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A Type of Shannon-McMillan Approximation Theorems

for Second-Order Nonhomogeneous Markov Chains In-

dexed by a Double Rooted Tree

Wang Kangkang ∗, Zong Decai

Abstract. In this paper, a class of small deviation theorems for the relative entropy densities
of arbitrary random field on a double rooted tree are discussed by comparing between the arbi-
trary measure µ and the second-order nonhomogeneous Markov measure µQ on the double rooted
tree. As corollaries, some Shannon-McMillan theorems for the arbitrary random field, second-
order Markov chain field and a limit property for the random conditional entropy of second-order
homogeneous Markov chain on the double rooted tree are obtained. The existing result is extended.
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1. Introduction

A tree is a graph S = {T,E} which is connected and contains no circuits. Given any
two vertices σ, t( σ 6= t ∈ T ), let σt be the unique path connecting σ and t. Define the
graph distance d(σ, t) to be the number of edges contained in the path σt.

Let To be an arbitrary infinite tree that is partially finite (i.e. it has infinite vertices,
and each vertex connects with finite vertices) and has a root o. Meanwhile, we consider
another kind of double root tree T , that is, it is formed with the root o of To connecting
with an arbitrary point denoted by the root −1. For a better explanation of the double
root tree T , we take Cayley tree TC,N for example. It’s a special case of the tree To, the
root o of Cayley tree has N neighbors and all the other vertices of it have N +1 neighbors
each. The double root tree T

′

C,N (see Fig.1) is formed with root o of tree TC,N connecting
with another root −1.

Let σ, t be vertices of the double root tree T . Write t ≤ σ (σ, t 6= o,−1) if t is on
the unique path connecting o to σ, and |σ| for the number of edges on this path. For any
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two vertices σ, t (σ, t 6= o,−1) of the tree T , denote by σ ∧ t the vertex farthest from o

satisfying σ ∧ t ≤ σ and σ ∧ t ≤ t.

The set of all vertices with distance n from root o is called the n-th generation of T ,
which is denoted by Ln. We say that Ln is the set of all vertices on level n and especially
root −1 is on the −1st level on tree T . We denote by T (n) the subtree of the tree T

containing the vertices from level −1 (the root −1) to level n and denote by T
(n)
o the

subtree of the tree To containing the vertices from level 0 (the root o) to level n. Let
t(6= o,−1) be a vertex of the tree T . We denote the first predecessor of t by 1t, the second
predecessor of t by 2t, and denote by nt the n-th predecessor of t. Let XA = {Xt, t ∈ A},
and let xA be a realization of XA and denote by |A| the number of vertices of A .
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Fig.1 Double root tree T
′

C,2

Definition 1 Let S = {s1, s2, · · · , sM} and Q(z|y, x) be a nonnegative function on
S3. Let

Q = ((Q(z|y, x)), Q(z|y, x) ≥ 0, x, y, z ∈ S.

If
∑

z∈S

Q(z|y, x) = 1,

then Q is called a second-order transition matrix.

Definition 2 Let T be a double root tree and S = {s1, s2, · · · , sM} be a finite
state space, and {Xt, t ∈ T} be a collection of S-valued random variables defined on the
probability space (Ω,F , Q). Let

q = (q(x, y)), x, y ∈ S (1)

be a distribution on S2, and

Qt = (Qt(z|y, x)), x, y, z ∈ S, t ∈ T\{o}{−1} (2)
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be a collection of second-order transition matrices. For any vertex t (t 6= o,−1), if

Q(Xt = z|X1t = y,X2t = x, and Xσ for σ ∧ t ≤ 2t)

= Q(Xt = z|X1t = y,X2t = x) = Qt(z|y, x) ∀x, y, z ∈ S (3)

and
Q(X−1 = x,Xo = y) = q(x, y), x, y ∈ S, (4)

then {Xt, t ∈ T} is called a S-valued second-order nonhomogeneous Markov chain indexed
by a tree T with the initial distribution (1) and second-order transition matrices (2), or
called a T -indexed second-order nonhomogeneous Markov chain.

