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On a compactness criteria for multidimensional Hardy

type operator in p-convex Banach function spaces
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Abstract. The main goal of this paper is to prove a criteria on compactness of multidimen-
sional Hardy type operator from weighted Lebesgue spaces into p-convex weighted Banach function
spaces. Analogously problem for the dual operator is considered.
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1. Introduction

The investigation of Hardy operator in weighted Banach function spaces (BFS) have
recently history. The goal of this investigations were closely connected with the found of
criterion on the geometry and on the weights of BFS for validity of boundedness of Hardy
operator in BFS. Characterization of the mapping properties such as boundedness and
compactness were considered in the papers [8], [9], [13], [25] and e.t.c. More precisely, in
[8] and [9] were considered the boundedness of certain integral operator in ideal Banach
spaces. In [13] was proved the boundedness of Hardy operator in Orlicz spaces. Also, in
[25] the compactness and measure of non-compactness of Hardy type operator in Banach
function spaces was proved. But in this paper we consider the boundedness of Hardy
operator in p-convex Banach function spaces and find a new type criterion on the weights
for validity of Hardy inequality. Note that the notion of BFS was introduced in [26].
In particular, the weighted Lebesgue spaces, weighted Lorentz spaces, weighted variable
Lebesgue spaces, variable Lebesgue spaces with mixed norm, Musielak-Orlicz spaces and
e.t.c. is BFS.

In this paper, we establish an integral-type necessary and sufficient condition on
weights, which provides the compactness of the multidimensional Hardy type operator
from weighted Lebesgue spaces into p-convex weighted BFS. We also investigate the cor-
responding problems for the dual operator.
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2. Preliminaries

Let (Ω, µ) be a complete σ-finite measure space. By L0 = L0(Ω, µ) we denote the
collection of all real-valued µ-measurable functions on Ω.

Definition 1. [26, 24, 7] We say that real normed space X is a Banach function space
(BFS) if:

(P1) the norm ‖f‖X is defined for every µ-measurable function f, and f ∈ X if and
only if ‖f‖X <∞; ‖f‖X = 0 if and only if f = 0 a.e. ;

(P2) ‖f‖X = ‖|f |‖X for all f ∈ X;

(P3) if 0 ≤ f ≤ g a.e., then ‖f‖X ≤ ‖g‖X ;
(P4) if 0 ≤ fn ↑ f a.e., then ‖fn‖X ↑ ‖f‖X (Fatou property);
(P5) if E is a measurable subset of Ω such that µ(E) < ∞, then ‖χE‖X < ∞, where

χE is the characteristic function of the set E;

(P6) for every measurable set E ⊂ Ω with µ(E) <∞, there is a constant CE > 0 such
that

∫

E f(x) dx ≤ CE ‖f‖X .

Given a BFS X we can always consider its associate space X ′ consisting of those
g ∈ L0 that f · g ∈ L1 for every f ∈ X with the usual order and the norm ‖g‖X′ =
sup {‖f · g‖L1 : ‖g‖X′ ≤ 1} . Note that X ′ is a BFS in (Ω, µ) and a closed norming sub-
spaces.

Let X be a BFS and ω be a weight, that is, positive Lebesgue measurable and a.e. finite
functions on Ω. Let Xω = {f ∈ L0 : fω ∈ X} . This space is a weighted BFS equipped
with the norm ‖f‖Xω

= ‖f ω‖X . (For more detail and proofs of results about BFS we refer
the reader to [7] and [24].)

Let us recall the notion of p-convexity and p-concavity of BFS’s.

Definition 2. [33] Let X is a BFS. Then X is called p-convex for 1 ≤ p ≤ ∞ if there
exists a constant M > 0 such that for all f1, . . . , fn ∈ X

∥

∥

∥

∥

∥

∥

(

n
∑

k=1

|fk|
p

) 1
p

∥

∥

∥

∥

∥

∥

X

≤M

(

n
∑

k=1

‖fk‖
p
X

) 1
p

if 1 ≤ p <∞,

or

∥

∥

∥

∥

∥

sup
1≤k≤n

|fk|

∥

∥

∥

∥

∥

X

≤M max
1≤k≤n

‖fk‖X if p = ∞. Similarly X is called p-concave for 1 ≤ p ≤

∞ if there exists a constant M > 0 such that for all f1, . . . , fn ∈ X
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∥

∥

∥

∥

∥
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∥

∥
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or max
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∥

∥

∥
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sup
1≤k≤n
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∥

∥

∥

∥

∥

X

if p = ∞.
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Remark 1. Note that the notions of p-convexity, respectively p-concavity are closely re-
lated to the notions of upper p-estimate (strong `p- composition property), respectively
lower p-estimate (strong `p-decomposition property) as can be found in [24].

