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Growth Of Entire Functions With Respect To The To-

tality Of Variables
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Abstract. This work is focused on the entire functions of severable variables. A finite set of entire
functions is considered. The relationship between the orders of these functions is established under
some conditions. The inequalities concerning the upper and lower orders of these functions are
obtained.
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1. On the order of the system of entire functions of several complex

variables

We consider entire functions of two complex variables represented by double power
series.

Let

f (z1, z2) =
∞
∑

m1,m2

am1,m2z
m1
1 zm2

2 , (1)

where f (z1, z2) ∈ B
(

C2
)

is a function of two complex variables z1 and z2.
It is known that

M (r1, r2) ≡M (r1, r2; f) = max
|z1|<ri

|f (z1, z2)| , i = 1, 2, (2)

is the maximum of the modulus of the function f (z1, z2) and

max
m1,m2

{m1,m2} = ν (r1, r2) = (ν1 (r1, r2; f) , ν2 (r1, r2; f)) ,

µ (r1, r2; f) =
∣

∣av(r1,r2;f)
∣

∣ r
v1(r1,r2;f)
1 r

v2(r1,r2;f)
2 . (3)

It is proved in [1] that the functions vi (r1, r2; f) (i = 1, 2) are increasing and continuous
functions with an uncountable set of points of discontinuity with respect to each variable
and µ (r1, r2; f) is an increasing and continuous function.

http://www.cjamee.org 3 c© 2013 CJAMEE All rights reserved.



4 Fazil Salimov

Lemma. (M.M. Djrbashian [2]). In order for the series (1) to represent an entire
function of variables z1 and z2, it is necessary and sufficient that the relation

lim
n+m

n+m

√

|an,m| = 0, (4)

hold.
By definition (see [3] and [4]), we have

lim
r1+r2→∞

ln lnM(r1, r2; f)

ln (r1 + r2)
=ρ,
λ, (5)

lim
r1+r2→∞

lnM(r1, r2; f)

r
ρ
1 + r

ρ
2

=T
t , (0 < ρ <∞) . (6)

Let

lim
m1+m2→∞

1

eρ
{mm1

1 mm2
2 |am1,m2 | ρ}

1
m1+m2 =T1

t1
, (7)

lim
m1+m2→∞

ln (mm1
1 mm2

2 )

ln |am1,m2 |
=ρ1
λ1
. (8)

It was also proved there that ρ = ρ1, λ = λ1 and T1 = T, t = t1.
Let there be given a function

f (z1, z2) =

∞
∑

m1,m2=0

am1,m2z
m1
1 zm2

2 , (9)

and a system of entire functions







fk (z1, z2) =

∞
∑

m1,m2=0

a(k)m1,m2
zm1
1 zm2

2







n

k=1

, (10)

where am1,m2 , a
(k)
m1,m2 (k = 1, 2, ...n) are the complex numbers and fk (z1, z2) ∈ B

(

C2
)

.
Theorem 1.1. Let every function fk (z1, z2) ∈ B

(

C2
)

in the system (10) be of regular
growth. In order for the orders of these functions to be the same, it is necessary and
sufficient that the condition

ln

{∣

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

∣

}

= o {ln (mm1
1 mm2

2 )} , (k = 1, 2, ..., n − 1)

be satisfied as m1 +m2 → ∞.
Proof. If the functions fk (z1, z2) (k = 1, 2, ....n) are of finite regular growth, then

lim
m1+m2→∞

ln (mm1
1 mm2

2 )

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

−1 = ρk = λk = lim
m1+m2→∞

ln (mm1
1 mm2

2 )

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

−1 ,
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where k = 1, 2, ...n.
Let the functions fk (z1, z2) (k = 1, 2, ....n) have the same order
ρ = ρ1 = ρ2 = ... = ρn = λ1 = λ2 = ... = λn = λ, i.e.

lim
m1+m2→∞

− ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

ln (mm1
1 mm2

2 )
=

1

ρ
= lim

m1+m2→∞

− ln
∣

∣

∣
a
(k+1)
m1,m2

∣

∣

∣

ln (mm1
1 mm2

2 )
,
(

k = 1, n− 1
)

.

