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Markov type integral inequality for Pseudo-integrals

Daraby B.

Abstract. In this paper, generalizations of the Markov type integral inequalities for pseudo-
integrals are proved. There are considered two cases of the real semiring with pseudo-operations:
One, when pseudo-operations are defined by monotone and continuous function g (then the pseudo-
integrals reduces g-integral), and the second with a semiring ([a,b], maz, ®), where the pseudo-

multiplication ® is generated.
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1. Introduction

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of
real numbers a semiring is taken on a real interval [a, b] C [—00, c0] endowed with pseudo-
addition € and with pseudo-multiplication ® (see [13, 17, 20]). Based on this structure
there where developed the concepts of @-measure ( pseudo-additive measure ), pseudo-
integral, pseudo-convolution, pseudo-Laplace transform and etc. Pseudo-analysis would
be an interesting topic to generalize an inequality from the framework of the classical
analysis to that of some integrals which contain the classical analysis as special cases
[1,2,4,5,6,8, 15, 18, 19, 20].

The well-known Markov inequality is a part of the classical mathematical analysis.

The following inequality is a classical Markov type inequality [9]:

1
u{xGA:f(fv)>C}<;/Afdu,
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where f is a non-negative integrable function and ¢ > 0. A. Flores-Franuli¢ et al. have
proved Markov type inequalities for fuzzy integrals in [7].

In this paper, we generalize their works for pseudo-integrals. In special case, if in
Markov type inequalities for pseudo-integrals we put @ = max and ® = min, then we get
the Markov type inequality for Sugeno integrals [3].

The paper is organized as follows: Section 2 and 3 contain some of preliminaries, such
as pseudo-operations and pseudo-analysis as well as integrals. In Section 4, We have proved
generalizations of the Markov type inequality for pseudo-integrals. Finally, a conclusion

is given in Section 5.

2. Preliminaries

In this section, we are going to review some well-known definitions of pseudo-operations.
We refer to [10, 11, 12, 13, 14, 17].
Let [a,b] be a closed ( in some cases can be considered semiclosed ) subinterval of

[—00, 00]. The full order on [a,b] will be denoted by <.

Definition 2.1. The operation & (pseudo-addition) is a function @ : [a, b] X [a,b] — [a, D]
which is commutative, nondecreasing (with respect to < ), associative and with a zero
(neutral) element denoted by 0, i.e., for each x € [a,b],0 @ x = z holds (usually 0 is either

a or b).
Let [a,b]4+ = {z|z € [a,b],0 =< x}.

Definition 2.2. The operation ® (pseudo-multiplication) is a function ® : [a, b] X [a,b] —
[a, b] which is commutative, positively non-decreasing, i.e., z =< y implies t ® z < y ® z for
all z € [a, b]4, associative and for which there exists a unit element 1 € [a, b], i.e., for each

x € a,b],1 0z =u=.

We assume also 0 ® z = 0 that ® is a distributive pseudo-multiplication with respect
to @, le, 2O (yd2) = (x®y)® (z ® z). The structure ([a,b], ®,®) is a semiring (see
[10, 14]). In this paper we consider semirings with the continuous operations those that are
discussed in [2, 13, 16].In this paper we consider semirings with the following continuous
operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication is

not.
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(a) Suppose that * @ y = sup(x,y),® is arbitrary and is not idempotent pseudo-
multiplication on the interval [a,b]. We have 0 = a and the idempotent operation sup

induces a full order in the following way: x <y if and only if sup(z,y) = y.

(b) Suppose that © @ y = inf(z,y),® is arbitrary and is not idempotent pseudo-
multiplication on the interval [a,b]. We have 0 = b and the idempotent operation inf

induces a full order in the following way: = < y if and only if inf(z,y) = v.

Case II: The pseudo-operations are defined by a monotone and continuous function
g : [a,b] = [0,00], i.e., pseudo operations are given with @y = ¢~ !(g(x) + g(z)) and
rOy =g "(9(z)g(x)).
If the zero element for the pseudo-addition is a, we will consider increasing generators.
Then g(a) = 0 and g(b) = 1. If the zero element for the pseudo-addition is b, we will
consider decreasing generators. Then g(b) = 0 and g(a) = 1. If the generator g is increas-
ing (respectively decreasing), then the operation @ induces the usual order (respectively

opposite to the usual order) on the interval [a,b] in the following way: =z < y if and only

if g(x) < g(y).

Case III: Both operations are idempotent. We have

(a) Suppose that z &y = sup(z,y),r ©y = inf(x,y), on the interval [a,b]. We have
0 = a and 1 = b. The idempotent operation sup induces the usual order (z < y if and
only if sup(z,y) = y).

