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Markov type integral inequality for Pseudo-integrals
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Abstract. In this paper, generalizations of the Markov type integral inequalities for pseudo-

integrals are proved. There are considered two cases of the real semiring with pseudo-operations:

One, when pseudo-operations are defined by monotone and continuous function g (then the pseudo-

integrals reduces g-integral), and the second with a semiring ([a, b],max,�), where the pseudo-

multiplication � is generated.
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1. Introduction

Pseudo-analysis is a generalization of the classical analysis, where instead of the field of

real numbers a semiring is taken on a real interval [a, b] ⊂ [−∞,∞] endowed with pseudo-

addition
⊕

and with pseudo-multiplication � (see [13, 17, 20]). Based on this structure

there where developed the concepts of ⊕-measure ( pseudo-additive measure ), pseudo-

integral, pseudo-convolution, pseudo-Laplace transform and etc. Pseudo-analysis would

be an interesting topic to generalize an inequality from the framework of the classical

analysis to that of some integrals which contain the classical analysis as special cases

[1, 2, 4, 5, 6, 8, 15, 18, 19, 20].

The well-known Markov inequality is a part of the classical mathematical analysis.

The following inequality is a classical Markov type inequality [9]:

µ{x ∈ A : f(x) ≥ c} ≤
1

c

∫

A

fdµ,
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where f is a non-negative integrable function and c > 0. A. Flores-Franulič et al. have

proved Markov type inequalities for fuzzy integrals in [7].

In this paper, we generalize their works for pseudo-integrals. In special case, if in

Markov type inequalities for pseudo-integrals we put ⊕ = max and � = min, then we get

the Markov type inequality for Sugeno integrals [3].

The paper is organized as follows: Section 2 and 3 contain some of preliminaries, such

as pseudo-operations and pseudo-analysis as well as integrals. In Section 4, We have proved

generalizations of the Markov type inequality for pseudo-integrals. Finally, a conclusion

is given in Section 5.

2. Preliminaries

In this section, we are going to review some well-known definitions of pseudo-operations.

We refer to [10, 11, 12, 13, 14, 17].

Let [a, b] be a closed ( in some cases can be considered semiclosed ) subinterval of

[−∞,∞]. The full order on [a, b] will be denoted by �.

Definition 2.1. The operation ⊕ (pseudo-addition) is a function ⊕ : [a, b]× [a, b] → [a, b]

which is commutative, nondecreasing (with respect to � ), associative and with a zero

(neutral) element denoted by 0, i.e., for each x ∈ [a, b],0⊕x = x holds (usually 0 is either

a or b).

Let [a, b]+ = {x|x ∈ [a, b],0 � x}.

Definition 2.2. The operation � (pseudo-multiplication) is a function � : [a, b]× [a, b] →

[a, b] which is commutative, positively non-decreasing, i.e., x � y implies x� z � y� z for

all z ∈ [a, b]+, associative and for which there exists a unit element 1 ∈ [a, b], i.e., for each

x ∈ [a, b],1 � x = x.

We assume also 0� x = 0 that � is a distributive pseudo-multiplication with respect

to ⊕, i.e., x � (y ⊕ z) = (x � y) ⊕ (x � z). The structure ([a, b],⊕,�) is a semiring (see

[10, 14]). In this paper we consider semirings with the continuous operations those that are

discussed in [2, 13, 16].In this paper we consider semirings with the following continuous

operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication is

not.
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(a) Suppose that x ⊕ y = sup(x, y),� is arbitrary and is not idempotent pseudo-

multiplication on the interval [a, b]. We have 0 = a and the idempotent operation sup

induces a full order in the following way: x � y if and only if sup(x, y) = y.

(b) Suppose that x ⊕ y = inf(x, y),� is arbitrary and is not idempotent pseudo-

multiplication on the interval [a, b]. We have 0 = b and the idempotent operation inf

induces a full order in the following way: x � y if and only if inf(x, y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous function

g : [a, b] → [0,∞], i.e., pseudo operations are given with x ⊕ y = g−1(g(x) + g(x)) and

x� y = g−1(g(x)g(x)).

