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Necessary conditions of optimality in a problem of opti-

mal control of moving sources for singular heat equation
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Abstract. A problem of optimal control of processes described by a singular heat equation and
systems of ordinary differential equations with moving sources is investigated in this paper. In
spite of applied importance of problems with moving sources controls, they have not been studied
enough so far [1-3],[7-8]. Sufficients conditions of Frechet differentiability of quality test and an
expression for its gradient are obtained, necessary conditions of optimality in the form of point
wise and integral maximum principles are established for an optimal control problem considered
below.
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1. Introduction

Practical examples of moving sources of influence are electronic, laser and ionic beams,
an electric arch, the induction current raised by the moving inductor. The most widespread
processes in which these sources are applied, processes of melting and metal refinement
in metallurgy are; processes of heat treatment, welding and microprocessing in mechan-
ical engineering and instrumentation; processes of manufacturing of semi-conductor and
resistor elements in microelectronics; processes of activation, radiation and drying in bi-
ology, medicine, agriculture, etc. For the first time theoretical statement of problems
optimal control of moving sources for systems with the distributed parameters was given
in A.G.Butkovsky and L.M.Pustylnikovs works [2]. One of the main features of this sys-
tems is their nonlinearity concerning the control defining the law of movement of a sources.
The problem of the moments becomes nonlinear. Thus, the method of the moments which
is widely used for search of optimal control in linear systems with the distributed and
concentrated parameters, becomes unsuitable for systems with moving sources. In this
work the variation method to solve a problem of optimum control of moving sources for
the heat conductivity processes described by totality of a parabolic type equation and
ordinary differential equation with moving sources is considered. Considering that the re-
ceived problem of optimum control wasnt studied earlier, for it questions of a correctness
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of the decision are investigated, uniqueness and existence theorems are proved, sufficient
conditions of Frechet differentiability of criterion of quality are found and expression for
its gradient is received. Necessary conditions of optimality in the form of point wise and
integral maximum principles are established for the optimal control problems.

2. Problem statement

Let‘s consider a problem on minimization of the functional

J(ϑ) =

∫ l

0
[u(x, T )− y(x)]2dx+ α1

n
∑

k=1

∫ T

0
[pk(t)− p̃k(t)]

2dt+

+α2

r
∑

m=1

∫ T

0
[ϑm(t)− ϑ̃m(t)]2dt, (1)

on the set

V =
{

ϑ = (p, ϑ) : p = (p1(t), ..., pn(t)) ∈ Ln
2 (0, T ), ϑ = (ϑ1(t), ..., ϑr(t)) ∈ L

n
2 (0, T ),

0 ≤ pi(t) ≤ Ai, 0 ≤ ϑj(t) ≤ Bj , i = 1, n , j = 1, r
}

,

under conditions

ut = a2uxx +

n
∑

k=1

pk(t)δ(x − sk(t)), (x, t) ∈ Ω = {0 < x < l, 0 < t ≤ T}, (2)

ux |x=0 = g1(t), ux |x=l = g2(t), 0 < t ≤ T, (3)

u(x, o) = ϕ(x), 0 ≤ x ≤ l, (4)

ṡk(t) = fk(s(t), ϑ(t), t), 0 < t ≤ T, sk(o) = sk0, k = 1, n, (5)

where sk0 ∈ [0, l],α1,α2 ≥0, α1 + α2 > 0, a, l, T, Ai > 0, i = 1, n,Bj > 0, j = 1, r are
the given numbers; sk(t) = sk(t;ϑ) ∈ C(0, T ), 0 ≤ sk(t) ≤ l, k = 1, n is a solution of
problem (5) corresponding to the control ϑ = ϑ(t) = (ϑ1(t), ϑ2(t), ..., ϑr(t)) ∈ Lr

2(0, T );
the functions fk (s, ϑ, t) , k = 1, n, are continuous and have continuous derivatives with
respect to s and ϑ for (s, ϑ, t) ∈ En × Er × [0, T ]; g1(t), g2(t) ∈ L2(0, T ), ϕ(x) ∈ L2(0, l),
y(x) ∈ L2(0, l), δ (·) is a Dirac function; ω = (p̃(t), ϑ̃(t)), p̃(t) = (p̃1(t), p̃2(t), ..., p̃n(t)) ∈
Ln
2 (0, T ), ϑ̃(t) = (ϑ̃1(t), ϑ̃2(t), ..., ϑ̃r(t)) ∈ Lr