Hence,

lim
m1+m2→∞

− ln

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

ln (mm1
1 mm2

2 )
= 0

(

k = 1, n− 1
)

,

or

ln

∣

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

∣

= o (ln (mm1
1 mm2

2 ))
(

k = 1, n − 1
)

as m1 +m2 → ∞.

Now let’s prove the converse. Let the functions fk (z1, z2)
(

k = 1, (n− 1)
)

be of

order ρk

(

k = 1, n
)

. Then

1

ρk
− 1

ρk+1
= lim

m1+m2→∞

− ln

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

ln (mm1
1 mm2

2 )
= 0,

(

k = 1, n − 1
)

Consequently, ρk = ρk+1

(

k = 1, (n− 1)
)

. The theorem is proved.

Theorem 1.2. Let the functions {fk (z1, z2)}nk=1 ∈ B
(

C2
)

be of regular growth. In
order for the types of these functions to be the same, it is necessary and sufficient that the
condition

ln

{∣

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

∣

= o (m1 +m2) ,

be satisfied as m1 +m2 → ∞.

Proof. fk (z1, z2)
(

k = 1, n
)

are the regular functions, therefore

lim
m1+m2→∞

1

eρ

{

mm1
1 mm2

2

∣

∣

∣
a(k)m1,m2

∣

∣

∣

ρ} 1
m1+m2 = tk = Tk =

= lim
m1+m2→∞

1

eρ

{

mm1
1 mm2

2

∣

∣

∣
a(k)m1,m2

∣

∣

∣

ρ} 1
m1+m2 .

where k = 1, n.
Let the functions {fk (z1, z2)} be of the same type, i.e.

lim
m1+m2→∞

1

eρ

{

mm1
1 mm2

2

∣

∣

∣
a
(k)
m1+m2

∣

∣

∣

ρ} 1
m1+m2 = T = lim

m1+m2→∞

1

eρ

{

mm1
1 mm2

2

∣

∣

∣
a
(k+1)
m1+m2

∣

∣

∣

ρ} 1
m1+m2 .
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Hence,

lim
m1+m2→∞

ρ

m1 +m2

{

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣− ln
∣

∣

∣a
(k+1)
m1,m2

∣

∣

∣

}

= 0,

or

ln

{∣

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

∣

= o (m1 +m2) ,

as m1 +m2 → ∞.

Let the functions {fk (z1, z2)} be of type Tk

(

k = 1, n
)

. Then

lnTk − lnTk+1 =
1

ρ
lim

m1,m2→∞

1

m1 +m2
ln

∣

∣

∣

∣

∣

a
(k)
m1,m2

a
(k+1)
m1,m2

∣

∣

∣

∣

∣

= 0.

Hence Tk = Tk+1

(

k = 1, n
)

.

Theorem 1.3. Let every function fk (z1, z2) ∈ B
(

C2
)

in the system (10) be of order

ρk

(

k = 1, n
)

. If

ln |am1,m2 |−1 ∼ ln
n
∏

k=1

∣

∣

∣
a(k)m1, m2

∣

∣

∣

−1
, m1 +m2 → ∞, (11)

then the function (1) is an entire function of order ρ such that

1

ρ
≥

n
∑

k=1

1

ρk
. (12)

Proof. First, let’s prove that the function (1) is an entire function. By the condition
of the theorem, the functions fk (z1, z2) , k = 1, n, are entire functions. Therefore, by
Lemma [2] we have

lim
m1+m2

∣

∣

∣a
(k)
m1, m2

∣

∣

∣

− 1
m1+m2 = ∞, k = 1, n .

Hence for sufficiently large R > 0 and sufficiently small ε > 0, for m1 +m2 > Nk and for
fixed n we have

(R− ε)
1
n <

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

− 1
m1+m2 , k = 1, n .

Taking logarithms of this last relation, we have

m1 +m2

n
ln (R− ε) < ln

∣

∣

∣
a(k)m1, m2

∣

∣

∣

−1
, k = 1, n .

Assigning values 1, 2, . . . , n to k and then summing up the resulting inequalities, we
obtain

(m1 +m2) ln (R− ε) < ln

n
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

−1
.
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Taking into account (11), we have

R− ε < |am1, m2 |
− 1

m1+m2

for R > 0 and ε > 0 as m1+m2 > N = max (N1, N2, . . . , Nn). This means that f (z1, z2)
is an entire function.
Hence, we have

1

ρk
− ε

n
<

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

−1

ln (mm1
1 mm2

2 )
=

1

ρk
,
(

k = 1, n
)

as m1 +m2 > Nk

(

k = 1, n
)

for any ε > 0.