Now we reduce some examples of p-convex and respectively p-concave BFS. Let Rn

be the n-dimensional Euclidean space of points x = (x1, ..., xn) and let Ω be a Lebesgue

measurable subset in Rn and |x| =

(

n
∑

i=1

x2i

)1/2

. The Lebesgue measure of a set Ω will be

denoted by |Ω|. It is well known that |B(0, 1)| =
π

n

2

Γ
(

n
2 + 1

) , where B(0, 1) = {x : x ∈ Rn ;

|x| < 1} .
Example 1.1. Let 1 ≤ q ≤ ∞ and X = Lq. Then the space Lq is p-convex (p-concave)
BFS if and only if 1 ≤ p ≤ q ≤ ∞ (1 ≤ q ≤ p ≤ ∞.)

The proof implies from usual Minkowski inequality in Lebesgue spaces.
Example 1.2. The following Lemma shows that the variable Lebesgue spaces Lq(y)(Ω)
is p-convex BFS.

Lemma 1. [1] Let 1 ≤ p ≤ q(x) ≤ q <∞ for all y ∈ Ω2 ⊂ Rm. Then the inequality

∥

∥‖f‖Lp(Ω1)

∥

∥

Lq(·)(Ω2)
≤ Cp,q

∥

∥

∥
‖f‖Lq(·)(Ω2)

∥

∥

∥

Lp(Ω1)

is valid, where Cp,q =

(

‖χ∆1‖∞ + ‖χ∆2‖∞ + p

(

1

q
−

1

q

))

(‖χ∆1‖∞ + ‖χ∆2‖∞),q =ess inf
Ω2

q(x),

q = ess sup
Ω2

q(x), ∆1 = {(x, y) ∈ Ω1 ×Ω2 : q(y) = p} , ∆2 = Ω1×Ω2\∆1 and f : Ω1×Ω2 →

R is any measurable function such that

∥

∥‖f‖Lp(Ω1)

∥

∥

Lq(·)(Ω2)
= inf







µ > 0 :

∫

Ω2

(

‖f(·, y)‖Lp(Ω1)

µ

)q(y)

dy ≤ 1







<∞

and ‖f(·, y)‖Lp(Ω1) =

(∫

Ω1

|f(x, y)|p dx

)1/p

.

Analogously, if 1 ≤ q(x) ≤ p <∞, then Lq(x)(Ω) is p-concave BFS.

Definition 3. [31, 15]. Let Ω ⊂ Rn be a Lebesgue measurable set. A real function
ϕ : Ω× [0,∞) 7→ [0,∞) is called a generalized ϕ-function if it satisfies:

a) ϕ(x, ·) is a ϕ-function for all x ∈ Ω, i.e., ϕ(x, ·) : [0,∞) 7→ [0,∞) is convex and
satisfies ϕ(x, 0) = 0, lim

t→+0
ϕ(x, t) = 0;

b) ψ : x 7→ ϕ(x, t) is measurable for all t ≥ 0.

If ϕ is a generalized ϕ-function on Ω, we shortly write ϕ ∈ Φ.
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Definition 4. [31, 15]. Let ϕ ∈ Φ and be ρϕ defined by the expression

ρϕ(f) :=

∫

Ω

ϕ(y, |f(y)|) dy for all f ∈ L0(Ω).

We put Lϕ = {f ∈ L0(Ω) : ρϕ(λ0f) <∞ for some λ0 > 0} and

‖f‖Lϕ
= inf

{

λ > 0 : ρϕ

(

f

λ

)

≤ 1

}

.

The space Lϕ is called Musielak-Orlicz space.

Let ω be a weight function on Ω, i.e., ω is a non-negative, almost everywhere positive
function on Ω. In this work we considered the weighted Musielak-Orlicz spaces. We denote

Lϕ, ω = {f ∈ L0(Ω) : fω ∈ Lϕ} .

It is obvious that the norm in this spaces is given by

‖f‖Lϕ, ω
= ‖fω‖Lϕ

.

Remark 2. Let ϕ(x, t) = tq(x) in the Definition 4, where 1 ≤ q(x) <∞ and x ∈ Ω. Then
we have the definition of variable exponent weighted Lebesgue spaces Lq(x) (Ω) (see [15]).

Example 1.3. The following Lemma shows that the Musielak-Orlicz spaces Lϕ is
p-convex BFS.

