Caspian Journal of Applied Mathematics, Ecology and Economics V. 4, No 1, 2016, July ISSN 1560-4055

On the Equivalence of Completeness of a System of Powers and Trivial Solvability of Homogeneous Riemann Problem

T.Z. Garayev^{*}, A. Jabrailova

Abstract. Double system of powers with degenerate coefficients is considered in this work. Some weighted Smirnov classes are introduced and conjugation problem for them is formulated. Equivalence of the completeness of a double system of powers in a weighted Lebesgue space and the trivial solvability of the corresponding homogeneous conjugation problem in weighted Smirnov classes is proved.

Key Words and Phrases: system of powers, completeness, weighted space, Smirnov classes. 2010 Mathematics Subject Classifications: 42C40, 42C15

1. Introduction

Consider the following system of powers:

$$\left\{A^{+}(t)\,\omega^{+}(t)\,\varphi^{n}(t)\,;\,A^{-}(t)\,\omega^{-}(t)\,\bar{\varphi}^{n}(t)\right\}_{n\geq 0},\tag{1}$$

where $A^{\pm}(t) \equiv |A^{\pm}(t)| e^{ia^{\pm}(t)}$ and $\varphi(t)$ are complex-valued functions on the interval [a, b] with the degenerate coefficients $\omega^{\pm}(\cdot)$:

$$\omega^{\pm}(t) \equiv \prod_{i=1}^{l^{\pm}} \left| t - t_i^{\pm} \right|^{\beta_i^{\pm}},$$

where $\{t_i^{\pm}\} \subset (a, b), \{\beta_i^{\pm}\} \subset R$ are some sets (R is the real axis).

Very special cases of the system (1) arise when considering spectral problems of the theory of differential operators. As a typical example, we can mention so-called Kostyuchenko system $\{e^{iant} \sin nt\}_{n\geq 1}$, where $a \in C$ is a complex parameter (C is the complex plane). Many researches have been dedicated to the basis properties of this system (see, e.g., [1-6]). Final results on the basis properties of this system (completeness, minimality, basicity)

http://www.cjamee.org

© 2013 CJAMEE All rights reserved.

 $^{^{*} {\}rm Corresponding \ author}.$

have been obtained in [5]. Theoretical foundations for the study of basis properties of the systems like (1) have been laid by J.L. Walsh [7]. [8] and [9] also treated the above mentioned problems. A special case of the system (1) with $\varphi(t) \equiv e^{it}$ was considered in [10,11], where basicity criteria for the exponential system with degenerate coefficients in L_p have been obtained.

In the present work, we study the completeness of the system (1) in the weighted space $L_{p,\rho} \equiv L_{p,\rho}(a,b), \ 1 , with the weight <math>\rho : [a,b] \to (0,+\infty)$.

2. Needful Information

Before stating our main result, we make the following assumptions. 1) $|A^{\pm}(t)|; |\varphi'(t)|$ are measurable on (a, b) and the following condition holds:

$$\sup_{(a,b)} vrai\left\{ \left| A^{+}\left(t\right) \right|^{\pm 1}; \left| A^{-}\left(t\right) \right|^{\pm 1}; \left| \varphi'\left(t\right) \right|^{\pm 1} \right\} < +\infty.$$

2) $\Gamma = \varphi \{[a, b]\}$ is a simple closed $(\varphi (a) = \varphi (b))$ rectifiable Jordan curve. Γ is either a Radon curve (i.e. the angle $\theta_0 (\varphi (t))$ between the tangent line to Γ at the point $\varphi = \varphi (t)$ and the real axis is a function of bounded variation on [a, b]), or a piecewise Lyapunov curve.

For definiteness, we will assume that when the point $\varphi = \varphi(t)$ runs across the curve Γ as t increases, the internal domain $int\Gamma$ stays on the left side.

To state our theorem, we have to introduce weighted Smirnov classes of analytic functions.

