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A Rearrangement Estimate for the Generalized Multilin-
ear Anisotropic Fractional Integrals
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Abstract. In this paper, author studies L,, x L,, X ... x L, boundedness of the generalized
multilinear anisotropic fractional integrals. We give a new proof of the Hardy-Littlewood-Sobolev
multilinear anisotropic fractional integration theorem, based on a pointwise estimate of the rear-
rangement multilinear anisotropic fractional type integral.
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1. Introduction

Fractional maximal function and fractional integral is an important technical tool in
harmonic analysis, real analysis and partial differential equations. Multilinear fractional
maximal operator and multilinear fractional integral operator and related topics have
been areas of research of many mathematicians such as R.Coifman and L. Grafakos [5], L.
Grafakos [6, 7], L. Grafakos and N. Kalton [8], C.E. Kenig and E.M. Stein [12], Y. Ding
and S. Lu [11] and others.

The purpose of this article is to describe several results about generalized multilinear
anisotropic fractional integral operators. We study L,, x L,, x ... x L, boundedness
of the generalized multilinear anisotropic fractional integrals. We give a new proof of the
Hardy-Littlewood-Sobolev multilinear anisotropic fractional integration theorem, based on
a pointwise estimate of the rearrangement generalized multilinear anisotropic fractional
integral.

2. Rearrangements of functions

Let R™ is the n-dimensional Euclidean space of points x = (1, ..., ©,) with norms |z| =
(Z?:laﬂ)l/z, Sl ={fxeR": |z| =1}. Let A >0, a= (a,...,an), a1 >0,...,a, >0,

)

d=ay1+ ...+ ap, Oz = (AN"x1,...,\%"x,).
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Let p(x) be a non-isotropic norm on R™ defined as the unique positive solution of the

equation
n

2w !

=1

[\

Note that p(z) is equivalent to Y1 | [x]1/%, i.e.,

n
cip(e) <Y fail V4 < ep(a)
i=1

for certain positive ¢; and ¢z independent of z ( see [2]).

It is immediate that p(dyz) = A p(x) for all A > 0, x € R™. With this norm, R" is
a space of homogeneous type in the sense of Coifman and Weiss [4] with homogeneous
dimension d = |a|. In particular, there is a constant cg > 1 such that p(x+y) < ¢ (p(x) +
p(y)) for all z, y € R™.

One has the polar decomposition

T=0\0 (1)

with o € S"~1, r = p(x) and dz = r¢~'drJ(o)do, where J(o) is a smooth and nonnegative
function of ¢ € S™~! and is even in each of variables o1, ..., 0.
The isotropic and anisotropic balls of radius r and center x are defined

B(z,r) ={yeR" : |z —y| <7},

E(x,r)={y €eR" : p(x —y) <r},

respectively.
For 1 < p < oo let L,(R™) be the space of all measurable functions g on R™ with finite

1/p
ol = ( [ latorpas) "

Let g be a measurable function on R™. The distribution function of g is defined by the
equality

norm

Ag(t) = {z € R™ : |g(2)| > ¢}, ¢=>0.

We shall denote by Lo(R™) the class of all measurable functions g on R™, which are
finite almost everywhere and such that A\y(t) < oo for all t > 0 (see [13]).

If a function g belongs to Lo(R™), then its non-increasing rearrangement is defined to
be the function ¢* which is non-increasing on ]0, co[ equimeasurable with |g(x)] :

{t>0 2 g*(t) > s} = Ag(s)

for all s > 0.
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Set

Moreover, by the Hardy-Littlewood theorem (see [3], p. 44), for every f1, fa € Lo(R"),
L in@n@) < [T rwsoa

It is well known that if p > 1, then (f;° (¢**(¢))? dt) P i comparable with the L, (R™)
norm of g.

For 1 < p < oo the weak L, space W L,(R") is the set of all locally integrable functions
g on R™ with finite norm

HQHWLP(RW,) =sup t /\g(t)l/p_
t>0

Equimeasurable rearrangements of functions play an important role in various fields
of mathematics. Note some properties of the rearrangement (see, for example [3]):
1)if 0 <t <t+s, then

(g+h)" (t+s) < g"(t) + h"(s),

2)if 0 < p < oo, then

RZ 9(@)P dz = /0 (g" ()" dt,
3) for any ¢t > 0

s [ oG dr = [ g(s) ds.

Let k > 2 be an integer and 0; (j = 1,2,--- , k) be a fixed, distinct and nonzero real
numbers.

Lemma 1. [9] Let fi1, fa,..., fr € Lo(R™), k > 2. Then for all x € R™ and nonzero real
numbers 01, ..., 0

[ Ve = falo — ba) -+ e~ Oy <o [ OS50 Fia, (@)
where Cg = |01 ... 0, ".