If the zero element for the pseudo-addition is a, we will consider increasing generators.

Then g(a) = 0 and g(b) = 1. If the zero element for the pseudo-addition is b, we will

consider decreasing generators. Then g(b) = 0 and g(a) = 1. If the generator g is increas-

ing (respectively decreasing), then the operation ⊕ induces the usual order (respectively

opposite to the usual order) on the interval [a, b] in the following way: x � y if and only

if g(x) ≤ g(y).

Case III: Both operations are idempotent. We have

(a) Suppose that x ⊕ y = sup(x, y), x � y = inf(x, y), on the interval [a, b]. We have

0 = a and 1 = b. The idempotent operation sup induces the usual order (x � y if and

only if sup(x, y) = y).

(b) Suppose that x⊕ y = inf(x, y), x � y = sup(x, y), on the interval [a, b]. We have

0 = b and 1 = a. The idempotent operation inf induces an order opposite to the usual

order (x � y if and only if inf(x, y) = y).

Let X be a non-empty set. Let A be a σ-algebra of subsets of a set X.

Definition 2.3. A set function m : A → [a, b]+ (or semiclosed interval) is a ⊕-measure if

there hold:

(i) m(φ) = 0 (if ⊕ is not idempotent);
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(ii) m is σ −⊕−(decomposable) measure, i.e.

m
(

∞
⋃

i=1

Ai

)

=
∞
⊕

i=1

m(Ai)

holds for any sequence Ai∈N of pairwise disjoint sets from A.

We suppose that ([a, b],⊕) and ([a, b],�) are complete lattice ordered semigroups.

Further, suppose that [a, b] is endowed with a metric d compatible with sup and inf ,

i.e. limn→∞supxn = x and limn→∞infxn = x, imply limn→∞d(xn, x) = 0, and which

satisfies at least one of the following conditions:

(a) d(x⊕ y, x′ ⊕ y′) ≤ d(x, x′) + d(y, y′),

(b) d(x⊕ y, x′ ⊕ y′) ≤ max{d(x, x′), d(y, y′)}.

Both conditions (a) and (b) imply:

d(xn, yn) → 0 ⇒ d(xn ⊕ z, yn ⊕ z) → 0.

Metric d is also monotonic, i.e.,

x ≤ z ≤ y ⇒ d(x, y) ≥ sup{d(y, z), d(x, z)}.

Let f and g be two functions defined on X and with values in a semiring ([a, b],⊕,�).

Then for any x ∈ X and for any λ ∈ [a, b] we define (f ⊕ g)(x) = f(x)⊕ g(x), (f � g)(x) =

f(x)� g(x) and (λ� f)(x) = λ� f(x).

Definition 2.4. The characteristic function with values in a semiring ([a, b],⊕,�) is

defined by

χA(x) =

{

1, if x ∈ A,

0, if x /∈ A.

Where 0 is zero element for ⊕ and 1 is unit element for �.

Definition 2.5. An elementary (measurable) function is a mapping

e : X → [a, b] that has the following representation:

e =
n

⊕

i=1

ai � χAi
,

where ai ∈ [a, b] and sets Ai ∈ A are pairwise disjoint if ⊕ is nonidempotent.
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Definition 2.6 ([11]). Let ε be a positive real number and B ⊂ [a, b]. A subset {lεi} of

the set B is a ε-net on B if for each x ∈ B there exists lεi such that d(lεi , x) ≤ ε. If we, also,

have lεi � x, then we call {lεi} a lower ε-net. If lεi � lεi−1 holds, then {lεi} is monotone.

Definition 2.7. Let m : A → [a, b] be a ⊕-measure.

(i) The pseudo-integral of an elementary function e : X → [a, b] with respect to m is

defined by
∫

⊕

X

e� dm =
n

⊕

i=1

ai �m(Ai).

(ii) The pseudo-integral of a bounded measurable function f : X → [a, b], (if ⊕ is not

idempotent we suppose that for each ε > 0 there exists a monotone ε-net in f(X)) is

defined by
∫

⊕

X

f(x)� dm = limn→∞

∫

⊕

X

en(x)� dm,

where (en)n∈N is a sequence of elementary functions such that d(en(x), f(x)) → 0 uniformly

as n→ ∞. For more details see [14, 16].