Let $D \equiv int\Gamma$, and $E_1(D)$ be a usual Smirnov class of analytic functions in D. Let $\omega(\tau)$ be some weight function on Γ and $L_{p,\omega}(\Gamma)$ be a weighted Lebesgue class of p-summable functions on Γ :

$$L_{p,\omega}\left(\Gamma\right) \stackrel{def}{\equiv} \left\{ f: \int_{\Gamma} \left| f\left(\tau\right) \right|^{p} \omega\left(\tau\right) \left| d\tau \right| \, < +\infty \right\}.$$

By $f^{+}(\tau)$ we denote the non-tangential boundary values of the function $f(z) \in E_{1}(D)$. Introduce

$$E_{p,\omega}(D) \stackrel{\text{def}}{\equiv} \left\{ f \in E_1(D) : f^+(\tau) \in L_{p,\omega}(\Gamma) \right\}.$$

Let's consider the following conjugation problem in the classes $E_{p^{\pm},\rho^{\pm}}(D)$:

$$F_1^+(\tau) + G(\tau)\overline{F_2^+(\tau)} = g(\tau) , \ \tau \in \Gamma,$$
(2)

where $\overline{F_2^+(\tau)}$ is a complex conjugation, $g(\tau) \in L_{p,\omega}(\Gamma)$ is some function, and $G(\tau)$ is a given function. $g(\tau)$ and $G(\tau)$ are called the free term and the coefficient of the problem (2), respectively. By the solution of the problem (2) we mean a pair of analytic functions $F_1(z)$ and $F_2(z)$ in D, which belong to the classes $E_{p^+,\rho^+}(D)$ and $E_{p^-,\rho^-}(D)$, respectively, and whose boundary values $F_1^+(\tau)$ and $F_2^+(\tau)$ satisfy the equality (2) almost everywhere on Γ .

Further, denote by $t = \psi(\varphi)$ the inverse of the function $\varphi = \varphi(t)$ defined on $\Gamma \setminus \{\varphi(a) = \varphi(b)\}$. The point $\varphi_0 = \varphi(a) = \varphi(b)$ is considered as two different "stuck-together" endpoints $\varphi_0^+ = \varphi(a)$ and $\varphi_0^- = \varphi(b)$. Then, it is quite natural to assume that $\psi(\varphi_0^+) = a$ and $\psi(\varphi_0^-) = b$.

3. *t*-Besselian systems

Consider the following homogeneous conjugation problem:

$$F_1^+(\tau) - G(\tau)\overline{F_1^+(\tau)} = 0 \quad \text{a.e.} \quad \text{on } \Gamma,$$
(3)

where the coefficient $G(\tau)$ is defined by the formula

$$G(\tau) = \frac{A^{+}(\psi(\varphi))\,\omega^{+}(\psi(\varphi))\,\bar{\varphi}'(\psi(\varphi))}{A^{-}(\psi(\varphi))\,\omega^{-}(\psi(\varphi))\,\varphi'(\psi(\varphi))}.$$

The following theorem is true.

Theorem 1. Let $\rho : [a,b] \to (0,+\infty)$ be some weight function, the coefficients $A^{\pm}(t)$ satisfy the conditions 1), 2,) and $\omega^{\pm} \in L_{p,\rho}(a,b)$, where $p \in (1,+\infty)$ is some number. Then the system (1) is complete in $L_{p,\rho}(a,b)$ only when the homogeneous conjugation problem (3) has only the trivial solution in the classes $E_{q,\rho^{\pm}}(D)$, $\frac{1}{p} + \frac{1}{q} = 1$, where

$$\rho^{\pm}(\varphi) = \left|\omega^{\pm}(\psi(\varphi))\right|^{-q} \rho^{1-q}(\psi(\varphi)), \quad \varphi \in .$$

Proof. The completeness of the system (1) in $L_{p,\rho}(a,b)$ is equivalent to saying that every function $f(t) \in L_{q,\rho}(a,b)$, $\frac{1}{p} + \frac{1}{q} = 1$, is equal to zero almost everywhere with

$$\left. \begin{cases} \int_{a}^{b} A^{+}(t) \,\omega^{+}(t) \,\varphi^{n}(t) \,\bar{f}(t) \,\rho(t) \,dt = 0 \,, \\ \int_{a}^{b} A^{-}(t) \,\omega^{-}(t) \,\bar{\varphi}^{n}(t) \,\bar{f}(t) \,\rho(t) \,dt = 0 \,, n \ge 0. \end{cases} \right\}$$
(4)

