Identities Involving the Terms of a Balancing-Like Sequence Via Matrices

P. K. Ray

Abstract. The goal of this paper is to establish some identities involving the terms of a newly introduced sequence $\{u_n\}_{n=0}^{\infty}$ called as the balancing-like sequence defined recursively by $u_n = 6au_{n-1} - u_{n-2}$ with initials $u_0 = 0, u_1 = 1$ via certain matrices.

Key Words and Phrases: Balancing numbers, Recurrence relation, Balancing matrix.2000 Mathematics Subject Classifications: 11B37, 11B39

1. Introduction

It is well known that, the sequence of balancing numbers $\{B_n\}$ is defined recursively by the equation

$$B_n = 6B_{n-1} - B_{n-2}, \ n \ge 2,$$

with initial conditions $B_0 = 0$ and $B_1 = 1$ [1]. Whereas the companion to these numbers is the sequence of Lucas-balancing numbers $\{C_n\}$ which is defined recursively by

$$C_n = 6C_{n-1} - C_{n-2}, \ n \ge 2$$

with $C_0 = 1$ and $C_1 = 3$ [7, 8]. Both these numbers can also be extended negatively. The following results were established in [1].

$$B_{-n} = -B_n, \quad C_{-n} = C_n.$$

The Binet's formulas for both balancing and Lucas-balancing numbers are respectively given by

$$B_n = \frac{\lambda_1^n - \lambda_1^n}{\lambda_1 - \lambda_2}, \quad C_n = \frac{\lambda_1^n + \lambda_1^n}{2}$$

The generalizations for balancing numbers were done in different ways. To know in details about balancing numbers and their generalization, one can go through [2-5]. There is another way to generate balancing numbers through matrices. In [9], Ray introduced balancing matrix

$$Q_B = \begin{pmatrix} 6 & -1 \\ 1 & 0 \end{pmatrix},$$

http://www.cjamee.org

© 2013 CJAMEE All rights reserved.

which is a second order matrix and whose entries are the first three balancing numbers 0, 1 and 6. He has also shown that

$$Q_B^n = \begin{pmatrix} B_{n+1} & -B_n \\ B_n & -B_{n-1} \end{pmatrix},$$

for every integer n [9]. Later, he has deduced nice product formulas for both negatively and positively subscripted balancing and Lucas-balancing numbers [10, 12]. Ray has established many interesting identities for both balancing and Lucas-balancing numbers through matrices [9-15].

In this study, we will first introduce a new sequence which we call balancing-like sequence $\{u_n\}_{n=0}^{\infty}$ defined recursively by

$$u_n = 6au_{n-1} - u_{n-2},\tag{1.1}$$

with initials $u_0 = 0, u_1 = 1$, where $n \ge 2$. Then we will define a second order matrix which we call balancing Q_B -like matrix whose entries are the first three balancing-like numbers 0, 1, and 6*a*. Later, we will show that the higher powers of this matrix also contain the balancing-like numbers. These matrices will be used to obtain identities involving the terms of a balancing-like sequence. $\{u_n\}_{n=0}^{\infty}$. From (1.1) we notice that, the first few terms of the balancing-like sequence are

0, 1, 6a,
$$36a^2 - 1$$
, $216a^3 - 12a$, $1296a^4 - 108a^2 + 1$,
7776 $a^5 - 864a^3 + 18a$, $46656a^6 - 6480a^4 + 216a^2 - 1$.

Also observe that, for a = 1 the balancing-like numbers $\{u_n\}$ reduce to the balancing numbers.

2. Some identities involving balancing-like numbers

2.1. Binet's formula

In this section, we will establish Binet' formula for balancing-like numbers and the identity involving negatively subscripted balancing-like numbers.