2(0, T ) are the given functions.
For the sake of brevity, we denote by H = Ln

2 (0, T )×Lr
2(0, T ) a Hilbert space of pairs

ϑ̄ = (p(t), ϑ(t)) with scalar product < ϑ̄1, ϑ̄2 >H=
∫ T

0 [p1(t)p2(t) + ϑ1(t)ϑ2(t)]dt, and the

norm
∥

∥ϑ̄
∥

∥

H
=
√

(< ϑ̄, ϑ̄ >H) =
√

(‖p‖2L2
+ ‖ϑ‖2L2

).
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3. Correctness of problem statement

Definition. A problem of finding the function (u(x, t), s(t)) = (u(x, t;ϑ), s(t;ϑ))
satisfying the conditions (2) – (5) for the given control ϑ ∈ V is said to be a reduced
problem. Under the solution of reduced problem (2) – (5) corresponding to the control
ϑ = (p(t), ϑ(t)) ∈ V we understand the function (u(x, t), s(t)) from (V 1,0

2 (Ω), C[0, T ]),
where the function u = u(x, t) satisfies the integral identity

∫ l

0

∫ T

0
[−uηt + a2uxηx]dxdt = a2

∫ T

0
[g2(t)η(l, t) − g1(t)η(0, t)] dt+

∫ l

0
ϕ(x)η(x, 0)dx+

+
n
∑

k=1

∫ T

0
pk(t)η(sk(t), t)dt, (6)

for ∀η = η(x, t) ∈ W
1,1
2 (Ω) and η(x, T ) = 0, and the function sk(t) satisfies the integral

equation

sk(t) =

∫ t

0
fk(s(τ), ϑ(τ), τ)dτ + sk0, 0 ≤ t ≤ T, k = 1, n. (7)

It follows from the results of the papers [5-6] that for each fixed ϑ ∈ V, the reduced
problem (2) – (5) has a unique solution from (V 1,0

2 (Ω), C[0, T ]). Let the conditions in the
problem (1) – (5) be fulfilled. Then problem (1) – (5) has a unique solution [7] :

Theorem 1. There exists a dense subset Kof the space H, such that for each ω ∈ K

and αi > 0(i = 1, 2) problem (1)-(5) has a unique solution.

4. Differentiability of functional and necessary conditions of optimality

Let ψ = ψ(x, t) be a solution from V
1,0
2 (Ω) of the problem

ψt + a2ψxx = 0, (x, t) ∈ Ω, (8)

ψx|x=0 = ψx|x=` = 0, t ∈ [0, T ), (9)

ψ(x, T ) = 2[u(x, T ) − y(x)], x ∈ [0, `], (10)

conjugated to (1) – (5), where u (x, T ) is a solution of reduced problem (1) – (5) for
t = T,and q = q(t) is a solution of the conjugated problem

q̇k(t) = −

n
∑

i=1

∂fi

∂sk
qi(t) + ψx(sk(t), t)pk(t), 0 ≤ t < T, qk(T ) = 0, k = 1, n. (11)

from C [0, T ].
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The function ψ = ψ (x, t) satisfies the integral identity

∫ l

0

∫ T

0
[ψη1t + a2ψxη1x]dxdt = 2

∫ l

0
[u(x, T ) − Y (x)]η1(x, T )dx, (12)

for ∀η1 = η1(x, t) ∈W
1,1
2 (Ω) and η1(x, 0) = 0, and the function qk(t) satisfies the integral

identity

qk(t) =

∫ T

t

[

n
∑

i=1

∂fi

∂sk
qi(τ)− pk(τ)ψx(sk(τ), τ)

]

dτ, 0 ≤ t ≤ T, k = 1, n. (13)

The conjugated problem (8) – (11) is a mixed problem for a linear parabolic equation.
If in relations (8) – (11), instead of the variable t we take a new independent variable τ =
T−t, we get a boundary value problem of the same types as (2) – (5). Therefore, it follows
from the facts established for problem (2) – (5) that for each given ϑ = (p(t), ϑ(t)) ∈ V

problem (8) – (11) has a unique solution from (V 1,0
2 (Ω), C[0, T ]).