Definition 3. Let (Qt = Qt(z|x, y), t ∈ T (n)\{o,−1}) and q = (q(x, y)) be defined as
before, µQ be a second-order nonhomogeneous Markov measure on (Ω,F). If

µQ(x0, x−1) = q(x0, x−1) (5)

µQ(x
T (n)

) = q(x0, x−1)
∏

t∈T (n)\{o,−1}

Qt(xt|x1t , x2t), n ≥ 1, (6)

then µQ will be called a second-order Markov chains field on an infinite tree T determined
by the stochastic matrices Qt and the initial distribution q.

Let µ be an arbitrary probability measure defined on (Ω,F), log is the natural
logarithmic. Denote

fn(ω) = − 1

|T (n)| log µ(X
T (n)

). (7)

fn(ω) is called the entropy density on subgraph T (n) with respect to the measure µ. If
µ = µQ, then by (6), (7) we get

fn(ω) = − 1

|T (n)| [log q(X0,X−1) +
∑

t∈T (n)\{o,−1}

Qt(Xt|X1t ,X2t)]. (8)

The convergence of fn(ω) in a sense (L1 convergence, convergence in probability, or
almost sure convergence) is called Shannon-McMillan theorem or the asymptotic equiparti-
tion property (AEP) in information theory. There have been some works on limit theorems
for tree-indexed stochastic processes. Benjamini and Peres [1] have given the notion of
the tree-indexed Markov chains and studied the recurrence and ray-recurrence for them.
Berger and Ye [2] have studied the existence of entropy rate for some stationary random
fields on a homogeneous tree. Ye and Berger (see [4],[5] ), by using Pemantle’s result [3]
and a combinatorial approach, have studied the Shannon-McMillan theorem with conver-
gence in probability for a PPS-invariant and ergodic random field on a homogeneous tree.
Yang and Liu [8] have studied a strong law of large numbers for the frequency of occurrence
of states for Markov chains field on a homogeneous tree (a particular case of tree-indexed
Markov chains field and PPS-invariant random fields). Yang (see [6]) has studied the
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strong law of large numbers for frequency of occurrence of state and Shannon-McMillan
theorem for homogeneous Markov chains indexed by a homogeneous tree. Recently, Yang
(see [13]) has studied the strong law of large numbers and Shannon-McMillan theorem
for nonhomogeneous Markov chains indexed by a homogeneous tree. Huang and Yang
(see [11]) have also studied the strong law of large numbers for Markov chains indexed
by an infinite tree with uniformly bounded degree. Peng and Yang have studied a class
of small deviation theorems for functionals for arbitrary random field on a homogeneous
trees (see[9]). Wang has also studied some Shannon-McMillan approximation theorems
for arbitrary random field on the generalized Bethe tree (see[10]).

In this paper, we study a class of Shannon-McMillan random approximation theorems
for arbitrary random fields on the double rooted tree by comparison the arbitrary mea-
sure with the second-order nonhomogeneous Markov measure and constructing a super-
martingale on the double rooted tree. As corollaries, a class of Shannon-McMillan theo-
rems for arbitrary random field and second-order Markov chains field on the double rooted
tree are obtained. A limit property for the expectation of the random conditional entropy
of second-order homogeneous Markov chain indexed by the double rooted tree is studied.
Yang and Ye’s result (see[13]) is extended.

2. Main result and its proof

Lemma 1 (see [8]). Let µ1 and µ2 be two probability measures defined on (Ω,F),
D ∈ F , {τn, n ≥ 0} be a sequence of positive-valued random variables such that

lim inf
n

τn

|T (n)| > 0. µ1 − a.s. D. (10)

Then

lim sup
n→∞

1

τn
log

µ2(X
T (n)

)

µ1(XT (n)
)
≤ 0. µ1 − a.s. D. (11)

In particular, let τn = |T (n)|, then

lim sup
n→∞

1

|T (n)| log
µ2(X

T (n)
)

µ1(XT (n)
)
≤ 0. µ1 − a.s. (12)

Proof . See reference [8].

Let

ϕ(µ|µQ) = lim sup
n→∞

1

|T (n)| log
µ(XT (n)

)

µQ(XT (n))
, (13)
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ϕ(µ|µQ) is called the sample relative entropy rate of XT (n)
with respect to µ and µQ.

