥

∥

q;α
. (6)

Suppose that the following inequalities are fulfilled

−
α

p
< αk <

α

q
, k = 1, m,

1

p
+

1

q
= 1. (7)
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Then from (6) it follows that f ∈ L1. As a result, according to the classical facts, the
following Sokhotskii-Plemelj is true

f± (ξ) = ±
1

2
f (ξ) + (Sf) (ξ) , ξ ∈ γ, (8)

where f+ (ξ) (respectively, f− (ξ)) boundary values of a Cauchy integral (Kf) (z) on γ
inside ω (outside ω). Paying attention to Theorem 6, form (8) we obtain that if f ∈ Mp, α

ρ ,
then f± ∈ Mp, α

ρ and the following inequality holds.
∥

∥f±
∥

∥

p, α; ρ
≤ c ‖f‖p, α; ρ ,∀f ∈ Mp, α

ρ . (9)

Assume
Kz (s) =

eis

eis−z
−Cauchy kernel; Pz (s) = Ree

is+z
eis−z

− Poisson kernel;

Qz (s) = Im eis+z
eis−z

−is the conjugate Poisson kernel,
(Re−is a real part, Im−is an imaginary part). We have

Kz (s) =
1

2
+

1

2
(Pz (s) + iQz (s)) =

1

2
+

1

2

eis + z

eis − z
, z ∈ ω. (10)

Let F (z) = u (z) + iϑ (z) be an analytic function in ω. It is clear that F ∈ Hp, α
ρ if

and only if u;ϑ ∈ hp, αρ . Paying attention to the relation (10) we arrive at the conclusion
that many of the properties of functions from hp, αρ transferred to the function from Hp, α

ρ .
For example, ∀F ∈ Hp, α

ρ has a.e. on γ the nontangential boundary values F+, since,
lim

r→1−0
F
(

reit
)

= F+
(

eit
)

, a.e. t ∈ [−π, π]. We have

F+ (τ) = u+ (τ) + iϑ+ (τ) , τ ∈ γ.

Let all the conditions of Theorem 2 be fulfilled. Then the following representation is true.

u
(

reiθ
)

=
(

Pr ∗ u
+
)

(θ) , ϑ
(

reiθ
)

=
(

Pr ∗ u
+
)

(θ) ,

and, as a result

F
(

reiθ
)

=
(

Pr ∗ F
+
)

(θ) .

Paying attention to Theorem 2, we obtain the following result.

Theorem 7. Let the weight ρ (·) is defined by the expression (5) and the inequality (7)
holds. Then the Sokhotskii-Plemelj formula (8) is valid and for the boundary values the
inequality (9) holds .

Let us prove the following

Theorem 8. Let f (·) ∈ L∞
⋂

Mp, 1
ρ ∧ g (·) ∈ Mp, α

ρ and let the weight function ρ satisfies
the following condition

∃δ0 > 0 :
1

|I|1−α

∫

I

ρp (t) dt ≤ c |I|δ0 ,∀I ∈ [−π, π] .

Then f (·) g (·) ∈ Mp, α
ρ when 0 < α ≤ 1 and p ≥ 1.
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Proof. Let f (·) ∈ L∞
⋂

Mp, 1
ρ and g (·) ∈ Mp, α

ρ , 0 < α ≤ 1, p ≥ 1. For α = 1 it is
evident that Mp, 1

ρ = Lp, ρ and the following estimation is true

∫ π

−π

|f (t) g (t)|p ρp (t) dt ≤ c

∫ π

−π

|g (t)|p ρp (t) dt = c ‖g‖pp, ρ < +∞.

So, f (·) g (·) ∈ Mp, α
ρ when α = 1.

Consider the case 0 < α < 1. We have

sup
I

(

1

|I|1−α

∫

I

|f (t) g (t)|p ρp (t) dt

)
1
p

≤

≤ c sup
I

(

1

|I|1−α

∫

I

|g (t)|p ρp (t) dt

)
1
p

= c ‖g‖p, α; ρ < +∞.

Let us consider

∆δ = ‖f (·+ δ) g (·+ δ) − f (·) g (·)‖p, α; ρ .

For any ε > 0 and m > 0 there is a ϕ (·) ∈ C [−π; π] such that ‖g (·)− ϕ (·)‖p, α; ρ < ε
m
, as

g ∈ Mp, α
ρ . We have

∆δ = ‖f (·+ δ) [g (·+ δ)− ϕ (·+ δ) + ϕ (·+ δ)]− f (·) [g (·)− ϕ (·) + ϕ (·)]‖p, α; ρ ≤

≤ cf ‖g (·+ δ)− ϕ (·+ δ)‖p, α; ρ+‖f (·+ δ)ϕ (·+ δ)− f (·)ϕ (·)‖p, α; ρ+cf ‖g (·)− ϕ (·)‖p, α; ρ ,

where cf = ‖f (·)‖L∞

. From ‖g (·)− ϕ (·)‖p, α; ρ <
ε
m

it follows

‖g (·+ δ)− ϕ (·+ δ)‖p, α; ρ ≤ ‖g (·+ δ) − g (·)‖p, α; ρ +

+ ‖g (·)− ϕ (·)‖p, α; ρ + ‖ϕ (·)− ϕ (·+ δ)‖p, α; ρ .