3. A rearrangement estimate for the generalized multilinear fractional
integrals

By f we denote (f1, f2,-- -, fr) and define

() = f1@) - fr @),
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t
f**(t)_i/off(s)...f,;"(s) ds, >0,

Let k > 2 be an integer and 6; (j = 1,2,--- ,k) be fixed and nonzero real numbers.
The analogy of O’Neil inequality (see, [14]) for k-linear integral operator by

(€.9) (@) = [ 9)fi o= 0)-fulz ) .

is correct

Lemma 2. [9] Let fi, fo,..., fx € Lo(R™). Then for all 0 < t < oo, the following
inequality holds

(£,9)" (t) < Cy (t £(t) g™ (t) + /t £*(s) g*(s) ds) : (3)
Lemma 3. [9] Let fi1, fo,..., fr € Lo(R™). Then for any t > 0

(£,9)™ () < Co / B (g™ (). (4)

In the following we define the k-sublinear anisotropic fractional maximal operator by

MQ,af(x) = sup

>0 T

1 /g OIS 0= )

the k-linear anisotropic fractional integral operator by

Raof(z) = /n pg/gg)a file=061y) ... fi(z —Oky)dy

and the generalized k-linear anisotropic fractional integral operator by
Kof(z) = A Ka(y)fi (x —01y) ... fr (z — Ory) dy,
where K, € WLd/(dfa) (]Rn)

Note that, if Ku(z) = 2525, 0 < a < d, Q € Lyjaa) ("), then Ki(t) =
(%)(d_a)/d, KX (t) = gK;(t), where A = ||QHdLQ(/C(l:2)(Sn_1) and therefore Ko € W Lg/(q—q)(R").

And also, if Ko (z) = p(ij)(j’la, 0<a<dQE Ly o) (S™), then Ko € WLy o) (R™).

The following lemma in the isotropic case was proved in [11]. In the anisotropic case
it is proved analogously.

Lemma 4. Suppose that 0 < a <d, Q€ Ly(S" 1), s> 1. Then
Maof(z) < Rig)o(If])(2), (5)

where [f| = (|f1],-- -, |fx])-
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Proof. Indeed, for all r > 0, we have

Rya () (@) > /g . ng%ﬁaﬁ (2~ 0uy)... i (v — Ouy) dy

1 / WIS = 009) St |

T 77‘)

where £(0,7) is the anisotropic ball centered at the origin of radius r. Taking supremum
over all 7 > 0, we get (5).

For the generalized multilinear fractional integrals K,f the following theorem is valid:

Theorem 1. Let Ko € WLgj(q—a)(R"), 0 < a <d. Then

(K £) () < (K™ () < O (tzl/otf*(s) ds+/t00531 £*(s) d5>, (6)

2
where C1 = (g) Ch ||Ka||WLd/(d—a)'

Proof. Let Ko € WLgjq—q)(R™), then
Kot) < | Kallwegg o ™ K&°(t) <
Taking into account inequality (3) we have (6).

Corollary 1. Suppose that 0 < a < d, Q € Ld/(d_a)(Snfl). Then the following inequality

(Roof) () < (Rouf)™ () < (ﬁ—l /Otf*<s> ds+ [T ds),

d—a)/d d/(d—«
holds, where Co = () Cy (%)( ) , A= ”QHL/d(/(d_a))(S"*l)'

From Corollary 1 and Lemma 4 we get

Corollary 2. Suppose that0 < o < d, Q € Ld/(d,a)(S”_l). Then the following inequality

(Maof) (1) < (Maof)™(t) < Oy <t3_1/0tf*(s) ds+/toos?i—1 £*(s) ds),

holds.
Analogously we have

Theorem 2. Let Ko € WLg/(4—a)(R"), 0 < a <d. Then

[e.9]

(Ko £)* () < (K f)™ (t) < Cy /t sa—t £ (s) ds. (7)
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Corollary 3. Suppose that 0 < a < d, Q2 € Ld/(d_a)(S”_l). Then the following inequality

<Rggﬂ*a>s(Rgaﬂ”<wf;c;sti*f”@>ds

holds.

Corollary 4. Suppose that 0 < a < d, 2 € Ld/(d,a)(S’"*l). Then the following inequality

(Maf)" (0 (Maaf)™ () < Co [ 5577°(5) ds

t
holds.

4. L, x Ly, x --- x L, boundedness of generalized multilinear fractional
integral operators

In the sequel we shall use the following Lemma, which was proved in [1].

Lemma 5. [1] Let 0 < p <1, p < ¢ < oo and k be a non-negative measurable functions
and u, v be weight functions on (0,00) and

Then the inequality

(Amuwuwwuwﬁvq<0(Aw¢mw@mgup ®)

holds for all non-negative non-increasing functions ¢ if and only if

co=s ([ ([ 10 ﬂdT)qu(t)dt)”‘f ( /Onwdt)‘”p <o

The constant C' = Cy is the best constant in (8).

Corollary 5. Let 0 <p<1,p<g<oo, 0 <a<d.
Then the inequality

</Ooo </t o d7>q dt>1/q = </Ooo (1) dt)l/p

holds for all non-negative non-increasing functions o if and only if
= Q

1 1
where Cy = (g)lJr? B(g7 q+ 1)57 B(377'> = fol(l — T)SilTTildT s the Beta function.
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It is said that p is the harmonic mean of pi,ps,...,pr > 1, if% = p% + p% +... 4+ /p%.