From the first of (4) we have

$$\int_{a}^{b} A^{+}(t) \omega^{+}(t) \bar{f}(t) \varphi^{n}(t) \rho(t) dt = \int_{\Gamma} A^{+}(\psi(\varphi)) \omega^{+}(\psi(\varphi)) \times \\ \times \bar{f}(\psi(\varphi)) \left[\varphi'(\psi(\varphi))\right]^{-1} \rho(\psi(\varphi)) \varphi^{n} d\varphi = \int_{\Gamma} F_{1}(\varphi) \varphi^{n} d\varphi = 0,$$
(5)

where

$$F_{1}(\varphi) = A^{+}(\psi(\varphi)) \omega^{+}(\psi(\varphi)) \left[\varphi'(\psi(\varphi))\right]^{-1} \overline{f}(\psi(\varphi)) \rho(\psi(\varphi)).$$

It is not difficult to conclude from the conditions of the theorem that $F_1(\varphi) \in L_1(\Gamma)$. Then, due to the results of [12], the equalities (5) are equivalent to the existence of the function $F_1 \in E_1(D)$ such that $F_1^+(\varphi) = F_1(\varphi)$ a.e. on Γ .

It is not difficult to see that $F_1(\varphi) \in L_{q,\rho^+}(\Gamma)$, where $\rho^+ \equiv |\omega^+|^{-q} \rho^{1-q}$. Consequently, by definition, the function $F_1(z)$ belongs to the class $E_{q,\rho^+}(D)$.

Similarly, from the second of (4) we have

$$\int_{a}^{b} \overline{A^{-}(t)} \omega^{-}(t) f(t) \varphi^{n}(t) \rho(t) dt = \int_{\Gamma} \overline{A^{-}(\psi(\varphi))} \omega^{-}(\psi(\varphi)) \times$$
$$\times f(\psi(\varphi)) [\varphi'(\psi(\varphi))]^{-1} \rho(\psi(\varphi)) \varphi^{n} d\varphi = \int_{\Gamma} F_{2}(\varphi) \varphi^{n} d\varphi = 0, \ n \ge 0$$

where

$$F_{2}(\varphi) = \overline{A^{-}(\psi(\varphi))}\omega^{-}(\psi(\varphi)) \left[\varphi'(\psi(\varphi))\right]^{-1} f(\psi(\varphi)) \rho(\psi(\varphi)).$$

Proceeding as above, we arrive at the conclusion that there exists the function $F_2(z) \in E_1(D)$ such that $F_2^+(\varphi) = F_2(\varphi)$ a.e. on Γ , where $F_2^+(\varphi)$ is a non-tangential boundary value of $F_2(z)$ on Γ . From $F_2(\varphi) \in L_{q,\rho^-}(\Gamma)$, $\rho^- \equiv |\omega^-|^{-q} \rho^{1-q}$, it follows that the function $F_2(z)$ belongs to the class $E_{q,\rho^-}(D)$. Expressing the function f(t) in terms of $F_1(\varphi)$ and $F_2(\varphi)$, we have

$$F_1^+(\varphi) = G(\varphi) \overline{F_2^+(\varphi)}, \varphi \in \Gamma,$$

where

$$G\left(\varphi\right) = \frac{A^{+}\left(\psi\left(\varphi\right)\right)\omega^{+}\left(\psi\left(\varphi\right)\right)\bar{\varphi}'\left(\psi\left(\varphi\right)\right)}{A^{-}\left(\psi\left(\varphi\right)\right)\omega^{-}\left(\psi\left(\varphi\right)\right)\varphi'\left(\psi\left(\varphi\right)\right)}.$$

Thus, if the system (1) is not complete in $L_{p,\rho}(a,b)$, then the homogeneous conjugation problem (3) is non-trivially solvable in the classes $E_{p,\rho^{\pm}}(D)$.

Now suppose to the contrary that the problem (3) is non-trivially solvable in the classes $E_{p,\rho^{\pm}}(D)$. From the definition of the classes $E_{p,\rho^{\pm}}(D)$ and from $F_i(z) \in E_1(D)$, $i = \overline{1,2}$, it follows that

$$\int_{\Gamma} F_i^+(\varphi) \, \varphi^n d\varphi = 0, n \ge 0.$$

Taking into account the expression for the function $G(\tau)$, we have

$$\frac{F_{1}^{+}\left(\varphi\right)\varphi'\left(\psi\left(\varphi\right)\right)}{A^{+}\left(\psi\left(\varphi\right)\right)\omega^{+}\left(\psi\left(\varphi\right)\right)\rho\left(\psi\left(\varphi\right)\right)} = \frac{F_{2}^{+}\left(\varphi\right)\varphi'\left(\psi\left(\varphi\right)\right)}{A^{-}\left(\psi\left(\varphi\right)\right)\omega^{-}\left(\psi\left(\varphi\right)\right)\rho\left(\psi\left(\varphi\right)\right)}.$$