It is obvious that ‖g (·+ δ)− g (·)‖p, α; ρ → 0, δ → 0.

Let the weight function ρ satisfies the following condition

∃δ0 > 0 :
1

|I|1−α

∫

I

ρp (t) dt ≤ c |I|δ0 ,∀I ∈ [−π; π] ,

where c > 0 is some constant.

It follows from uniformly continuity that for ∀m > 0, ε > 0 there exists δ1 > 0 : ∀δ ∈
(−δ1, δ1):

‖ϕ (·)− ϕ (·+ δ)‖p, α; ρ = sup
I

(

1

|I|1−α

∫

I

|ϕ (t)− ϕ (t+ δ)|p ρp (t)

)
1

p

<

<
ε

m
sup
I

(

1

|I|1−α

∫

I

ρp (t)

)
1
p

<
ε

m
sup
I

(

c |I|δ0
)

1
p
= c

ε

m
(2π)

δ0
p .
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Then the previous inequality implies

∆δ ≤ cf
ε

m

(

2 + c (2π)
δ0
p

)

+ ‖f (·+ δ)ϕ (·+ δ)− f (·)ϕ (·)‖p, α; ρ .

Thus, it is suffices to prove that for ϕ (·) ∈ C [−π; π] it is true

lim
δ→0

‖f (·+ δ)ϕ (·+ δ) − f (·)ϕ (·)‖p, α; ρ = 0.

We have

‖f (·+ δ)ϕ (·+ δ) − f (·)ϕ (·)‖p, α; ρ ≤ ‖f (·+ δ) [ϕ (·+ δ)− ϕ (·)]‖p,α; ρ +

+ ‖[f (·+ δ)− f (·)]ϕ (·)‖p, α; ρ ≤ cf ‖ϕ (·+ δ)− ϕ (·)‖p, α; ρ + cϕ ‖f (·+ δ)− f (·)‖p, α; ρ .

where cϕ = ‖ϕ (·)‖L∞

. Let us take

∆δ (f) = ‖f (·+ δ)− f (·)‖p, α; ρ .

Let ϑ > 0 be an arbitrary number. We have

∆δ (f) = max
{

∆
(1)
δ (f) , ∆

(1)
δ (f)

}

,

where

∆
(1)
δ (f) = sup

I:|I|≤ϑ

(

1

|I|1−α

∫

I

|f (t+ δ) − f (t)|p ρp (t) dt

)
1
p

,

∆
(21)
δ (f) = sup

I:|I|≤ϑ

(

1

|I|1−α

∫

I

|f (t+ δ)− f (t)|p ρp (t) dt

)
1
p

.

Regarding ∆
(1)
δ (f), we have

∆
(1)
δ (f) ≤ 2cf sup

|I|≤ϑ

(

1

|I|1−α

∫

I

ρp (t) dt

)
1

p

≤

≤ 2cf sup
|I|≤ϑ

(|I|)
δ0
p = c̃ϑ

δ0
p .

Regarding ∆
(2)
δ (f), we have

∆
(2)
δ (f) ≤ ϑ

α−1

p
ε sup

|I|≥ϑ

(
∫

I

|f (t+ δ) − f (t)|p ρp (t) dt

)
1
p

≤

≤ ϑ
α−1

p
ε

(
∫ π

−π

|f (t+ δ) − f (t)|p ρp (t) dt

)
1

p

≤
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ϑ
α−1

p
ε ‖f (·+ δ) − f (·)‖p, ρ .

where ϑ =
(

ε
c̃

)
p
δ0 := ϑε. It is clear that ∃δ2 > 0:

‖f (·+ δ)− f (·)‖p, ρ < ϑ
1
p
ε ,∀δ ∈ (−δ2, δ2) ,

where we can choose ε1 = ϑ
1
p
ε for any ε1 > 0. Hence we get ∆

(2)
δ (f) ≤

(

ε
c̃

)
α
δ0 .

Now let us take ∆δ (f) ≤ max
{

ε2,
(

ε2
c̃

)
α
δ0

}

, where ε2 =
ε
m

for any m > 0.

Consequently

∆δ ≤
ε

m

(

cf (2 + 2c (2π))
δ0
p + cϕ

)

,∀δ ∈ (−δ3, δ3) ,

where δ3 = min {δ1, δ2}. By taking m =

(

cf (2 + 2c (2π))
δ0
p + cϕ

)

, we get ∆δ ≤ ε,

∀δ ∈ (−δ3, δ3). It follows that ∆δ → 0 as δ → 0. ◭
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