Lemma 2. [4] Let Ω1 ⊂ Rn and Ω2 ⊂ Rm. Let (x, t) ∈ Ω1 × [0,∞), and ϕ
(

x, t1/p
)

∈ Φ
for some 1 ≤ p <∞. Suppose f : Ω1 × Ω2 7→ R. Then the inequality

∥

∥‖f(x, ·)‖Lp(Ω2)

∥

∥

Lϕ

≤ 21/p
∥

∥‖f(·, y)‖Lϕ

∥

∥

Lp(Ω2)

is valid.

We note that the Lebesgue spaces with mixed norm, weighted Lorentz spaces and
e.t.c. is p-convex (p-concave) BFS. Now we reduce more general result connected with
Minkowski’s integral inequality.

Let X and Y be BFSs on (Ω1, µ) and (Ω2, ν) , respectively. By X[Y ] and Y [X] we
denote the spaces with mixed norm and consisting of all functions g ∈ L0 (Ω1 × Ω2, µ× ν)
such that ‖g(x, ·)‖Y ∈ X and ‖g(·, y)‖X ∈ Y. The norms in these spaces is defined as

‖g‖X[Y ] = ‖‖g(x, ·)‖Y ‖X , ‖g‖Y [X] = ‖‖g(·, y)‖X‖Y .

Theorem 1. [33] Let X and Y be BFSs with the Fatou property. Then the generalized
Minkowski integral inequality

‖f‖X[Y ] ≤M ‖f‖Y [X]

holds for all measurable functions f(x, y) if and only if there exists 1 ≤ p ≤ ∞ such that
X is p-convex and Y is p-concave.

It is known that X[Y ] and Y [X] are BFSs on Ω1 × Ω2 (see [24].)
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3. Main results

We consider the multidimensional Hardy type operator and its dual operator

Hf(x) =

∫

|y|<|x|

f(y) dy and H∗f(x) =

∫

|y|>|x|

f(y) dy,

where f ≥ 0 and x ∈ Rn.

Now we prove a two-weight criterion for multidimensional Hardy type operator acting
from the p-concave weighted BFS to weighted Lebesgue spaces.

Theorem 2. [5] Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex
weighted BFSs for 1 ≤ p <∞ on Rn. Then the inequality

‖Hf‖Xw
≤ C ‖f‖Lp, v

(3.1)

holds for every f ≥ 0 if and only if there is a α ∈ (0, 1) such that

A(α) = sup
t>0







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|>t}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

<∞. (3.2)

Moreover, if C > 0 is the best possible constant in (3.1), then

sup
0<α<1

p′A(α)

(1− α)
[(

p′

1−α

)p
+ 1

α(p−1)

]1/p
≤ C ≤M inf

0<α<1

A(α)

(1− α)1/p′
.

Example 3.1. Let n = 2, q(x) = q = const, x = (x1, x2) ∈ R2 and 1 < p ≤ q < ∞.

Suppose that v(x) =
|x1|

β

|x|
, w(x) = |x|γ and β <

1

p′
, and γ = β − 1− 2

(

1

p′
+

1

q

)

. Then

the condition of Theorem 2 is satisfied.
For the dual operator, the below stated theorem is proved analogously.

Theorem 3. [5] Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex
weighted BFSs for 1 ≤ p <∞ on Rn. Then the inequality

‖H∗f‖Xw
≤ C ‖f‖Lp, v

(3.3)

holds for every f ≥ 0 if and only if there is a γ ∈ (0, 1) such that

B(γ) = sup
t>0







∫

|y|>t

[v(y)]−p′ dy







γ

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|<t}(·)







∫

|y|>|·|

[v(y)]−p′ dy







1−γ

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

<∞.
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Moreover, if C > 0 is the best possible constant in (3.3) then

sup
0<γ<1

p′B(γ)

(1− γ)
[(

p′

1−γ

)p
+ 1

γ(p−1)

]1/p
≤ C ≤M inf

0<γ<1

B(γ)

(1− γ)1/p
′
.

Corollary 1. Note that Theorem 2 and Theorem 3 in the case Xw = Lϕ,w, ϕ
(

x, t1/p
)

∈ Φ
for some 1 ≤ p < ∞, x ∈ Rn was proved in [4]. In the case Xw = Lq,w, 1 < p ≤ q < ∞,

for x ∈ (0,∞), α =
s− 1

p− 1
and s ∈ (1, p) Theorem 2 and Theorem 3 was proved in [35].

For x ∈ Rn in the case Xw = Lq(x), w and 1 < p ≤ q(x) ≤ ess sup
x∈Rn

q(x) < ∞ Theorem

2 and Theorem 3 was proved in [3] (see also [2]). Also, in [6] the embeddings theorems
between different variable Lebesgue spaces with measures was proved.

