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Multilinear Rough Fractional Integral on Product Mor-
rey Spaces

S.Q. Hasanov

Abstract. We will study the boundedness of multilinear fractional integral operator IΩ,α,m with
rough kernels Ω ∈ Ls(Sn−1), 1 < s ≤ ∞ on product Morrey spaces. We find for the operator IΩ,α,m
necessary and sufficient conditions on the parameters of the boundedness on product Morrey spaces
Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to Morrey spaces Lq,λ(Rn).
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1. Introduction

The classical Morrey spaces, introduced by Morrey [9] in 1938, have been studied inten-
sively by various authors and together with weighted Lebesgue spaces play an important
role in the theory of partial differential equations. The boundedness of fractional integral
operators on the classical Morrey spaces was studied by Adams [1], Chiarenza and Frasca
et al. [2].

Let Rn be the n-dimensional Euclidean space, and let (Rn)m = Rn × . . . × Rn be the
m-fold product space (m ∈ N). For x ∈ Rn and r > 0, we denote by B(x, r) the open

ball centered at x of radius r, and by
{
B(x, r) denote its complement. Let |B(x, r)| be

the Lebesgue measure of the ball B(x, r). Also for −→x = (x1, . . . , xm) ∈ Rmn and r > 0,
we denote by B(−→x , r) the open ball centered at −→x ∈ Rmn of radius r, and B(−→x , r) We

denote by
−→
f the m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , ym) and d−→y = dy1 · · · dyn.

Definition 1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, [t]1 = min{1, t}. We denote by Lp,λ(Rn)
the Morrey space, and by WLp,λ(Rn) the weak Morrey space, the set of locally integrable
functions f(x), x ∈ Rn, with the finite norms

‖f‖Lp,λ = sup
x∈Rn, t>0

r
−λ
p ‖f‖Lp(B(x,r)), ‖f‖WLp,λ

= sup
x∈Rn, t>0

r
−λ
p ‖f‖WLp(B(x,r))

respectively.
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In 1999, Kenig and Stein [8] studied the following multilinear fractional integral

Iα,m(
−→
f )(x) =

∫
(Rn)m

f1(y1) . . . fm(ym)

|(x− y1, . . . , x− ym)|nm−α
dy1dy2 . . . dym,

and showed that Iα,m is bounded from product Lp1(Rn) × Lp2(Rn) × . . . × Lpm(Rn) to
Lq(Rn) with 1/q = 1/p1 + . . . + 1/pm − β/n > 0 for each pi > 1(i = 1, . . . ,m). If some
pi = 1, then Iα,m is bounded Lp1(Rn)×Lp2(Rn)× . . .×Lpm(Rn) to Lq,∞(Rn). Obviously,
the multilinear fractional integral Iα,m is a natural generalization of the classical fractional
integral Iα ≡ Iα,1.

Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree zero on Rmn.
The multi-sublinear fractional maximal operatorMα,m with rough kernels Ω is defined by

Mα,m(
−→
f )(x) = sup

r>0

1

rnm−α

∫
B(
−→
0 ,r)
|Ω(−→y )|

m∏
j=1

|fi(x− yi)|d−→y , 0 ≤ α < nm.

If m = 1, then MΩ,α ≡ MΩ,α,1 is the fractional maximal operator with rough kernel Ω.
When m = 1 and Ω ≡ 1, then Mα ≡M1,α,1 is the classical fractional maximal operator.

In [7] we proved the boundedness of the multi-sublinear fractional maximal operator
with rough kernels MΩ,α,m from product Morrey space Lp1,λ1(Rn)× . . .× Lpm,λm(Rn) to
Lq,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/q = 1/p1 + . . . + 1/pm − α/(mn − λ) and
from the space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to the weak space WLq,λ(Rn), if p = s′,
1 ≤ p1, . . . , pm < ∞ and 1/q = 1/p1 + . . . + 1/pm − α/(n− λ) and at least one exponent
pi, 1 ≤ i ≤ m equals one.

In this work, we prove the boundedness of the multilinear fractional integral operator
with rough kernels IΩ,α,m from product Morrey space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
Lq,λ(Rn), if p > s′, 1 < p1, . . . , pm < ∞, 1/q = 1/p1 + . . . + 1/pm − α/(mn − λ) and
from the space Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to the weak space WLq,λ(Rn), if p = s′,
1 ≤ p1, . . . , pm < ∞ and 1/q = 1/p1 + . . . + 1/pm − α/(n− λ) and at least one exponent
pi, 1 ≤ i ≤ m equals one.