Let ∆ϑ = (∆p,∆ϑ) ∈ V be an increment of the control on the element ϑ = (p, ϑ) ∈ V

such that ϑ+∆ϑ ∈ V. Denote u ≡ u(x, t; ϑ̄), sk ≡ sk(t; ϑ̄), ∆u(x, t) ≡ ≡ u(x, t; ϑ̄+∆ϑ̄)−
u(x, t, ϑ̄), ∆sk ≡ ∆sk(t) = sk(t; ϑ̄ +∆ϑ)− sk(t;ϑ), pk = pk(t), ∆pk = ∆pk(t).

It follows from (2)-(5) that ∆u(x, t) is a generalized solution of the boundary value
problem

∆ut = a2∆uxx +
n
∑

k=1

[(pk +∆pk)δ(x− (sk +∆sk))− pkδ(x − sk)], (x, t) ∈ Ω, (14)

∆ux|x=0 = ∆ux|x=l = 0, t ∈ [0, T ], (15)

∆u|t=0 = 0, x ∈ [0, l], (16)

and functions ∆sk(t), k = 1, n, are the solutions of the Cauchy problem

∆ṡk(t) = fk(s+∆s, ϑ+∆ϑ, t)− fk(s, ϑ, t), ∆sk(0) = 0, k = 1, n. (17)

It follows from (6) that the function ∆u(x, t) satisfies the integral identity

∫ l

0

∫ T

0
[−∆uηt + a2∆uxηx]dxdt =

n
∑

k=1

∫ T

0
[(pk(t) + ∆pk)η(sk(t) + ∆sk, t)−

−pk(t)η(sk(t), t)]dt, (18)

for ∀η = η(x, t) ∈W
1,1
2 (Ω), η(x, T ) = 0.

The function



108 Teymurov R.A.

H(t, s, ψ, q, ϑ) = −

{

n
∑

k=1

[−fk(s(t), ϑ(t), t)qk(t) + ψ(sk(t), t)pk(t)+

+ α1 (pk(t)− p̃k(t))
2
]

+ α2

r
∑

m=1

(

ϑm(t)− ϑ̃m(t)
)2
}

, (19)

is said to be Hamilton-Pontryagin function of problem (1)-(5). Now, we state sufficient
conditions of Frechet differentiability of functional (1) and find an expression for its gra-
dient.

Theorem 2. Let the function f (s, ϑ, t) be continuous in totality of all its arguments

together with all its partial derivatives with respect to variables s, ϑ for (s, ϑ, t) ∈ En ×
Er × [0, T ] and the following conditions

|fk(s+∆s, ϑ+∆ϑ, t)− fk(s, ϑ, t)| ≤ L(|∆s|+ |∆ϑ|),
|fks(s+∆s, ϑ+∆ϑ, t)− fks(s, ϑ, t)| ≤ L(|∆s|+ |∆ϑ|),
|fkϑ(s+∆s, ϑ+∆ϑ, t)− fkϑ(s, ϑ, t)| ≤ L(|∆s|+ |∆ϑ|), k = 1, n,

be fulfilled for all (s+∆s, ϑ+∆ϑ, t), (s, ϑ, t) ∈ En ×Er × [0, T ], where L = const ≥ 0.

Then the functional (1) is Frechet differentiable and the expression

J ′(ϑ̄) = −
∂H

∂ϑ
≡ (−

∂H

∂p
,−

∂H

∂ϑ
), (20)

where

∂H
∂p

=
(

∂H
∂p1

, ∂H
∂p2

, ..., ∂H
∂pn

)

, ∂H
∂ϑ

=
(

∂H
∂ϑ1

, ∂H
∂ϑ2

, ..., ∂H
∂ϑr

)

,

∂H
∂pk

= −ψ(sk(t), t)− 2α1 (pk(t)− p̃k(t)) , k = 1, n,
∂H
∂ϑm

=
∑n

k=1
∂fk(s(t),ϑ(t),t)

∂ϑm
qk(t)− 2α2

(

ϑm(t)− ϑ̃m(t)
)

,m = 1, r,

is valid for its gradient.