3. Two important cases: generated and max-plus semirings

We shall consider the semiring ([a, b],⊕,�) for two important (with completely differ-

ent behavior) cases. The first case is when pseudo-operations are generated by a mono-

tone and continuous function g : [a, b] → [0,∞]. Then the pseudo-integral for a function

f : [c, d] → [a, b] reduces on the g-integral [12, 13],

∫

⊕

[c,d]
f(x)dx = g−1

(

∫ d

c

g(f(x))dx
)

.

Now easily we can obtain the properties listed in the following proposition.

Proposition 3.1 ([16]). Let (X,z, µ,R−

+,⊕,�) is a pseudo-space and f, g ∈ z, then:

(1) If f = 0 on A a.e., then
∫

⊕

A
fdµ = 0.

(2) If µ(A) = 0, then
∫

⊕

A
fdµ = 0.

(3)
∫

⊕

A
adµ ≥ a� µ(A).

(4) If f ≤ g on A, then
∫

⊕

A
fdµ ≤

∫

⊕

A
gdµ.

(5) If A ⊂ B, then
∫

⊕

A
fdµ ≤

∫

⊕

B
fdµ.
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Second case is when the semiring is of the form ([a, b],max,�). Then the pseudo-

integral for a function f : R → [a, b] is given by

∫

⊕

R

f � dm = supx∈R

(

f(x)� ψ(x)
)

,

where function ψ defines sup-measure m. Any sup-measure generated as essential supre-

mum of a continuous density can be obtained as a limit of pseudo-additive measures with

respect to generated pseudo-addition [11]. We shall denote by µ the usual Lebesgue mea-

sure on R. We have

m(A) = ess supµ(x | x ∈ A) = sup{a | µ({x | x ∈ A, x > a}) > 0}.

We have by [11]:

Theorem 3.1. Let m be a sup-measure on ([0,∞],B([0,∞])), where B([0,∞]) is the Borel

σ-algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A), and ψ : [0,∞] → [0,∞] is a continuous

density. Then for any pseudo-addition ⊕ with a generator g there exists a family {mλ}

of ⊕λ–measure on ([0,∞),B), where ⊕λ is generated by gλ (the function g of the power

λ), λ ∈ (0,∞), such that limλ→∞mλ = m.

For any continuous function f : [0,∞] → [0,∞] the integral
∫

⊕
f�dm can be obtained

as a limit of g-integrals, [11].

Theorem 3.2. Let ([0,∞], sup, �) be a semiring with � generated by some increasing

generator g, i.e., we have x � y = g−1(g(x)g(y)) for every x, y ∈ [a, b]. Let m be the

same as in Theorem 3.1. Then there exists a family {mλ} of ⊕λ-measures, where ⊕λ is

generated by gλ, λ ∈ (0,∞), such that for every continuous function f : [0,∞] → [0,∞]

∫ sup

f � dm = limλ→∞

∫

⊕λ

f � dmλ = limλ→∞(gλ)−1
(

∫

gλ(f(x))dx
)

.

4. Main results

Lemma 4.1. Let g : [a, b] → [0,∞] be a continuous and increasing function, then for any

non-negative integrable function f : [c, d] → [a, b] the inequality
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µ({x ∈ A : f(x) ≥ e}) ≤
1

e2

∫

⊕

A

f2dµ, (4.1)

holds where A = [c, d] and e ∈ [a, b].

Proof. Let us consider A∗ = {x ∈ A : f(x) ≥ e}. We must show that:
∫

⊕

A

f2dµ ≥ e2.µ(A∗).

As A∗ ⊆ A, then by (5) of Proposition 3.1 we have
∫

⊕

A

f2dµ ≥

∫

⊕

A∗

f2dµ. (4.2)

Since f(x) ≥ e for all x ∈ A∗, we have

(f)2 ≥ (e)2.

Since g is an increasing function, then g(f2) ≥ g(e2). Therefore by (4) of Proposition 3.1

we have
∫

A∗

g(f2)dµ ≥

∫

A∗

g(e2)dµ.