Assigning values 1, 2, . . . , n to k and summing up the resulting inequalities, we obtain

n
∑

k=1

1

ρk
− ε <

ln
∏n
k=1 |am1,m2 |−1

ln (mm1
1 mm2

2 )
.

Taking into account the condition (11), we have

n
∑

k=1

1

ρk
− ε <

ln |am1,m2 |−1

ln (mm1
1 mm2

2 )
,

asm1+m2 > N = max (N1, N2, . . . , Nn) for any ε > 0. Passing to the limit asm1+m2 →
∞, we obtain

n
∑

k=1

1

ρk
≤ 1

ρ
= lim

m1+m2→∞

ln |am1,m2 |−1

ln (mm1
1 mm2

2 )
.

Hence, it follows that the inequality (12) is valid.
Theorem 1.4. Let every function fk (z1, z2) ∈ B

(

C2
)

in the system (10) be of order

ρk

(

k = 1 , n
)

. If

ln |am1,m2 |−1 ∼ ln
n
∏

k=1

(

ln
∣

∣

∣
a(k)m1,m2

∣

∣

∣

−1
)αk

, (13)

0 < αk < 1,
∑n

k=1 αk = 1, then the function (1) is an entire function of order ρ such that

ρ ≤
n
∏

k=1

ρ
αk

k . (14)

Proof. The entireness of the function fk (z1, z2) is easy to prove. By the condition

of the theorem, fk (z1, z2) ,
(

k = 1, n
)

are the entire functions. Then each of them is of

order ρk (0 < ρk <∞) ,
(

k = 1, n
)

. Therefore, we have

(

1

ρk
− ε

)αk

<











ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1

ln (mm1
1 mm2

2 )











αk

, k = 1, n,
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for any ε > 0 and
∑n

k=1 αk = 1, 0 < αk < 1 as m1 +m2 > Nk.
Assigning values 1, 2, . . . , n to k in the last inequality and multiplying the resulting

inequalities, we get

n
∏

k=1

(

1

ρk
− ε

)αk

<

∏n
k=1

(

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1
)αk

ln (mm1
1 mm2

2 )
.

Taking into account the condition (13) of the theorem, we have

n
∏

k=1

1

ρ
αk

k

≤ 1

ρ
⇒ ρ ≤

n
∏

k=1

ρ
αk

k .

Remark. If α1 = α2 = . . . = αn = 1
n
, then the inequality (14) takes the form

ρ ≤ n
√
ρ1ρ2. . . ρn.

Theorem 1.5. Let every function fk (z1, z2) ∈ B
(

C2
)

in the system (10) be of order

ρk,
(

k = 1, n
)

. If

n
(

ln |am1,m2 |−1
)−1

∼
n
∑

k=1

(

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1
)−1

, (15)

then the function (1) is an entire function of order ρ such that

ρ ≤ 1

n

n
∑

k=1

ρk. (16)

Furthermore, if λk

(

k = 1, n
)

is the lower order of function fk (z1, z2) ,
(

k = 1, n
)

, then

λ is the lower order of function (1) such that

λ ≥ 1

n

n
∑

k=1

λk. (17)

Proof. As fk (z1, z2) ,
(

k = 1, n
)

are entire functions, we have

ln (mm1
1 mm2

2 )

ln
∣

∣

∣a
(k)
m1, m2

∣

∣

∣

−1 < ρk + ε, m1 +m2 > Nk, k = 1, n, ε > 0.

For k = 1, 2, . . . , n summing the last inequalities we obtain

n
∑

k=1

ln (mm1
1 mm2

2 )

(

ln
∣

∣

∣
a(k)m1, m2

∣

∣

∣

−1
)−1

<

n
∑

k=1

ρk + εn,
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or

ln (mm1
1 mm2

2 )
n
∑

k=1

(

ln
∣

∣

∣
a(k)m1, m2

∣

∣

∣

−1
)−1

<

n
∑

k=1

ρk + εn.

Taking into account the condition (15) of the theorem, we have

n ln (mm1
1 mm2

2 )
(

ln
∣

∣am1,m2

∣

∣

−1
)−1

<

n
∑

k=1

ρk + εn.