Proof. Consider the increment of the functional

∆J ≡ J(ϑ̄ +∆ϑ̄)− J(ϑ̄) = 2
∫ l

0 [u(x, T )− y(x)]∆u(x, T )dx +
∫ l

0 |∆u(x, T )|
2 dx+

+
∑n

k=1

{

2α1

∫ T

0 [pk(t)− p̃k(t)]∆pk(t)dt+ α1

∫ T

0 |∆pk|
2 dt
}

+

+
∑r

m=1

{

2α2

∫ T

0

[

ϑm(t)− ϑ̃m(t)
]

·∆ϑm(t)dt+ α2

∫ T

0 |∆ϑm|2 dt
}

(21)

where ϑ̄ = (p, ϑ) ∈ V , ϑ̄+∆ϑ̄ ∈ V , ∆u(x, T ) ≡ u(x, T ; ϑ̄+∆ϑ̄)−u(x, T ; ϑ̄), u ≡ u(x, T ; ϑ̄).
Prove that

2
∫ l

0 [u(x, T )− y(x)]∆u(x, T )dx =
∑n

k=1

{

∫ T

0 ψ(sk(t), t) ∆pk(t)dt+

+
∑r

m=1

∫ T

0
∂fk(s(t),ϑ(t),t)

∂ϑm
qk(t)∆ϑm(t)dt

}

+R1,
(22)
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where R1 =
∑n

k=1

∫ T

0 ψx(sk(t), t)∆pk(t)∆sk(t)dt.

If we set η1 = ∆u (x, t) , in (12), η = υ (x, t) in (18), and then subtract the obtained
relations, we have

∫ l

0

∫ T

0
[ψ∆ut + a2ψx∆ux]dxdt = 2

∫ l

0
[u(x, T )− y(x)]∆u(x, T )dx,

∫ l

0

∫ T

0
[−∆uψt + a2ψx∆ux]dxdt =

n
∑

k=1

∫ T

0
[(pk +∆pk)ψ(sk +∆sk, t)− pkψ(sk, t)]dt,

∫ l

0
2[u(x, T )− y(x)]∆u(x, T )dx =

n
∑

k=1

∫ T

0
[(pk +∆pk)ψ(sk +∆sk, t)− pkψ(sk, t)]dt. (23)

It follows from (17) that the function ∆sk(t) satisfies the integral identity

∫ T

0

[

∆sk(t)θ̇k(t) + ∆fk(s(t), ϑ(t), t)θk(t)
]

dt = 0, (24)

for ∀θk(t) ∈ C[0, T ],θk(T ) = 0, k = 1, n.

It follows from (11) that the function qk(t) satisfies the integral identity

∫ T

0

[

θ̇1k(t)qk(t)−

(

n
∑

i=1

∂fi

∂sk
qi(t)− ψx(sk(t), t)pk(t)

)

θ1k(t)

]

dt = 0, (25)

for ∀θ1k(t) ∈ C[0, T ],θ1k(0) = 0, k = 1, n.

In the same way, if we set θ1k = ∆sk in (25), θk = qk in (24) and then sum the obtained
relations, we have

∫ T

0

[

∆ṡk(t)qk(t)−

(

n
∑

i=1

∂fi

∂sk
qi(t)− ψx(sk(t), t)pk(t)

)

∆sk(t)

]

dt = 0,

∫ T

0
[q̇k(t)∆sk(t) + ∆fk(s(t), ϑ(t), t)qk(t)] dt = 0,

[∆sk(t)qk(t)]
∣

∣

t=T
t=0 =

∫ T

0

[(

n
∑

i=1

∂fi

∂sk
qi(t)− ψx(sk(t), t)pk(t)

)

∆sk(t)−∆fkqk(t)

]

dt.