Solving the homogenous recurrence relation (1.1), its characteristic equation $\lambda^2 - 6a\lambda + 1 = 0$ has the roots

$$v = 3a + \sqrt{9a^2 - 1}, \quad w = 3a - \sqrt{9a^2 - 1}.$$

The general solution of (1.1) is given by

$$u_n = c_1 v^n + c_2 w^n, (2.1)$$

where c_1 and c_2 are arbitrary constants. Using the initial conditions given in (1.1), we obtain the following system of equations

$$u_0 = c_1 + c_2 = 0, \quad u_1 = c_1 v + c_2 w = 1.$$

P. K. Ray

Solving these two equations, we get

$$c_1 = \frac{1}{2\sqrt{9a^2 - 1}}, \quad c_2 = \frac{-1}{2\sqrt{9a^2 - 1}}$$

for $3a \neq \pm 1$. Therefore, equation (2.1) reduces to the following identity

$$u_n = \frac{v^n - w^n}{2\sqrt{9a^2 - 1}},\tag{2.2}$$

which we call the Binet's formula of balancing-like numbers.

2.2. Negatively subscripted balancing-like numbers

We can also extend the sequence $\{u_n\}$ to the negative values of n. Since the product of v and w is one, therefore for $n \ge 0$, the Binet's formula (2.2) reduces to

$$u_{-n} = \frac{v^{-n} - w^{-n}}{2\sqrt{9a^2 - 1}} = \frac{w^n - v^n}{2\sqrt{9a^2 - 1}} = -u_n.$$
 (2.3)

It is easy to show that, (2.3) holds for all negative integers n. Let n < 0, say n = -m, where m > 0. Using (2.3), we observe that

$$u_n - 6au_{n-1} + u_{n-2} = u_{-m} - 6au_{-m-1} + u_{-m-2}$$
$$= -u_m + 6au_{m+1} - u_{m+2} = u_{m+2} - u_{m+2} = 0.$$

3. Balancing-like numbers via matrices

As stated before, the balancing Q_B matrix has introduced by Ray in [9]. In this section, we introduce balancing-like Q_B matrix, denoted by Q_u and defined by

$$Q_u = \begin{pmatrix} 6a & -1\\ 1 & 0 \end{pmatrix},\tag{3.1}$$

whose entries are the first three balancing-like numbers 0, 1 and 6a, where a is arbitrary.

The following theorem shows that the sequence $\{u_n\}_{n=0}^{\infty}$ can also be generated by matrix multiplication.

Theorem 3.1. If
$$Q_u = \begin{pmatrix} 6a & -1 \\ 1 & 0 \end{pmatrix}$$
 as defined in (3.1), then for all positive integers n ,
 $Q_u^n = \begin{pmatrix} u_{n+1} & -u_n \\ u_n & -u_{n-1} \end{pmatrix}$.

Proof. This result can be proved by method of induction. The basis step is clear. In the inductive step, suppose the result holds for all integers $\leq n$. Using (1.1) and the hypothesis, we observe that

$$Q_u^{n+1} = Q_u^n \cdot Q_u = \begin{pmatrix} u_{n+1} & -u_n \\ u_n & -u_{n-1} \end{pmatrix} \begin{pmatrix} 6a & -1 \\ 1 & 0 \end{pmatrix}$$

Identities Involving the Terms of a Balancing-Like Sequence Via Matrices

$$= \begin{pmatrix} 6au_{n+1} - u_n & -u_{n+1} \\ u_{n+1} & u_n \end{pmatrix} = \begin{pmatrix} u_{n+2} & -u_{n+1} \\ u_{n+1} & -u_n \end{pmatrix},$$

which completes the proof of the theorem.

We notice that, the balancing-like matrices also satisfy the same recurrence relation as that of balancing-like numbers, that is for $n \ge 1$ we have

$$Q_u^{n+1} = 6aQ_u^n - Q_u^{n-1}, (3.2)$$

with initial conditions $Q_u^0 = I$ and $Q_u^1 = \begin{pmatrix} 6a & -1 \\ 1 & 0 \end{pmatrix}$, where I is the identity matrix.