Passing to the limit as m1 +m2 → ∞

nρ ≤
n
∑

k=1

ρk ⇒ ρ ≤ 1

n

n
∑

k=1

ρk,

we can easily prove the inequality (17).
Theorem 1.6. Let every function fk (z1, z2) ∈ B

(

C2
)

in the system (10) be of order

ρk, of type Tk (0 < Tk <∞) and of lower type tk (0 < tk <∞) , k = 1, n, and let

n
(

ln |am1,m2 |−1
)−1

∼
n
∑

k=1

(

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1
)−1

. (18)

Then the function (1) is an entire function of order ρ such that

ρ =
1

n

n
∑

k=1

ρk. (19)

Proof. According to (7), the type of an entire function is calculated by the formula

lim
m1+m2

1

eρk

{

mm1
1 mm2

2

∣

∣

∣
a(k)m1, m2

∣

∣

∣

ρk
}

1
m1+m2 =Tk

tk
, k = 1, n .

Hence, for any ε > 0 and m1 +m2 > Nk, we have

(mm1
1 mm2

2 )
∣

∣

∣a
(k)
m1, m2

∣

∣

∣

ρk
< [(Tk + ε) eρk]

m1+m2 , k = 1, n .

Taking logarithms of this inequality, we have

ln (mm1
1 mm2

2 ) < ρk ln
∣

∣

∣
a(k)m1,m2

∣

∣

∣
+ (m1 +m2) ln [(Tk + ε) eρk] .

Consequently
ln (mm1

1 mm2
2 )

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1 < ρk +
m1 +m2

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

ln [(Tk + ε) eρk] ,

or
ln (mm1

1 mm2
2 )

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

< ρk + o (1) , k = 1, n .
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Summing this inequality with respect to k, we obtain

ln (mm1
1 mm2

2 )
n
∑

k=1

(

ln
∣

∣

∣
a(k)m1,m2

∣

∣

∣

−1
)−1

<

n
∑

k=1

ρk + o (1) , k = 1, n .

Taking into account here the condition (18) of the theorem and passing to the limit as
m1 +m2 → ∞, we get

nρ = n lim
m1+m2

ln (mm1
1 mm2

2 )

ln |am1, m2 |
≤

n
∑

k=1

ρk,

or

ρ ≤ 1

n

n
∑

k=1

ρk. (20)

Similarly we can prove that

ρ > λ ≥ 1

n

n
∑

k=1

ρk. (21)

(20) and (21) imply (19).
Theorem 1.7. Let every function fk (z1, z2) ∈ B

(

C2
)

in the system (10) be of regular

growth of order ρk

(

k = 1, n
)

. If

ln |am1,m2 |−1 ∼
n
∏

k=1

(

ln
∣

∣

∣a
(k)
m1, m2

∣

∣

∣

−1
)αk

, 0 < αk < 1, (22)

(

k = 1, n
)

,
∑n

k=1 αk = 1, then the function (1) is an entire function of regular growth of

order ρ such that

ρ =

n
∏

k=1

ρ
αk

k . (23)

Proof. Using the definition of the order of an entire function, we have

lim
m1+m2→∞

ln
∣

∣

∣a
(k)
m1, m2

∣

∣

∣

−1

ln (mm1
1 mm2

2 )
=

1

ρk
, k = 1, n,

or

lim
m1+m2→∞







ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

−1

ln (mm1
1 mm2

2 )







αk

=
1

ρ
(αk)
k

, k = 1, n .

Assigning values 1, 2, . . . , n to k and then multiplying the resulting equalities, we have

lim
m1+m2→∞

∏n
k=1

(

ln
∣

∣

∣
a
(k)
m1,m2

∣

∣

∣

−1
)αk

(ln (mm1
1 mm2

2 ))
∑n

k=1 αk
=

n
∏

k=1

1

ρ
(αk)
k

. (24)
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Taking into account the condition (22) of the theorem in (24), we have

1

ρ
= lim

m1+m2→∞

ln |am1m2 |−1

ln (mm1
1 mm2

2 )
=

1
∏n
k=1 ρ

αk

k

,

or

ρ =

n
∏

k=1

ρ
αk

k ,

which completes the proof.
Corollary. If α1 = α2 = . . . = αn = 1

n
, then the equality (23) takes the form

ρ = n
√
ρ1ρ2 . . ρn.