ϕ(µ|µQ) is also called asymptotic logarithmic likelihood ratio. By (12) and (13)

ϕ(µ|µQ) ≥ lim inf
n→∞

1

|T (n)| log
µ(XT (n)

)

µQ(XT (n)
)
≥ 0. µ− a.s. (14)

Hence ϕ(µ|µQ) can be looked on as a type of a measure of the deviation between the
arbitrary random field and the second-order nonhomogeneous Markov chain fields on the
double rooted tree.

Although ϕ(µ|µQ) is not a proper metric between two probability measures, we nev-
ertheless think of it as a measure of ”dissimilarity” between their joint distribution µ and
second-order Markov distribution µQ. Obviously, ϕ(µ|µQ) = 0 if and only if µ = µQ. It
has been shown in (14) that ϕ(µ|µQ) ≥ 0, a.s. in any case. Hence, ϕ(µ|µQ) can be used

as a random measure of the deviation between the true joint distribution µ(xT
(n)

) and

the second-order Markov distribution µQ(x
T (n)

). Roughly speaking, this deviation may

be regarded as the one between coordinate stochastic process xT
(n)

and the Markov case.
The smaller ϕ(µ|µQ) is, the smaller the deviation is.

Theorem 1. Let X = {Xt, t ∈ T} be an arbitrary random field on a double
rooted tree. fn(ω) and ϕ(µ|µQ) are respectively defined as (7) and (13). Denote by

H
Q
t (Xt|X1t ,X2t) the random conditional entropy of Xt relative to X1t ,X2t on the measure

µQ, that is

H
Q
t (Xt|X1t ,X2t) = −

∑

xt∈S

Qt(xt|X1t ,X2t) logQt(xt|X1t ,X2t), t ∈ T (n)\{o,−1}. (15)

Let

D(c) = {ω : ϕ(µ|µQ) ≤ c} (16)

α(c) = min

{

2xe−2

(1− x)2
+

c

x
, 0 < x < 1

}

, c > 0; α(0) = 0. (17)

β(c) = max

{

2xe−2

(1 + x)2
+

c

x
, − 1 < x < 0

}

, c > 0; β(0) = 0. (18)

Then

lim sup
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] ≤ α(c)M, µ− a.s. ω ∈ D(c) (19)

lim inf
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] ≥ β(c)M−c. µ−a.s. ω ∈ D(c) (20)
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Proof. Consider the probability space (Ω,F , µ), let λ > 0 be a constant, δj(·) be Kro-
necker function. Denote gt(j) = − logQt(j|X1t ,X2t), we construct the following product
distribution:

µQ(x
T (n)

;λ) = q(x0, x−1)
∏

t∈T (n)\{o,−1}

exp{λgt(j)δj(xt)}[
Qt(xt|x1t , x2t)

1 + (eλgt(j) − 1)Qt(j|x1t , x2t)
].

(22)
By (22) we can write

∑

xLn∈SLn

µQ(x
T (n)

;λ)

=
∑

xLn∈SLn

q(x0, x−1)
∏

t∈T (n)\{o,−1}

exp{λgt(j)δj(xt)}[
Qt(xt|x1t , x2t)

1 + (eλgt(j) − 1)Qt(j|x1t , x2t)
]

= µQ(x
T (n−1)

;λ)
∑

xLn∈SLn

∏

t∈Ln

exp{λgt(j)δj(xt)}[
Qt(xt|x1t , x2t)

1 + (eλgt(j) − 1)Qt(j|x1t , x2t)
]

= µQ(x
T (n−1)

;λ)
∏

t∈Ln

∑

xt∈S

exp{λgt(j)δj(xt)}[
Qt(xt|x1t , x2t)

1 + (eλgt(j) − 1)Qt(j|x1t , x2t)
]

= µQ(x
T (n−1)

;λ)
∏

t∈Ln−1

1

1 + (eλgt(j) − 1)Qt(j|x1t , x2t)
[
∑

xt=j

+
∑

xt 6=j

]

= µQ(x
T (n−1)

;λ)
∏

t∈Ln−1

eλgt(j)Qt(j|x1t , x2t) + 1−Qt(j|x1t , x2t)
1 + (eλgt(j) − 1)Qt(j|x1t , x2t)

= µQ(x
T (n−1)

;λ) (23)

Therefore µQ(x
T (n)

;λ), n = 1, 2, · · · are a class of consistent distributions on ST (n)
. Let

Un(λ, ω) =
µQ(X

T (n)
;λ)