Since inverse of increasing function is increasing, so g−1 is also increasing. It follows that

g−1
(

∫

A∗

g(f2)dµ
)

≥ g−1
(

∫

A∗

g(e2)dµ
)

= g−1g(e2).µ(A∗)

= e2.µ(A∗)

i.e.
∫

⊕

A∗

f2dµ = g−1
(

∫

A∗

g(f2)dµ
)

≥ e2.µ(A∗).

From (4.2) we have
∫

⊕

A

f2dµ ≥

∫

⊕

A∗

f2dµ

≥ e2.µ(A∗).

Consequently

µ({x ∈ A : f(x) ≥ e}) ≤
1

e2

∫

⊕

A

f2dµ,

which completes the proof.

The following result is generalization of the Markov type inequality for pseudo-integrals.
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Theorem 4.2. If g : [a, b] → [0,∞] is a continuous and increasing function, then for

every non-negative integrable function f : [c, d] → [a, b], the inequality

µ({x ∈ A : f(x) ≥ e}) ≤
1

e

∫

⊕

A

fdµ

holds, where e ∈ [a, b] and A = [c, d].

Proof. As f ≥ 0 and {x ∈ A∗ : f(x) ≥ e} = {x ∈ A : f(x) ≥ e}, by Lemma 4.1 we

have

µ({x ∈ A∗ : f(x) ≥ e}) = µ({x ∈ A : f(x) ≥ e})

≤
1

(e)2

∫

⊕

A

(f(x))2dµ

=
1

e

∫

⊕

A

fdµ,

which implies that the Theorem 4.2 holds.

Example 4.3. Let f(x) = x, for all x ∈ [1, 2] and g : [1, 2] → [0,∞] be defined as g(x) = ex.

Taking A = [1, 2] and e = 3
2 , we have

µ({x ∈ A : f(x) ≥ e}) = µ({x ∈ [1, 2] : x ≥
3

2
})

= µ([
3

2
, 2])

=
1

2

and
∫

⊕

A

fdµ =

∫

⊕

A

xdµ

= g−1(

∫ 2

1
g(x)dx)

= g−1(e2 − e)

= ln(e2 − e).

Therefore

µ({x ∈ A : f(x) ≥ e}) = frac12 ≤ Ln(e2 − e) =
1

e

∫

⊕

A

fdµ.

In the sequel, we generalize the Markov inequality by the semiring ([a, b],max,�),

where � is generated.
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Theorem 4.4. Let f : [c, d] → [a, b] be a non-negative integrable function. If � is repre-

sented by an increasing multiplicative generator g and m is the same as in Theorem 3.1,

then the inequality

m({x ∈ A : f(x) ≥ e}) ≤
1

e

∫ sup

A

f � dm

holds, where A = [c, d] and e ∈ [a, b].

Proof. Suppose that A∗ = {x ∈ A : f(x) ≥ e}. Theorem 3.2 implies that

∫ sup

[c,d]
f � dm = lim

λ→∞

∫

⊕λ

[c,d]
f � dmλ

= lim
λ→∞

(gλ)−1
(

∫ d

c

gλ(f(x))dx
)

≥ lim
λ→∞

(gλ)−1
(

∫

A∗

gλ(f(x))dx
)

≥ lim
λ→∞

(gλ)−1
(

∫

A∗

gλ(e)dx
)

= lim
λ→∞

(gλ)−1gλ(e).m(A∗)

= e.m(A∗),

therefore

m(A∗) ≤
1

e

∫ sup

[c,d]
f � dm.

This completes the proof.

Note that the third important case ⊕ = max and � = min for Theorem 4.2 has been

studied in [3] and the pseudo-integral in such a case yields the Sugeno integral.

5. Conclusion

We have proved the Markov type inequalities for pseudo-integrals. There are two

classes of pseudo-integrals. One of them concerning the pseudo-integrals based on a func-

tion reduces to the g-integral, where pseudo-addition and pseudo-multiplication are defined

by a monotone and continuous function g. The other one concerns the pseudo-integrals

based on a semiring ([a, b],max,�), where x� y is generated by g−1
(

g(x)g(y)
)

.
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