Denoting the last expression by $\overline{f(\varphi)}$, we obtain

$$\int_{\Gamma} A^{+} \left(\psi\left(\varphi\right)\right) \omega^{+} \left(\psi\left(\varphi\right)\right) \frac{\overline{f\left(\varphi\right)}}{\varphi'\left(\psi\left(\varphi\right)\right)} \varphi^{n} \rho\left(\psi\left(\varphi\right)\right) d\varphi =$$
$$= \int_{a}^{b} A^{+} \left(t\right) \omega^{+} \left(t\right) \overline{f\left(\varphi\left(t\right)\right)} \varphi^{n} \left(t\right) \rho\left(t\right) dt = 0, \ n \ge 0.$$

Similarly we have

$$\int_{a}^{b} A^{-}(t) \,\omega^{-}(t) \,\overline{f(\varphi(t))} \overline{\varphi}^{n}(t) \,\rho(t) \,dt = 0 \,, \ n \ge 0$$

40

From the conditions of the theorem, by the definition of the classes $E_{p,\rho^{\pm}}(D)$ it follows that the function $f(\varphi(t))$ belongs to the space $L_{q,\rho}(a, b)$. It is absolutely clear that this function is different from zero. Then, the previous relations imply that the system (1) is not complete in $L_{p,\rho}(a, b)$.

Remark 1. One of the results obtained by Smirnov implies that if the domain D belongs to the Smirnov class and $\rho^{\pm} \equiv 1$, $p \geq 1$, then the definition of the classes $E_{p,\rho^{\pm}}$ is equivalent to the classical definition for the classes E_p .

References

- [1] B.Y. Levin, Entire Functions, MGU, 1971, 124 p.
- [2] A.A. Shkalikov, On properties of a part of eigen and associated elements of selfadjoint quadratic beams of operators, DAN SSSR, **283(5)**, 1985, 1018-1021.
- [3] Y.I. Lubarski, The properties of systems of linear combinations of powers. Algebra and Analysis, 1(6), 1989, 1-69.
- [4] B.T. Bilalov, Necessary and sufficient condition for completeness and minimality of systems of the form $\{A\varphi^n; B\bar{\varphi}^n\}$, Dokl. RAN, **322(6)**, 1992, 1019-1021.
- [5] B.T. Bilalov, On basicity of the system $\{e^{i\sigma nx} \sin nx\}$ and the one of the exponential system with shift, Dokl. RAN, **345(2)**, 1995, 644-647.
- [6] L.V. Kritskov, To the problem on the basis property of the system {e^{iant} sin nt}, Dokl.Math., 53(1), 1996, 3334 [English transl. of the original paper in Russian from Doklady Akademii nauk, 346(3), 1996, 297298].
- [7] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, 1961.
- [8] Yu.A. Kazmin, Closure of linear span for a system of functions, Sib. mat. journal, 18(4), 1977, 799-805.
- [9] A.N. Barmenkov, On approximative properties of some systems of functions, Diss. kand. fiz.-mat. nauk, M., MGU, 1983, 114 p.
- [10] S.Q. Veliev, Bases of exponents with degenerate coefficients, Transactions of NAS of Azerbaijan, 7(24), 2004, 167-174.
- [11] S.Q. Veliev, Bases of subsets of eigenfunctions of two discontinuous differential operators, Matematicheskaya fizika, analiz, geometriya, 12(2), 2005, 22-28.
- [12] I.I. Privalov, Boundary properties of analytic functions, M.-L., Gostexizdat, 1950, 136 p.

T.Z. Garayev, A. Jabrailova

Tarlan Z. Garayev Institute of Mathematics and Mechanics of NAS of Azerbaijan, Az1141, Baku, Azerbaijan E-mail: department2011@mail.ru

Afet Jabrailova Institute of Mathematics and Mechanics of NAS of Azerbaijan, Az1141, Baku, Azerbaijan

Received 10 February 2016

Accepted 12 April 2016

42