Throughout this paper, we assume the letter C always remains to denote a positive
constant that may vary at each occurrence but is independent of the essential variables.

2. Boundedness of multilinear fractional integral operator MΩ,α,m on
product Morrey spaces

In this part, we investigate the boundedness of multilinear fractional integral operator
IΩ,α,m on product Morrey spaces.

Spanne and Adams obtained two remarkable results on Morrey spaces (see Definition
1.1 of the Morrey spaces in Section 1) for Iα. Their results can be summarized as follows.

Theorem 1. [5, 10] (Spanne, but published by Peetre) Let 0 < α < n, 0 ≤ λ < n − αp,
1/q = 1/p − α/n and µ/q = λ/p. Then for p > 1, the operator Iα are bounded from
Lp,λ(Rn) to Lq,µ(Rn) and for p = 1, Iα is bounded from L1,λ(Rn) to WLq,µ(Rn).
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Theorem 2. [1, 4] Let 0 < α < n, 1 ≤ p < n/α, 0 ≤ λ < n− αp.

(i) If p > 1, then condition 1/p − 1/q = α/(n − λ) is necessary and sufficient for the
boundedness of the operator Iα from Lp,λ(Rn) to Lq,λ(Rn).

(ii) If p = 1, then condition 1 − 1/q = α/(n − λ) s necessary and sufficient for the
boundedness of the operator Iα from L1,λ(Rn) to WLq,λ(Rn).

If λ = 0, then the statement of Theorems 1 and 2 reduces to the well known Hardy-
Littlewood-Sobolev inequality.

When m ≥ 2 and Ω ∈ Ls(Smn−1), in [6] was find out MΩ,m also have the same
properties by providing the following multi-version result of the Chiarenza and Frasca [2].

Theorem 3. [6] Let 1 < s ≤ ∞, Ω ∈ Ls(Smn−1) be a homogeneous function of degree
zero on Rmn, p be the harmonic mean of p1, . . . , pm > 1 and

λ

p
=

m∑
j=1

λj
pj

for 0 ≤ λj < n. (1)

(i) If p > s′, then the operatorMΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to Lp,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖Lp,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

(ii) If p = s′, then the operatorMΩ,m is bounded from product Morrey space Lp1,λ1(Rn)×
. . .×Lpm,λm(Rn) to weak Morrey space WLp,λ(Rn). Moreover, there exists a positive
constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖MΩ,mf‖WLp,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

Lemma 1. [11] Let 0 < α < mn, 1 ≤ s′ < mn/α, Ω ∈ Ls(Smn−1) be a homogeneous
function of degree zero on Rmn and f ∈ Lp1(Rn) × . . . × Lpm(Rn). Then there exists a
constant C > 0 for any x ∈ Rn∣∣∣IΩ,α,mf (x)

∣∣∣ ≤ C[MΩ,α+ε,mf (x)
] 1

2
[
MΩ,α−ε,mf (x)

] 1
2
. (2)

Lemma 2. [7] Let 0 < α < mn, 1 ≤ s′ < mn/α, Ω ∈ Ls(Smn−1) be a homogeneous
function of degree zero on Rmn, p be the harmonic mean of p1, . . . , pm > 1 and f ∈
L1

loc(Rn)× . . .× L1
loc(Rn). Then for any x ∈ Rn

MΩ,α,mf (x) ≤ C0

m∏
j=1

[
Mαs′

m

(fs
′
j )(x)

] 1
s′ ≤ C0

m∏
j=1

[
Mαs′pj

mp

(f

s′pj
p

j )(x)
] p
s′pj , (3)

where C0 =
‖Ω‖Ls(Smn−1)

(mn)
1
s

.
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When m ≥ 2 and Ω ∈ Ls(Smn−1), we find out IΩ,α,m also have the same properties by
providing the following multi-version of the Theorem 2.

Theorem 4. Let 0 < α < mn, 1 < s ≤ ∞ and Ω ∈ Ls(Smn−1). Let also
∑m

j=1
λj
pj

= λ
p ,

1
pj
− 1

qj
= α

m(n−λj) and 0 ≤ λj < n− αpj
m , j = 1, . . . ,m.