(b) Suppose that  ®y = inf(z,y),z © y = sup(z,y), on the interval [a,b]. We have
0 = b and 1 = a. The idempotent operation inf induces an order opposite to the usual

order (x <Xy if and only if inf(x,y) = y).
Let X be a non-empty set. Let A be a o-algebra of subsets of a set X.
Definition 2.3. A set function m : A — [a, b]+ (or semiclosed interval) is a @-measure if

there hold:

(i) m(¢) = 0 (if @ is not idempotent);
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(ii) m is 0 — @—(decomposable) measure, i.e.

o0 o
m(J4i) = Pmia)
i=1 i=1
holds for any sequence A;cn of pairwise disjoint sets from A.

We suppose that ([a,b],®) and ([a,b],®) are complete lattice ordered semigroups.
Further, suppose that [a,b] is endowed with a metric d compatible with sup and inf,
ie. limpoosupx, = x and lim,_ootnfx, = x, imply lim,_cod(zy,x) = 0, and which
satisfies at least one of the following conditions:

(a) dz @y, 2’ ®Y) < d(z,2') +d(y,y),

(b) d(zx ® y, 2’ ®y') < max{d(z,2),d(y,y")}.

Both conditions (a) and (b) imply:

d(zpn,yn) = 0= d(z, ® 2,yn ® z) — 0.

Metric d is also monotonic, i.e.,

r<z<y=d(z,y) > sup{d(y, z),d(x,z)}.

Let f and g be two functions defined on X and with values in a semiring ([a, b], ®, ®).
Then for any = € X and for any A € [a,b] we define (f @ g)(z) = f(x) D g(z), (f ©g)(x) =
F() © g(x) and (A © f)(z) = A© ().

Definition 2.4. The characteristic function with values in a semiring ([a,b],®,®) is

defined by
() 1, ifxe A,
xa\r) =
0, ifz¢ A

Where 0 is zero element for @ and 1 is unit element for ®.

Definition 2.5. An elementary (measurable) function is a mapping

e: X — [a,b] that has the following representation:

n
e=@aioxa :
=1

where a; € [a,b] and sets A; € A are pairwise disjoint if @ is nonidempotent.
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Definition 2.6 ([11]). Let € be a positive real number and B C [a,b]. A subset {[{} of
the set B is a e-net on B if for each z € B there exists [ such that d(I{,z) < e. If we, also,

have [{ < z, then we call {{{} a lower e-net. If I < I, holds, then {I{} is monotone.

Definition 2.7. Let m : A — [a,b] be a @-measure.

(i) The pseudo-integral of an elementary function e : X — [a, b] with respect to m is
defined by

@ n
/ e@dm:@aiCbm(Az)
i=1

X

(ii) The pseudo-integral of a bounded measurable function f : X — [a,b], (if @ is not

idempotent we suppose that for each € > 0 there exists a monotone e-net in f(X)) is
defined by

® ®
/ f(z) ©dm = limn%oo/ en(z) © dm,
X

X
where (ey, )nen is a sequence of elementary functions such that d(e, (x), f(x)) — 0 uniformly

as n — oo. For more details see [14, 16].

3. Two important cases: generated and max-plus semirings

We shall consider the semiring ([a, b], ®, ®) for two important (with completely differ-
ent behavior) cases. The first case is when pseudo-operations are generated by a mono-
tone and continuous function g : [a,b] — [0,00]. Then the pseudo-integral for a function
f e, d] — [a,b] reduces on the g-integral [12, 13],

. f(z)dz =g ! ( /Cd g(f(a:))da:>.

[¢,d]

Now easily we can obtain the properties listed in the following proposition.

Proposition 3.1 ([16]). Let (X, f,u, R, ®,©) is a pseudo-space and f,g € ', then:
(1) If f=0on A ae., then [ fdu=0.

(2) If u(A) = 0, then [§ fdu = 0.

(3) fA adp > a © p(A).

(4) If f < gonA, thean fd,u<fA gdp.

(5) If A C B, then fA fdu < fB fdu.
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Second case is when the semiring is of the form ([a,b],maz,®). Then the pseudo-

integral for a function f : R — [a,b] is given by

[ @ dm = supees () 0 vi0)).

where function v defines sup-measure m. Any sup-measure generated as essential supre-
mum of a continuous density can be obtained as a limit of pseudo-additive measures with
respect to generated pseudo-addition [11]. We shall denote by u the usual Lebesgue mea-

sure on R. We have
m(A) = ess sup,(z | x € A) = sup{a | p({z | z € A,z > a}) > 0}.
We have by [11]:

Theorem 3.1. Let m be a sup-measure on (|0, 00],B([0, 00])), where B([0, 0c]) is the Borel
o-algebra on [0, 00], m(A) = ess sup,(¢Y(x)|x € A), and ) : [0,00] — [0,00] is a continuous
density. Then for any pseudo-addition & with a generator g there exists a family {my}
of ®x-—measure on ([0,00),B), where ®y is generated by g (the function g of the power

A), A € (0,00), such that limy_,eomy = m.