Remark 3. In the case n = 1, Xw = Lq,w, 1 < p ≤ q ≤ ∞, at x ∈ (0,∞), for classical
Lebesgue spaces the various variants of Theorem 2 and Theorem 3 were proved in [19],
[11], [22], [23], [29], [30], [34] and etc. In particular, in the Lebesgue spaces with variable
exponent the boundedness of Hardy type operator was proved in [14], [16], [18], [20], [21],
[27], [28] and etc. For Xw = Lq(x), w, 1 < p ≤ q(x) ≤ ess sup

x∈[0,1]
q(x) < ∞ and x ∈ [0, 1]

the two-weighted criterion for one-dimensional Hardy operator was proved in [21]. Also,
other type two-weighted criterion for multidimensional Hardy type operator in the case
Xw = Lq(x), w, 1 < p ≤ q(x) ≤ ess sup

x∈Rn

q(x) < ∞ and x ∈ Rn was proved in [27] (see

also [28]). In the papers [10] and [32] the inequalities of modular type for more general
operators was proved. Also, in [12] the Hardy type inequalities with special power-type
weights in Orlicz spaces was proved.

Now we reduce a compactness criteria for multidimensional Hardy type operator from
weighted Lebesgue spaces into p-convex weighted Banach function spaces.

Theorem 4. Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex
weighted BFSs for 1 ≤ p < ∞ on Rn. Then H is compact from Lp,v to Xw if and only if
the following two conditions are satisfied:

(a) There exists an α ∈ (0, 1) such that

A(α) = sup
t>0







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|>t}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

<∞;

(b) lim
γ→+0

sup
0<t<γ







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{t<|z|<γ}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0 and
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lim
δ→∞

sup
δ<t<∞







∫

δ<|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|>t}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0;

(c) for every ε ∈ (0,∞) the following two alternatives hold:

lim
β→ε+0

∥

∥

∥

∥

∥

∥

∥

∥

χ{ε<|z|<β}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0 and

lim
β→ε−0

∥

∥

∥

∥

∥

∥

∥

∥

χ{β<|z|<ε}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0.

The proof of Theorem 4 follows from the general result of paper [17].

Now suppose that the space Xw is a BFS with absolute continuous norm. Then the
condition (c) of Theorem is satisfied automatically. On the other words, we have the
following Corollary.

Corollary 2. Let v(x) and w(x) are weights on Rn. Suppose that Xw be a p-convex
weighted BFSs for 1 ≤ p < ∞ on Rn. Then H is compact from Lp,v to Xw if and only if
the following two conditions are satisfied:

(a) There exists an α ∈ (0, 1) such that

A(α) = sup
t>0







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|>t}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

<∞;

(b) lim
γ→+0

sup
0<t<γ







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{t<|z|<γ}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0 and

lim
δ→∞

sup
δ<t<∞







∫

δ<|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥

χ{|z|>t}(·)







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Xw

= 0.
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Corollary 3. Let 1 < p ≤ q(x) ≤ q < ∞ and v(x) and w(x) are weights on Rn. Then H
is compact from Lp,v to Lq(x),w if and only if the following two conditions are satisfied:

(a) There exists an α ∈ (0, 1) such that

A(α) = sup
t>0







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Lq(·),w(|·|>t)

<∞;

(b) lim
γ→+0

sup
0<t<γ







∫

|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Lq(·),w(|·|>t)

= 0 and

lim
δ→∞

sup
δ<t<∞







∫

δ<|y|<t

[v(y)]−p′ dy







α

p′

∥

∥

∥

∥

∥

∥

∥

∥







∫

|y|<|·|

[v(y)]−p′ dy







1−α

p′

∥

∥

∥

∥

∥

∥

∥

∥

Lq(·),w(|·|>t)

= 0.

Example 3.2. Let q(x) = q = const and 1 < p ≤ q <∞. Suppose that v(x) = |x|β and

w(x) =

{

|x|γ1 , for |x| < 1
2

|x|γ2 , for |x| ≥ 1
2 ,

and γ2 + n

(

1

p′
+

1

q

)

< β ≤ min

{

n

p′
, γ1 + n

(

1

p′
+

1

q

)}

.

Then the conditions of Corollary 3 are satisfied.
Example 3.3. Let q(x) = q = const, x ∈ B(0, 1) and 1 < p ≤ q < ∞. Suppose that

v(x) = |x|β , w(x) = |x|γ and β ≤ min

{

n

p′
, γ + n

(

1

p′
+

1

q

)}

or γ + n

(

1

p′
+

1

q

)

< β <
n

p′
.

Then the conditions of Corollary 3 are satisfied.
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