µ(XT (n)
)

(24)

By (22) and (24) we attain

Un(λ, ω) = exp{
∑

t∈T (n)\{o,−1}

λgt(j)δj(Xt)}
∏

t∈T (n)\{o,−1}

[
1

1 + (eλgt(j) − 1)Qt(j|X1t ,X2t)
]

·q(X0)
∏

t∈T (n)\{o,−1}

Qt(Xt|X1t ,X2t)

/

µ(XT (n)
). (25)

It is easy to see that Un(λ, ω) is a nonnegative sup-martingale from Doob’s martingale
convergence theorem (see [12]) since µ and µQ are two probability measures. Moreover,

lim
n→∞

Un(λ, ω) = U∞(λ, ω) < ∞. µ− a.s. (26)
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By (12) and (24) we have

lim sup
n→∞

1

|T (n)| logUn(λ, ω) ≤ 0. µ− a.s. (27)

According to (6), (25), we can rewrite (27) as

lim sup
n→∞

{ 1

|T (n)|
∑

t∈T (n)\{o,−1}

λgt(j)δj(Xt)

− 1

|T (n)|
∑

t∈T (n)\{o,−1}

log[1 + (eλgt(j) − 1)Qt(j|X1t ,X2t)] +
1

|T (n)| log
µQ(X

T (n)
)

µ(XT (n)
)
}

≤ 0 µ− a.s. (28)

Letting λ = 0 in (28), we have

ϕ(µ|µQ) ≥ lim inf
n→∞

1

|T (n)| log
µ(XT (n)

)

µQ(XT (n)
)
≥ 0. µ− a.s. ω ∈ D(c). (29)

By use of (16) and (28) we obtain

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

{λgt(j)δj(Xt)− log[1 + (eλgt(j) − 1)Qt(j|X1t ,X2t)}

≤ ϕ(µ|µQ) ≤ c. µ− a.s. ω ∈ D(c). (30)

By virtue of (30), the properties of super limit and the inequalities 1 − 1/x ≤ lnx ≤
x− 1,(x > 0), ex − 1− x ≤ (1/2)x2e|x|, we can write

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

λ{gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)}

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

{log[1 + (eλgt(j) − 1)Qt(j|X1t ,X2t)]− λgt(j)Qt(j|X1t ,X2t)}+c

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

Qt(j|X1t ,X2t)[e
λgt(j) − 1− λgt(j)] + c

≤ (λ2
/

2) lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

Qt(j|X1t ,X2t)g
2
t (j)e

|λgt(j)| + c

= (λ2
/

2) lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

Qt(j|X1t ,X2t) log
2 Qt(j|X1t ,X2t)e

−|λ| logQt(j|X1t ,X2t )+c
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= (λ2
/

2) lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

log2 Qt(j|X1t ,X2t) ·Qt(j|X1t ,X2t)
1−|λ| + c.

µ− a.s. ω ∈ D(c) (31)

In the case 0 < λ < 1, dividing two sides of (31) by λ, we have

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

≤ λ

2
lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

log2 Qt(j|X1t ,X2t) ·Qt(j|X1t ,X2t)
1−λ +

c

λ

µ− a.s. ω ∈ D(c) (32)

Consider the function

φ(x) = (log x)2x1−λ, 0 < x ≤ 1, 0 < λ < 1. (set φ(0) = 0) (33)

It can be concluded that on the internal [0, 1],

max{φ(x), 0 ≤ x ≤ 1} = φ(e2/(λ−1)) = (
2

λ− 1
)2e−2. (34)

By (32) and (34) we have that when 0 < λ < 1,

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

≤ λ

2
lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

(
2

λ− 1
)2e−2 +

c

λ

=
2λe−2

(1− λ)2
lim sup
n→∞

|T (n)| − 2

|T (n)| +
c

λ
≤ 2λe−2

(1− λ)2
+
c

λ
. µ− a.s. ω ∈ D(c) (35)

When c > 0, h(λ) = (2λe−2)
/

(1− λ)2+c/λ attains its smallest value α(c) at λo ∈ (0, 1).
Hence letting λ = λo in (35), we attain from (17) that

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)] ≤ α(c).