Theorem 1.8. Let every function fk (z1, z2) ∈ B
(

C2
)

in the system (10) be of order

ρk and of lower order λk (0 < λk ≤ ρk <∞) , k = 1, n. If

n
(

ln |am1,m2 |−1
)−1

∼
n
∑

k=1

(

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1
)−1

, (25)

then f (z1, z2) is an entire function of order ρ and of lower order λ such that

n−1
∑

k=1

λk ≤ (nλ− λn; nρ− ρn) ≤
n−1
∑

k=1

ρk. (26)

Proof. The entireness of the function f (z1, z2) is easy to prove. According to (8),
we have

lim
m1+m2→∞

ln (mm1
1 mm2

2 )

ln
∣

∣

∣
a
(k)
m1, m2

∣

∣

∣

−1 =
ρk
λk

, k = 1, n .

Hence, for every ε > 0 and m1 +m2 > Nk, we have

ln (mm1
1 mm2

2 )

ln
∣

∣

∣a
(k)
m1, m2

∣

∣

∣

−1 < ρk + ε, k = 1, n . (27)

Summing up the inequalities (27) for k = 1, 2, . . . , n, we obtain

ln (mm1
1 mm2

2 )
n
∑

k=1

(

ln
∣

∣

∣
a(k)m1,m2

∣

∣

∣

−1
)−1

<

n
∑

k=1

ρk + εn.

Taking into account the condition (25) of the theorem in last inequality, we obtain

n
ln (mm1

1 mm2
2 )

ln
∣

∣am1, m2

∣

∣

−1 <

n
∑

k=1

ρk + εn.

Passing to the limit as m1 +m2 → ∞, we obtain

nρ ≤
n
∑

k=1

ρk =

n−1
∑

k=1

ρk + ρn, (28)
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or

nρ− ρn ≤
n−1
∑

k=1

ρk.

We can easily prove that

nλ− λn ≤
n−1
∑

k=1

ρk, nλ− λn ≥
n−1
∑

k=1

λk, nρ− ρn ≥
n−1
∑

k=1

λk. (29)

(28) and (29) imply the validity of (26).
Theorem 1.9. Let every function fk (z1, z2) ∈ B

(

C2
)

in the system (10) be of order

ρk and of lower order λk (0 < λk ≤ ρk <∞) , k = 1, n, and let

ln |am1,m2 |−1 ∼
n
∏

k=1

(

ln
∣

∣

∣a
(k)
m1,m2

∣

∣

∣

−1
)αk

, (30)

where 0 < αk < 1,
∑n

k=1 αk = 1. Then the function f (z1, z2) is an entire function of
order ρ and of lower order λ, such that

n−1
∏

k=1

λ
αk

k =

{

λ

λαn
n
,
ρ

ραn
n

}

≤
n−1
∏

k=1

ρ
αk

k . (31)

The proof is similar to that of Theorem 1.8.
Corollary. If α1 = α2 = . . . = αn = 1

n
, then the relation (31) takes the form

n−1
√

λ1λ2. .. λn−1 ≤
λ

n
√
λn
,

ρ
n
√
ρn

≤ n−1
√
ρ1ρ2. .. ρn−1.

Theorem 1.10. Let every function fk (z1, z2) ∈ B
(

C2
)

in the system (10) be of order
ρk and of lower order λk (0 < λk <∞). If

ln |am1,m2 | ∼ ln

(

n
∏

k=1

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

αk

)

, (32)

where αk = const
(

k = 1, n
)

, then the function f (z1, z2) is an entire function of order

ρ and of lower order λ with

n−1
∑

k=1

αk

ρk
≤
{

1

ρ
− αn

ρn
;
1

λ
− αn

λn

}

≤
n−1
∑

k=1

αk

λk
. (33)

Proof. The entireness of the function f (z1, z2) is proved as in Theorem 1.3 using
condition (32).

According to (8), we have

ln
∣

∣

∣
a(k)m1,m2

∣

∣

∣

αk

< −αk ln (m
m1
1 mm2

2 )

ρk + ε
, k = 1, n, (34)
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for any ε > 0 as m1 +m2 > Nk.
Summing this inequality for k = 1, 2, . . . , n, we have

ln

n
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

αk

< − (ln (mm1
1 mm2

2 ))

n
∑

k=1

αk

ρ1 + ε
.