Since $Q_u^{m+n} = Q_u^m \cdot Q_u^n$, comparing the corresponding entries of both the matrices, we have the following identities:

i)
$$u_{m+n+1} = u_{m+1}u_{n+1} - u_m u_n$$

ii) $u_{m+n} = u_{m+1}u_n - u_m u_{n-1} = u_{n+1}u_m - u_n u_{m-1}$
iii) $u_{m+n-1} = u_{m-1}u_{n-1} - u_m u_n$.

For a = 1, the similar results for balancing numbers are found in [7-9].

Theorem 3.1 can be used to obtain the following identities involving terms of the sequence $\{u_n\}$.

Corollary 3.1. For $n \ge 1$, the following identities are valid:

$$u_{2n+1} = u_{n+1}^2 - u_n^2$$
 and $u_{2n} = u_n(u_{n+1} - u_{n-1}).$

Proof. Since $Q_u^{2n} = (Q_u^n)^2$, we have

$$\begin{pmatrix} u_{2n+1} & -u_{2n} \\ u_{2n} & -u_{2n-1} \end{pmatrix} = \begin{pmatrix} u_{n+1} & -u_n \\ u_n & -u_{n-1} \end{pmatrix} \begin{pmatrix} u_{n+1} & -u_n \\ u_n & -u_{n-1} \end{pmatrix}$$
$$= \begin{pmatrix} u_{n+1}^2 - u_n^2 & u_n u_{n-1} - u_n u_{n+1} \\ u_n u_{n+1} - u_n u_{n-1} & -(u_n^2 - u_{n-1}^2) \end{pmatrix}.$$

The results follow by equating corresponding rows and columns from both sides as the above matrix.

We notice that for a = 1, formulas for balancing numbers analogous to the last two identities are given in [7, 8]. In general, if k is a positive integer, then $Q_u^{kn} = (Q_u^n)^k$, that is

$$\begin{pmatrix} u_{kn+1} & -u_{kn} \\ u_{kn} & -u_{kn-1} \end{pmatrix} = \begin{pmatrix} u_{n+1} & -u_n \\ u_n & -u_{n-1} \end{pmatrix}^k.$$

The determinants of the above matrices give the identity

$$u_{kn}^2 - u_{kn+1}u_{kn-1} = (u_n^2 - u_{n+1}u_{n-1})^k.$$

P. K. Ray

In fact, both sides of the above equation are equal to 1 as $\det Q_u = 1$. Therefore we have the following important identity for balancing-like numbers:

$$u_{kn}^2 - u_{kn+1}u_{kn-1} = 1, (3.3)$$

which we call Cassini formula for balancing-like numbers. Recall that [8], the Cassini formula for balancing numbers is given by the identity

$$B_n^2 - B_{n+1}B_{n-1}.$$

This formula play a vital role to find many important identities for balancing numbers and their related sequences and can be obtained by setting a = 1 in (3.3). Since $det(Q_u) \neq 0$, for $n \geq 0$ the following identity is valid:

$$Q_u^{-n} = (Q_u^{-1})^n. ag{3.4}$$

The following result can be easily shown by induction.

Theorem 3.2. If
$$Q_u = \begin{pmatrix} 6a & -1 \\ 1 & 0 \end{pmatrix}$$
 as defined in (3.1), then for $n \ge 0$, $Q_u^{-n} = \begin{pmatrix} u_{-n+1} & -u_{-n} \\ u_{-n} & -u_{-n-1} \end{pmatrix}$.

Since Theorem 3.2 is a special case of Theorem 3.1 with n negative, the identities proved in Theorem 3.1 also holds for n < 0.

At the end of the section, we now establish the following two important results.