(i) If p > s′ and
∑m

j=1
λj
qj

= λ
q , then the condition 1

p−
1
q = α

n−λ is necessary and sufficient

for the boundedness of the operator IΩ,α,m from product Morrey space Lp1,λ1(Rn) ×
. . .×Lpm,λm(Rn) to Lq,λ(Rn). Moreover, there exists a positive constant C such that
for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖IΩ,α,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

(ii) If p = s′ and λ
∑m

j=1
1

pjqj
=
∑m

j=1
λj
pjqj

, then the condition 1
p −

1
q = α

n−λ is necessary

and sufficient for the boundedness of the operator IΩ,α,m from product Morrey space
Lp1,λ1(Rn)× . . .×Lpm,λm(Rn) to the weak Morrey space WLq,λ(Rn). Moreover, there
exists a positive constant C such that for all f ∈ Lp1,λ1(Rn)× . . .× Lpm,λm(Rn)

‖IΩ,α,mf‖WLq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

Proof.

(i) Sufficiency. Following the method used in [3], we choose a small positive number ε

with 0 < ε < min{α, m(n−λj)
pj

−α, n−λp −α}. One can then see from the condition of

Theorem 4 that 1 ≤ s′ < pj <
m(n−λj)
α+ε and 1 ≤ s′ < pj <

m(n−λj)
α−ε , and we let

1

q̃1
=

1

p1
+

1

p2
+ . . .+

1

pm
− α+ ε

n− λ
=

1

p
− α+ ε

n− λ
,

and
1

q̃2
=

1

p1
+

1

p2
+ . . .+

1

pm
− α− ε
n− λ

=
1

p
− α− ε
n− λ

.

Now if each pj > s′, then from [7], Theorem 1.1(i) implies that

‖MΩ,α−ε,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj , ‖MΩ,α+ε,mf‖Lq,λ ≤ C
m∏
j=1

‖fj‖Lpj,λj .

A simple calculation yields q
2q̃1

+ q
2q̃2

= 1. Hence, using Lemma 1, the Holder
inequality and the above inequalities, we have

‖IΩ,α,mf‖Lq,λ = sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

|IΩ,α,mf(y)|qdy
)1/q
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≤ C sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

[
MΩ,α+ε,mf(y)

] q
2
[
MΩ,α−ε,mf(y)

] q
2
dy
) 1
q

≤ C sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

[
MΩ,α+ε,mf(y)

]q̃1
dy
) 1

2q̃1 sup
x∈Rn,t>0

( 1

tλ

[
MΩ,α−ε,mf(y)

]q̃2
dy
) 1

2q̃1

≤ C‖MΩ,α+ε,mf‖1/2
Lq̃1,λ

‖MΩ,α−ε,mf‖1/2
Lq̃2,λ

= C
m∏
j=1

‖fj‖Lpj,λj ,

Necessity. Suppose that IΩ,α,m is bounded from Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
Lq,λ(Rn). Define fε(x) =

(
f1(εx), . . . , fm(εx)) for ε > 0. Then it is easy to show

that

IΩ,α,mfε(y) = ε−αIΩ,α,mf(εy). (4)

Thus

‖IΩ,α,mfε‖Lq,λ = ε−α sup
x∈Rn,t>0

( 1

tλ

∫
B(x,t)

|IΩ,α,mf(εy)|qdy
)1/q

= ε−α−n/q sup
x∈Rn,t>0

( 1

tλ

∫
B(εx,εt)

|IΩ,α,mf(y)|qdy
)1/q

= ε−α−n/q+λ/q sup
x∈Rn,t>0

( 1

(εt)λ

∫
B(εx,εt)

|IΩ,α,mf(y)|qdy
)1/q

= ε−α−(n−λ)/q‖IΩ,α,mf‖Lq,λ .

Since IΩ,α,m is bounded from Lp1,λ1 × . . .× Lpm,λm to Lq,λ, we have

‖IΩ,α,mf‖Lq,λ = εα+(n−λ)/q‖IΩ,α,mfε‖Lq,λ ≤ Cεα+(n−λ)/q
m∏
j=1

‖fj(ε·)‖Lpj,λj

= Cεα+(n−λ)/q
m∏
j=1

sup
x∈Rn,t>0

( 1

tλj

∫
B(x,t)

|fj(εy)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q−(n−λ)/p
m∏
j=1

‖fj‖Lpj,λj ,
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where C is independent of ε.