Taking into account the condition (32) of the theorem, we get

ln
∣

∣am1,m2

∣

∣ < − (ln (mm1
1 mm2

2 ))

n
∑

k=1

αk

ρk + ε
,

or
ln (mm1

1 mm2
2 )

ln |am1,m2 |−1 <
1

∑n
k=1

αk

ρk+ε

.

Passing to the limit as m1 +m2 → ∞, we obtain

n−1
∑

k=1

αk

ρk
≤ 1

ρ
− αn

ρn
. (35)

From (34) we have

ln
n−1
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

αk

< − (ln (mm1
1 mm2

2 ))
n−1
∑

k=1

αk

ρk + ε
. (36)

For subsequence
{

m1 = m
(i)
1 , m2 = m

(i)
2

}

, we have

ln
∣

∣

∣
a(n)m1,m2

∣

∣

∣

αn

< −αn ln (m
m1
1 mm2

2 )

λn + ε
. (37)

Summing up the inequalities (36) and (37), we obtain

ln

n−1
∏

k=1

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

αk

< − (ln (mm1
1 mm2

2 ))

{

n−1
∑

k=1

αk

ρk + ε
+

αn

λn + ε

}

.

Taking into account the condition (32) of the theorem, we have

ln
∣

∣am1,m2

∣

∣ < − (ln (mm1
1 mm2

2 ))

{

n−1
∑

k=1

αk

ρk + ε
+

αn

λn + ε

}

.

Passing to the limit as m1 +m2 → ∞, we obtain

n−1
∑

k=1

αk

ρk
≤ 1

λ
− αn

λn
. (38)

It is easy to prove that

1

λ
− αn

λn
≤

n−1
∑

k=1

αk

λk
,

1

ρ
− αn

ρn
≤

n−1
∑

k=1

αk

λk
. (39)

From (35), (38) and (39) we get the validity of (33).
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2. On the type of the system of entire functions of several complex

variables

Let there be given the functions f (z1, z2) ∈ B
(

C2
)

,

f (z1, z2) =

∞
∑

m1,m2

am1,m2z
m1
1 zm2

2 , (40)

{

fk (z1, z2) =

∞
∑

m1,m2

a(k)m1,m2
zm1
1 zm2

2

}n

k=1

, (41)

It is known from [4] and [5] that

lim
r1+r2→∞

ln lnM (r1, r2; f)

ln (r1 + r2)
=ρ
λ= lim

m1+m2→∞

ln (mm1
1 mm2

2 )

ln |am1,m2 |−1 , (42)

lim
r1+r2→∞

lnM (r1, r2; f)

r
ρ
1 + r

ρ
2

=T
t =

1

eρ
lim

m1+m2→∞
{mm1

1 mm2
2 |am1,m2 |ρ}

1
m1+m2 . (43)

Theorem 2.1. Let every function fk (z1, z2) in the system (41) be an entire function
of order ρk and of type Tk (0 < Tk < +∞) ,

(

k = 1, n
)

. If

|am1,m2 | ∼
n
∏

k=1

∣

∣

∣
a(k)m1, m2

∣

∣

∣
, (44)

then the function (40) is an entire function of order ρ and of type T with

(

T

α

)α

≤
n
∏

k=1

(

Tk

αk

)αk

, (45)

where α = 1
ρ
, αk =

1
ρk

and α =
∑n

k=1 αk.
Proof. By the condition of the theorem, the functions in the system (41) are entire

functions. Then

lim
m1+m2→∞

∣

∣

∣
a(k)n

∣

∣

∣

− 1
m1+m2 = +∞, k = 1, n.

Considering condition (44) of the theorem, we obtain

lim
m1+m2→∞

|am1,m2 |
− 1

m1+m2 ≥
n
∏

k=1

lim
m1+m2

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

− 1
m1+m2 = +∞.

Hence, the function f (z1, z2) is entire. Next, by virtue of condition (44) of the theorem,
we have

(mm1
1 mm2

2 |am1,m2 |ρ)
1

ρ(m1+m2) =

{

m

m1
m1+m2
1 m

m2
m1+m2
2

}
1
ρ

|am1,m.2 |
1

m1+m2 ∼
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∼
(

m

m1
m1+m2
1 m

m2
m1+m2
2

)

∑n
k=1

1
ρk

(

n
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

)
1

m1+m2

.