Theorem 3.3. If $\binom{n}{k}$ denote the usual notation for combination, then for $n \ge 0$

$$u_{2n+1} = \sum_{k=0}^{n} (-1)^{k+1} (6a)^k \binom{n}{k} u_{k+1} \text{ and } u_{2n} = \sum_{k=0}^{n} (-1)^{k+1} (6a)^k \binom{n}{k} u_k.$$

Proof. By (3.2), $Q_u^2 = 6aQ_u - I$. Both sides of this relation raised to a power n yields the following expression

$$Q_u^{2n} = (-I + 6a)^n.$$

For $n \ge 0$, the binomial expansion of the right hand side expression gives the following:

$$Q_u^{2n} = \sum_{k=0}^n (-1)^{k+1} (6a)^k \binom{n}{k} u_k.$$

Therefore by virtue of Theorem 3.1, we get

$$\begin{pmatrix} u_{2n+1} & -u_{2n} \\ u_{2n} & -u_{2n-1} \end{pmatrix} = \sum_{k=0}^{n} (-1)^{k+1} (6a)^k \binom{n}{k} \binom{u_{k+1} & -u_k}{u_k & -u_{k-1}}.$$

Equating the corresponding entries, we get the desired result.

By (3.4) we observe that, $Q_u^{-2} = -I + 6aQ_u^{-1}$ and present following result.

Theorem 3.4. For $n \ge 0$, we have

$$u_{-2n+1} = \sum_{k=0}^{n} (-1)^{k+1} (-6a)^k \binom{n}{k} u_{-k+1} \text{ and } u_{-2n} = \sum_{k=0}^{n} (-1)^{k+1} (-6a)^k \binom{n}{k} u_{-k}.$$

Proof. The proof is analogous to that of Theorem 3.3.

Remark 3.1. All these identities we have proven so far in this paper, can be obtained directly by using the Binet's formula for balancing-like numbers given in (2.2). However, the matrix method is noticeably simpler.

References

- [1] A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quarterly, 37(2), 1999, 98-105.
- [2] A. Berczes, K. Liptai, I. Pink, On generalized balancing numbers, Fibonacci Quarterly, 48(2), 2010, 121-128.
- [3] R. Keskin and O. Karaatly, Some new properties of balancing numbers and square triangular numbers, Journal of Integer Sequences, 15(1), 2012.
- [4] K. Liptai, F. Luca, A. Pinter and L. Szalay, Generalized balancing numbers, Indagationes Math. (N.S.), 20, 2009, 87-100.
- [5] P. Olajos, Properties of balancing, cobalancing and generalized balancing numbers, Annales Mathematicae et Informaticae, 37, 2010, 125-138.
- [6] G.K. Panda and P.K. Ray, Cobalancing numbers and cobalancers, International Journal of Mathematics and Mathematical Sciences, 2005(8), 2005, 1189-1200.
- [7] G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bulletin of the Institute of Mathematics, Academia Sinica (N.S.), 6(1), 2011, 41-72.
- [8] G.K. Panda, Some fascinating properties of balancing numbers, Proceeding Eleventh International Conference on Fibonacci Numbers and Their Applications, Cong. Numerantium, 194, 2009, 185-189.
- P. K. Ray, Certain matrices associated with balancing and Lucas-balancing numbers, Matematika, 28 (1), 2012, 15-22.
- [10] P.K. Ray, Application of Chybeshev polynomials in factorization of balancing and Lucas-balancing numbers, Boletim da Sociedade Paranaense de Matemtica 30 (2), 2012, 49-56.

P. K. Ray

- [11] P.K. Ray, Curious congruences for balancing numbers, International Journal of Contemporary Mathematical Sciences, 7 (18), 2012, 881-889.
- [12] P.K. Ray, Factorization of negatively subscripted balancing and Lucas-balancing numbers, Boletim da Sociedade Paranaense de Matemtica, 31 (2), 2013, 161-173.
- [13] P.K. Ray, Some congruences for balancing and Lucas-balancing numbers and their applications, Integers, 14, 2014, #A8.
- [14] P.K. Ray, On the properties of Lucas-balancing numbers by matrix method, Sigmae, Alfenas, 3(1), 2014, 1-6.
- [15] P.K. Ray, On the properties of Lucas-balancing numbers by matrix method, Notes on Number Theory and Discrete Mathematics, 20(1), 2014, 49-58.

Prasanta Kumar Ray International Institute of Information Technology Bhubaneswar Bhubaneswar-751003, India E-mail: praanta@iiit-bh.ac.in

Received 19 March 2014 Accepted 15 June 2014