Considering conditions of the theorem, we can represent the function ∆fk =
∆fk(s(t), ϑ(t), t) in the form

∆fk =
n
∑

i=1

∂fk

∂si
∆si +

r
∑

m=1

∂fk

∂ϑm
∆ϑm +R2,
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where R2 = o
(√

‖∆s‖2L2(0,T ) + ‖∆ϑ‖2L2(0,T )

)

as ‖∆s‖L2(0,T ) → 0, and ‖∆ϑ‖L2(0,T ) → 0.

Then, from the last equality we have:

[∆sk(t)qk(t)]
∣

∣

t=T
t=0 =

∫ T

0

[(

n
∑

i=1

∂fi

∂sk
qi(t)− ψx(sk(t), t)pk(t)

)

∆sk(t)−

−
r
∑

m=1

∂fk

∂ϑm
∆ϑm(t)qk(t)−

n
∑

i=1

∂fk

∂si
∆si(t)qk(t)

]

dt+R2.

From(17) and (11) we get

∫ T

0
ψx(sk(t), t)pk(t)∆sk(t)dt = −

r
∑

m=1

∫ T

0

∂fk

∂ϑm
∆ϑm(t)qk(t)dt−

−

n
∑

i=1

∫ t

0

[

∂fk

∂si
qk(t)∆si(t)−

∂fi

∂sk
qi(t)∆sk(t)

]

dt+R2. (26)

It is clear that under the assumptions made above, the expansion

ψ(sk +∆sk, t) = ψ(sk, t) + ψx(sk(t), t)∆sk + o
(

‖∆s‖C[0,T ]

)

as ‖∆s‖C[0,T ] → 0,

is valid.

Considering this formula in (23), we get

2
∫ l

0 [u(x, T )− y(x)]∆u(x, T )dx =
∑n

k=1

∫ T

0 [ψx(sk(t), t)pk(t)∆sk(t)+

+ψ(sk(t), t)∆pk(t) + ψx(sk(t), t)∆pk(t)∆sk(t)] dt+ o
(

‖∆s‖C[0,T ]

)

.

In view of the fact that

n
∑

k=1

n
∑

i=1

[

∂fk

∂si
qk(t)∆si(t)−

∂fi

∂sk
qi(t)∆sk(t)

]

= 0,

from the last equality and the relation (26) we get

2
∫ l

0 [u(x, T )− y(x)]∆u(x, T )dx =
∑n

k=1

∫ T

0

[

−
∑r

m=1
∂fk
∂ϑm

qk(t)∆ϑm(t) +

+ ψ(sk, t)∆pk] dt+R3,

(27)

where

R3 =
n
∑

k=1

∫ T

0
[ψx(sk(t), t)∆pk(t)∆sk(t)] dt+R2 + o(‖∆s‖C[0,T ]).

It is proved in (13) that the estimation
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‖∆u(x, T )‖L2(0,l)
≤ c1

∥

∥∆ϑ̄
∥

∥

H
(28)

holds for the function ∆u(x, t) and in 6.3 of [6] it is established that the estimation

‖∆s‖L2(0,T ) ≤ c2 ‖∆ϑ‖L2(0,T ) , (29)

where c1 ≥ 0, c2 ≥ 0 are some constants, follows for the solution of problem (17).
Taking into account the estimation (29) in the expressions for R1 and R3, we get

R3 = o
(
∥

∥∆ϑ
∥

∥

H

)

.
Considering these estimations in (21) and (22), we have:

∆J(ϑ̄) =
∑n

k=1 (J1(k) +
∑r

m=1 J2(k,m)) + o
(
∥

∥∆ϑ̄
∥

∥

H

)

, as
∥

∥∆ϑ̄
∥

∥

H
→ 0,

where

J1(k) =

∫ T

0
[ψ(sk(t), t) + 2α1 (pk(t)− p̃k(t))]∆pk(t)dt,

J2(k,m) =

∫ T

0

[

−
∂fk(s(t), ϑ(t), t)

∂ϑm
qk(t) + 2α2

(

ϑm(t)− ϑ̃m(t)
)

]

∆qm(t)dt.