Hence, for any ε > 0 and m1 +m2 > N = max (N1. . . Nn), we have

{mm1
1 mm2

2 |am1, m2 |ρ}
1

ρ(m1+m2) < (1 + ε)
{

mm1
1 mm2

2

∣

∣

∣
a(1)m1,m2

∣

∣

∣

ρ} 1
ρ(m1+m2) ×

×
{

mm1
1 mm2

2

∣

∣

∣
a(2)m1, m2

∣

∣

∣

ρ2
}

1
ρ2(m1+m2) . . .

{

mm1
1 mm2

2

∣

∣

∣
a(n)m1, m2

∣

∣

∣

ρn
}

1
ρn(m1+m2) .

Passing to the limit as m1 +m2 → ∞ , we have

(ρT )
1
ρ ≤ (ρ1T1)

1
ρ1
. . . (ρnTn)

1
ρn
,

which proves (45).

Theorem 2.2. Let the functions in the system (41) be of order ρk, of type
Tk (0 < Tk < +∞) and of lower type tk (0 < tk < +∞) , k = 1, n. If

|am1,m2 | ∼
n
∏

k=1

∣

∣

∣
a(k)m1, m2

∣

∣

∣
, (46)

then the function (40) is an entire function of order ρ, of type T and of lower type t with

(ρt)
1
ρ ≤







(ρtk)

1
ρk

,
∏n

i=1,i6=k(ρiTi)

1
ρi

(ρTk)

1
ρk

,
∏n

i=1,i6=k(ρiti)

1
ρi







≤ (ρT )
1
ρ

. (47)

Proof. The proof of the entireness of function (40) is carried out as in Theorem 2.1.

Let ψk (x, y) ≥ 0, k = 1, n. Then

lim
n
∏

k=1

ψk (x, y) ≤
{

limψi(x, y), lim
∏n

k=1,k 6=i ψk(x, y)

limψi(x, y), lim
∏n

k=1,k 6=n ψk(x, y)

}

≤ lim
n
∏

k=1

ψk (x, y) . (48)

From (43) it follows that

{

m

m1
m1+m2
1 m

m2
m1+m2
2

} 1
ρ

|am1,m2 |
1

m1+m2 ∼
{

m

m1
m1+m2
1 m

m2
m1+m2
2

}

∑n
k=1

1
ρk ×

×
(

n
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

)
1

m1+m2

=
{

mm1
1 mm2

2

∣

∣

∣
a(1)m1, m2

∣

∣

∣

ρ1
}

1
ρ1(m1+m2) ×

×
{

mm1
1 mm2

2

∣

∣

∣
a(2)
m1, m2

∣

∣

∣

ρ2
}

1
ρ2(m1+m2) . . .

{

mm1
1 mm2

2

∣

∣

∣
a(n)
m1,m2

∣

∣

∣

ρn
}

1
ρn(m1+m2) =
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=
{

mm1
1 mm2

2

∣

∣

∣
a(k)
m1, m2

∣

∣

∣

ρk
}

1
ρk(m1+m2) ×































mm1
1 mm2

2

n
∏

i = 1
i 6= k

∣

∣

∣
a(i)
m1, m2

∣

∣

∣

ρi































1
ρi(m1+m2)

.

Using (49), we have

(ρt)
1
ρ ≤

{

(ρktk)
1
ρk ,

∏n
i=1,i6=k(ρiTi)

1
ρi

(ρkTk)
1
ρk ,

∏n
i=1,i6=k(ρiti)

1
ρi

}

≤ (ρT )
1
ρ .

Note that in case of one variable Theorem 2.2 was proved in [7].
In particular, for two functions f1 (z1, z2) and f2 (z1, z2) we have a relation

(ρt)
1
ρ ≤

{

(ρ1t1)

1
ρ1

, (ρ2T2)

1
ρ2

(ρ1T1)

1
ρ1

, (ρ2T2)

1
ρ2

}

≤ (ρT )
1
ρ

.