If (n − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖Lq,λ = 0 as ε→ 0.

If (n − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖Lq,λ = 0 as ε→∞.

Therefore we get (n− λ)/p = (n− λ)/q + α.

(ii) Sufficiency. If pi = s′ for some i, we take η2 = β
2− q

q̃2

( m∏
j=1
‖fj‖Lpj,λj

) q
q̃2
−1

for any

β > 0, then applying Lemma 1 and Theorem 4 in [7], we get∣∣∣{y ∈ B(x, t) :
∣∣IΩ,α,mf(y)

∣∣ > β
}∣∣∣

≤ C
∣∣∣{y ∈ B(x, t) : C

[
MΩ,α+ε,mf(y)

] 1
2
[
MΩ,α−ε,mf(y)

] 1
2 > β

}∣∣∣
≤ C

∣∣∣{y ∈ B(x, t) :
√
C
[
MΩ,α+ε,mf(y)

] 1
2 > η

}∣∣∣
+
∣∣∣{y ∈ B(x, t) :

√
C
[
MΩ,α−ε,mf(y)

] 1
2 > β/η

}∣∣∣
≤ C

∣∣∣{y ∈ B(x, t) :MΩ,α+ε,mf(y) > Cη2
}∣∣∣+

∣∣∣{y ∈ B(x, t) :MΩ,α−ε,mf(y) > Cβ2/η2
}∣∣∣

= Ctλ
[( 1

η2

m∏
j=1

‖fj‖Lpj,λj
)q̃1

+
( η2

β2

m∏
j=1

‖fj‖Lpj,λj
)q̃2]

= Ctλ

(
1

β

m∏
j=1

‖fj‖Lpj,λj

)q
.

Hence, we obtain the following inequality

‖IΩ,α,mf‖WLq,λ = sup
β>0

β sup
x∈Rn,t>0

( 1

tλ

∣∣∣{y ∈ B(x, t) : |IΩ,α,mf(y)| > β
}∣∣∣) 1

p

≤ C
m∏
j=1

‖fj‖Lpj,λj .

This is the conclusion (ii) of Theorem 4.

Necessity. Suppose that IΩ,α,m is bounded from Lp1,λ1(Rn) × . . . × Lpm,λm(Rn) to
WLq,λ(Rn). From equality (4) we get

‖IΩ,α,mfε‖WLq,λ = sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,t):IΩ,α,mfε(y)>τ

} dy)1/q

= sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,t):IΩ,α,mf(εy)>τεα

} dy)1/q
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= ε
−n
q sup
τ>0

τ sup
x∈Rn,t>0

( 1

tλ

∫{
y∈B(x,εt):IΩ,α,mf(εy)>τεα

} dy)1/q

= ε
−α−n

q
+λ
q sup
τ>0

τεα sup
x∈Rn,t>0

( 1

(εt)λ

∫{
y∈B(x,εt):IΩ,α,mf(εy)>τεα

} dy)1/q

= ε−α−(n−λ)/q‖IΩ,α,mf‖WLq,λ .

By the boundedness of the operator IΩ,α,m from Lp1,λ1 × . . .×Lpm,λm to WLq,λ, we
have

‖IΩ,α,mf‖WLq,λ = εα+(n−λ)/q‖IΩ,α,mfε‖WLq,λ

≤ Cεα+(n−λ)/q
m∏
j=1

‖fj(ε·)‖Lpj,λj

= Cεα+(n−λ)/q
m∏
j=1

sup
x∈Rn,t>0

( 1

tλj

∫
B(x,t)

|fj(εy)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε−n/pj sup
x∈Rn,t>0

( 1

tλj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q
m∏
j=1

ε(λj−n)/pj sup
x∈Rn,t>0

( 1

(εt)λj

∫
B(εx,εt)

|fj(y)|pjdy
)1/pj

= Cεα+(n−λ)/q−(n−λ)/p
m∏
j=1

‖fj‖Lpj,λj ,

where C is independent of ε.

If (n − λ)/p < (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖WLq,λ = 0 as ε→ 0.

If (n − λ)/p > (n − λ)/q + α, then for all f ∈ Lp1,λ1 × . . . × Lpm,λm , we have
‖IΩ,α,mf‖WLq,λ = 0 as ε→∞.

Therefore we get (n− λ)/p = (n− λ)/q + α.
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