Hence, allowing for expression of Hamilton-Pontryagin function, we get

∆J(ϑ̄) =

(

−
∂H

∂ϑ̄
,∆ϑ̄

)

H

+ o
(∥

∥∆ϑ̄
∥

∥

H

)

as
∥

∥∆ϑ̄
∥

∥

H
→ 0,

that shows Frechet differentiability of functional (1) and validity of formula (20). The
Theorem 2 is proved.

Now, let‘s get necessary conditions, i.e. control optimality conditions for problem
(1)-(5).

Theorem 3. Let all the conditions of theorem 1 be fulfilled and (u∗(x, t), s∗(t)),
(ψ∗(x, t), q∗(t)) be solutions of problems (2)-(5) and (8)-(11), respectively, for ϑ = ϑ

∗

∈
V.Then for optimality of the control ϑ

∗

= (p∗ (t) , ϑ∗ (t)) the condition

H(t, s∗, ψ∗, q∗, ϑ̄∗) = max
ϑ̄∈V

H(t, s∗, ψ∗, q∗, ϑ̄), (30)

should be fulfilled for ∀(x, t) ∈ Ω.
Proof. Assume that ϑ̄∗ = (p∗, ϑ∗) is an optimal control. Assume the contrary, i.e.

assume there are a control ϑ̃ = ϑ̄∗ + h ·∆ϑ̄ ∈ V and the number β > 0 such that

H(t, s∗, ψ∗, q∗, ϑ̃)−H(t, s∗, ψ∗, q∗, ϑ̄∗) ≥ β > 0, (31)

where h > 0 is some number, ϑ̃ = (p̃, ϑ̃) ≡ (p∗ + h∆p, ϑ∗ + h∆ϑ).
If in (31) we take into account formula (20), we get

h

2
∑

i=1

(

∂J(ϑ̆i)

∂ϑ̄
,∆ϑ̄

)

H

≤ −β < 0,
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where ϑ̆1 = (hθ0∆p, ϑ̃), ϑ̆2 = (p∗, hθ1∆ϑ), θi ∈ (0, 1), i = 0, 1 are some numbers.
Hence, from the finite increment formula we have

J(ϑ̃)− J(ϑ̄∗) = h

2
∑

i=1

(

∂J(
_

ϑ i)

∂ϑ̄
,∆ϑ̄

)

H

≤ −β + h · 0(
∥

∥∆ϑ̄
∥

∥

H
), (32)

where
_

ϑ1= (hγ0∆p, ϑ̃),
_

ϑ2= (p∗, hγ1∆ϑ), γi ∈ (0, 1), i = 0, 1 are some numbers.

Let 0<h1<h be such a number that −β + h1o
(
∥

∥∆ϑ
∥

∥

H

)

< 0. Assume
≈

ϑ = (
≈

p,
≈

ϑ) =
(p∗ + h1∆p, ϑ

∗ + h1∆ϑ). Reasoning as in the getting of inequality (32), we have

J(
≈

ϑ)− J(ϑ̄∗) ≤ −β + h1o
(
∥

∥∆ϑ̄
∥

∥

H

)

< 0.

This contradicts to the optimality of the control ϑ
∗

. Hence we get the validity of
relation (30). The Theorem 3 is proved.

Using formula (20) and taking into account the expression of Hamilton-Pontryagin
function, by the known theorem ([6], p.28) we get the validity of the following theorem:

Theorem 4. Let the conditions of Theorem 1 be fulfilled. Then for the optimality of

the control ϑ
∗

= (p∗(t), ϑ∗(t)) ∈ V , the condition

∫ T

0

∑n
k=1 [(ψ

∗(s∗k(t), t) + 2α1(p
∗

k(t)− p̃k(t)), pk(t)− p∗k(t))+

+
∑r

m=1

(

−∂fk(s
∗(t),ϑ∗(t),t)
∂ϑm

q∗k(t) + 2α2(ϑ
∗

m(t)− ϑ̃m(t)), ϑm(t)− ϑ∗m(t)
)]

dt ≥ 0,

should be fulfilled for ∀ϑ̄ = (p(t), ϑ(t)) ∈ V . Here ψ∗(s∗k(t), t), q
∗

k(t) are the solutions of

problems (8)-(10) and (11), respectively, for ϑ = ϑ
∗

(p∗(t), ϑ∗(t)).
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