For any continuous function f : [0,00] — [0, 0] the integral [ f©dm can be obtained

as a limit of g-integrals, [11].

Theorem 3.2. Let ([0, 0], sup, ®) be a semiring with © generated by some increasing
generator g, i.e., we have t ©y = g ' (g(x)g(y)) for every x,y € [a,b]. Let m be the
same as in Theorem 3.1. Then there exists a family {m\} of ®x-measures, where @) is

generated by g*, X € (0,00), such that for every continuous function f : [0, 00] — [0, o0]

D

/Supf ©dm = limy foOdmy = lim)\_wo(g)‘)1(/9)\(]((1,))(1%).

4. Main results

Lemma 4.1. Let g : [a,b] — [0,00] be a continuous and increasing function, then for any

non-negative integrable function f : [c,d] — |a,b] the inequality
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1 2]
pllred: f@)> e} < /A Py, (4.1)
holds where A = [c,d] and e € [a,].
Proof. Let us consider A* = {z € A: f(z) > e}. We must show that:
o
/ f2dp > e*.u(A%).
A

As A* C A, then by (5) of Proposition 3.1 we have
o 3
| fau= | P (4.2)
A Ax
Since f(x) > e for all x € A*, we have
(f)? = ().
Since g is an increasing function, then g(f?) > g(e?). Therefore by (4) of Proposition 3.1
we have
/ 9(f*)dp > / g(€*)dp.

1

Since inverse of increasing function is increasing, so ¢~ is also increasing. It follows that

gl(/A* g(fQ)du) gl(/ﬁ g(eQ)du>
= g 'g(e?).u(A")
(A

v

ie.

69J"Qdu = 91(/*g(f2)du>

A*
> e.u(A).
From (4.2) we have
o @
NN
A A*
> e.u(A).

Consequently
1 @
ploed: (=< [P
which completes the proof.

The following result is generalization of the Markov type inequality for pseudo-integrals.
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Theorem 4.2. If g : [a,b] — [0,00] is a continuous and increasing function, then for

every non-negative integrable function f : [c,d] — [a,b], the inequality

w{z € A: f(z) > e}) < / Fd
holds, where e € [a,b] and A = [c,d].

Proof. As f > 0and {x € A* : f(x) > e} ={z € A: f(z) > e}, by Lemma 4.1 we

have

w{z e A" f@)>e)) = p{zeA: fz)>e))
1 D
< /A (f(2))2dp

1 @
= _/ fd:uv
€JA

Ezample 4.3. Let f(z) =z, for all z € [1,2] and g : [1,2] — [0, o0] be defined as g(z) = e”.
Taking A = [1,2] and e = 3, we have

which implies that the Theorem 4.2 holds.
3
e A: @) 2eh) = pfre2 >3]

and

@ @
/ fdp = / rdp
A A

Therefore

1 @
p({x € A: f(x) > e}) = fracl2 < Ln(e* —e) = —/A fdu.

e
In the sequel, we generalize the Markov inequality by the semiring ([a,b], maz,®),

where © is generated.
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Theorem 4.4. Let f : [c,d] — [a,b] be a non-negative integrable function. If ® is repre-
sented by an increasing multiplicative generator g and m is the same as in Theorem 3.1,

then the inequality
m({z e A: f(x) >e}) < / f©dm

holds, where A = [c,d] and e € [a,].

Proof. Suppose that A* = {z € A: f(x) > e}. Theorem 3.2 implies that

sup D
fOdn = lim f©dmy
[e,d] A=00 Jle,d]

- Jim (& 1( / x‘)
> lim (¢*)~! (
)7

> lim ( -1 g
>\—>OO A*
= Jim (g *) L (e) an( 4 >
-
= e.m(AY),
therefore
1 sup
m(A*) < - f©dm.
€ Jle,d]

This completes the proof.

Note that the third important case & = max and ® = min for Theorem 4.2 has been

studied in [3] and the pseudo-integral in such a case yields the Sugeno integral.

5. Conclusion

We have proved the Markov type inequalities for pseudo-integrals. There are two
classes of pseudo-integrals. One of them concerning the pseudo-integrals based on a func-
tion reduces to the g-integral, where pseudo-addition and pseudo-multiplication are defined
by a monotone and continuous function g. The other one concerns the pseudo-integrals

based on a semiring ([a, b], maz,®), where z ® y is generated by g~ (g(z)g(y)).
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