In case of one variable this last relation was proved in [8].
Theorem 2.3. Let every function fk (z1, z2) in the system (41) be of regular order

ρk, k = 1, n, of type Tk and of lower type tk. If

ln |am1, m2 | ∼
{∣

∣

∣a
(1)
m1, m2

∣

∣

∣

α1
∣

∣

∣a
(2)
m1, m2

∣

∣

∣

α2

. . .

∣

∣

∣a
(k)
m1, m2

∣

∣

∣

αk
}

, (49)

where αk is a constant (k = 1, 2, . . ., n), then the function (40) is an entire function of
order ρ, of type T and of lower type t such that

n−1
∏

k=1

(tkρk)

αk
ρk ≤







(ρt)
1
ρ

(ρntn)
αn
ρn

,
(ρT )

1
ρ

(ρnTn)
αn
ρn







≤
n−1
∏

k=1

(Tkρk)

αk
ρk
. (50)

Proof. According to (43), we have

lim
m1+m2→∞

1

eρk

{

mm1
1 mm2

2

∣

∣

∣
a(k)m1,m2

∣

∣

∣

ρk
}

1
m1+m2 =Tk

tk
, (51)

k = (1, 2, . . ., n) .

From (51), for any ε > 0 and m1 +m2 > Nk, we have

{

mm1
1 mm2

2

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

ρk
}

1
m1+m2 < eρk (Tk + ε) , k = 1, n,

and for the subsequence
{

m1 = m
(i)
1 , m2 = m

(i)
2

}

{

mm1
1 mm2

2

∣

∣

∣
a(n)m1, m2

∣

∣

∣

ρn
}

1
m1+m2 < eρn (tn + ε) ,
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or

(mm1
1 mm2

2 )
αk
ρk

∣

∣

∣a
(k)
m1,m2

∣

∣

∣

αk

< [(Tk + ε) eρk]
αk(m1+m2)

ρk , (52)

k = (1, 2, . . ., n) .

Taking logarithms of these inequalities and then summing them up for k = 1, 2, . . ., n−
1, we obtain

ln

n
∏

k=1

∣

∣

∣
a(k)m1,m2

∣

∣

∣

αk

<

< ln







∏n−1
k=1 [(Tk + ε) eρk]

αk(m1+m2)

ρk

(mm1
1 mm2

2 )
αk
ρk

× [(tk + ε) eρk]
αn(m1+m2)

ρn

(mm1
1 mm2

2 )
αn
ρn







.

Taking into account the condition (49), we obtain

ln |am1,m2 | <
n−1
∑

k=1

αk (m1 +m2)

ρk
ln [(Tk + ε) eρk] +

+
αn (m1 +m2)

ρn
ln [(tn + ε) eρn]−

(

α1

ρ1
+
α2

ρ2
+ . . . +

αn

ρn

)

ln (mm1
1 mm2

2 ) .

According to the Theorem 2.9.12 [3], we have

1

ρ
=
α1

ρ1
+
α2

ρ2
+ . . . +

αn

ρn
.

Then we get

ln (mm1
1 mm2

2 )
1
ρ + ln |am1, m2 |

m1 +m2
<

n
∑

k=1

αk

ρk
ln [(Tk + ε) eρk] +

αn

ρn
ln [(tn + ε) eρn] .

Hence, we obtain

ln {mm1
1 mm2

2 |am1, m2 |ρ}
1

ρ(m1+m2) < ln

n−1
∏

k=1

[(Tk + ε) eρk]
αk
ρk [(tn + ε) eρn]

αn
ρn .

Passing to the limit as m1 +m2 → ∞, we have

(teρ)
1
ρ ≤

n−1
∏

k=1

(Tkeρk)
αk
ρk (tneρn)

αn
ρn ,

or

(ρt)
1
ρ

(ρntn)
αn
ρn

≤
n−1
∏

k=1

(ρkTk)
αk
ρk . (53)
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Note that
(Tρ)

1
ρ

(Tnρn)
αn
ρn

<

n−1
∏

k=1

(Tkρk)
αk
ρk , (54)

and
(ρt)

1
ρ

(ρntn)
αn
ρn

≥
n−1
∏

k=1

(ρktk)
αk
ρk ,

n
∏

k=1

(tkρk)
αk
ρk ≤ (Tρ)

1
ρ

(Tnρn)
αn
ρn

. (55)

From (53), (54) and (55) we get the validity of the theorem.
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