If fj € Ly,(R"), j =1,2,...,k, then we say that £ € Ly, x Lp, x - x Ly (R").

Theorem 3. Suppose that 0 < a < d,Ko € WiLgjq—o)(R"). Let p be the harmonic
mean of p1,p2,...,pr > 1 and q satisfy % = % — 9. Then K.f is bounded operator from
Ly, X Ly, x -+ x Ly, (R") to Ly(R™) for d/(d+ o) < p < d/a (equivalently 1 < g < o0)

and
k

IKafllz, @y < C ] 151l L, ey
j=1

where C' > 0 independent of f.

Proof. Case . 1 < p < g ( equivalently ﬁ < q < 00 ). Let us first prove Theorem 3
in this case.
Taking into account equality (2) and inequality (6) we have

||Kaf||Lq(]Rn) = ||(Kaf)*HLq(O,oo)

[’ t q 1/‘1 (o) (%) q 1/‘1
<o ( / patec/d=1) ( / £4(s) ds) dt) L ( / ( / g () ds> dt> ,
0 0 0 t

where C' > 0 independent of f.
Applying Hardy inequality we obtain, that for the validity of the following inequality

o (o) ) oo e

it is necessary and sufficient that the following condition is satisfied

0o 1/q t 1/p'
sup </ SQ(a/d_l)ds> </ ds)
>0 \J¢ 0

a_(1_1
= Cysupt? <P q)<oo<:>1/p—1/q:a/d,
>0

[

where p’ = -
For the va

idity of the following inequality

h Oos“;df*(s) ds ) dt 1/qgo5 Oof*(s)pds v
0 t 0

it is necessary and sufficient satisfying the following condition

t 1/q oo ) 1/p
sup (/ ds) (/ gle/d=1){1-p )ds>
t>0 \Jo t

g_(;+;)
=Cgsuptd \r' 1) <ocoe1/p—1/q=a/d.
t>0

—_
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Consequently applying equality (2) we obtain

[Kafl L, &n) < C1(C3+ C5) [I£*]| 1 (0,00)

! k
<Ci(Cs+C5) ] /5112, 0,00) = C1(C3 + C5) 11 /51, @)

j=1 j=1

Case II. d%v <p <1 (equivalently 1 < g < ﬁ). Now let’s prove Theorem 3 for this
case.

Taking into account equality (2) and inequality (7) we have

I af || ny = IKaf) M Ly 0,00) < 1K) L, 0,00

o] o] q 1/q
<y (/ (/ Sa/dlf**(é’)ds) dt) .
0 t

By virtue of Lemma 2 for the validity of the following inequality

</OOO </too Sa/dlf**(s)dsy dt) " < Cs (/OOO f**(s)pdS)l/p

it is necessary and sufficient satisfying the condition (9).
Consequently applying equality (2), Hardy inequality for monotonic functions and
Holder inequality we obtain

||Kocf||Lq(Rn) = H(Koéf)*HLq(O,oo)
S Gl 1, 0,000 < ColIE7 M1, (0,00)

K K
<[] 171, (0,00) = Co 11 151l L, @)

Jj=1 J=1

Corollary 6. Let0 < aa < d, ) € Ld/(d_a)(S”_l), p be the harmonic mean of p1,po, ..., pE >
1 and q satisfy é =1 9. Then Rqf is a bounded operator from Ly, X Ly, X - - x Ly, (R™)

P
to Ly(R™) for d/(d+ o) < p < d/a (equivalently 1 < g < 00) and

K
R0 flln, @) < CH 151l @)
j=1

where C' > 0 independent of f.

Corollary 7. Let0 < oo < n, Q) € Ln/(n_a)(S"*I), p be the harmonic mean of p1,pa, ..., Pk >

1 and q satisfy % = % _a

~. Then the k-linear fractional integral operator

Igof(r) = /Rn ’;,(ly)a fi(z—01y) ... fx(z—Oky)dy
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is a bounded operator from Ly, X Lp, X -+ x Ly, (R™) to Ly(R™) forn/(n+a) <p <n/a
(equivalently 1 < g < oc0) and

K
oo fll,en < CT] 151l @)
j=1

where C > 0 independent of f.

Corollary 8. Let0 < a < d, ) € Ld/(d_a)(Snfl), p be the harmonic mean of p1,p2, ..., Pk >
1 and q satisfy % = %—%. Then Mq of is a bounded operator from Ly, X Ly, % - - -x Ly, (R™)
to Lg(R™) for d/(d+ a) < p < d/a (equivalently 1 < g < c0) and

K
Mo £l @ < CT] 15512, @)

j=1
where C > 0 independent of f.
Remark 1. Note that, Corollary 7 proved in [6], if Q = 1 and in [11], if Q € Lg(S™1),
s>n/(n—a) and in [9, 10], if Q€ Ly /(n—a)(S™H).
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