µ− a.s. ω ∈ D(c). (36)

By (7), (6), (15), (29) and (36), noticing gt(j) = − logQt(j|X1t ,X2t), we can deduce

lim sup
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)]
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= lim sup
n→∞

{− 1

|T (n)| log µ(X
T (n)

)− 1

|T (n)|
∑

t∈T (n)\{o}

H
Q
t (Xt|X1t)}

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

{− logQt(Xt|X1t ,X2t)−H
Q
t (Xt|X1t ,X2t)}

+ lim sup
n→∞

1

|T (n)| [
∑

t∈T (n)\{o,−1}

logQt(Xt|X1t ,X2t)− log µ(XT (n)
)] = lim sup

n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

j∈S

{−δj(Xt) logQt(j|X1t ,X2t) +Qt(j|X1t ,X2t) logQt(j|X1t ,X2t)}

+ lim sup
n→∞

1

|T (n)| log
µQ(X

T (n)
)

µ(XT (n)
)

= lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

sM
∑

j=s1

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

+ lim sup
n→∞

1

|T (n)| log
µQ(X

T (n)
)

µ(XT (n)
)

le

sM
∑

j=s1

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

≤ α(c)M µ− a.s. ω ∈ D(c), (37)

thus in the case c > 0, (19) follows from (37).
In the case −1 < λ < 0, by (31) we have

lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

≥ λ

2
lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

log2 Qt(j|X1t ,X2t) ·Qt(j|X1t ,X2t)
1+λ +

c

λ
.

µ− a.s. ω ∈ D(c). (38)

By (34) and (38), we gain

lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

≥ λ

2
lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

(
2

1 + λ
)2e−2 +

c

λ

≥ 2λe−2

(1 + λ)2
+
c

λ
.
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µ− a.s. ω ∈ D(c). (39)

In the case c > 0, the function u(λ) = (2λe−2)
/

(1 + λ)2+c/λ attains the largest value
β(c) at λo ∈ (−1, 0). Thereby letting λ = λo in (39), we have

lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)] ≥ β(c).

µ− a.s. ω ∈ D(c). (40)

By (7), (6), (13), (16) and (40), noticing that gt(j) = − logQt(j|X1t ,X2t), we can write

lim inf
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)

≥ lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

{− logQt(Xt|X1t ,X2t)−H
Q
t (Xt|X1t ,X2t)}

+ lim inf
n→∞

1

|T (n)| [
∑

t∈T (n)\{o,−1}

logQt(Xt|X1t ,X2t)− log µ(XT (n)
)]

≥ lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

sM
∑

j=s1

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]

− lim sup
n→∞

1

|T (n)| [log µ(X
T (n)

)−
∑

t∈T (n)\{o}

logQt(Xt|X1t)]

≥
sM
∑

j=s1

lim inf
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)]− ϕ(µ|µQ)

≥ β(c)M − c. µ− a.s. ω ∈ D(c). (41)

In accordance with (41), we see that (20) also holds in the case c > 0. When c = 0,
take 0 < λi < 1,(i = 1, 2, · · · ) such that λi → 0 (i → ∞), by (35) we acquire

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[gt(j)δj(Xt)− gt(j)Qt(j|X1t ,X2t)] ≤ 0.

µ− a.s. ω ∈ D(0). (42)

Imitating the proof of (37), we have by (17) and (42)

lim sup
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] ≤ 0. µ−a.s. ω ∈ D(0). (43)
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Since α(0) = 0, we know that (19) also holds in the case c = 0 from (37). By the similar
means, we can obtain that (20) holds in the case c = 0.

Corollary 1. Under the assumption of Theorem 1, we have that in the case 0 ≤ c < 1,

lim sup
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] ≤ M [

2e−2

(1 −√
c)2

+ 1]
√
c,

µ− a.s. ω ∈ D(c) (44)

lim inf
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] ≥ −M [

2e−2

(1 −√
c)2

+ 1]
√
c− c.

µ− a.s. ω ∈ D(c). (45)

Proof. Letting x =
√
c in (19) and (20), we have

[2e−2
/

(1−
√
c)2 + 1]

√
c ≥ α(c), − [2e−2

/

(1−
√
c)2 + 1]

√
c ≤ β(c).

Therefore (44), (45) follow from (19) and (20), respectively.

Corollary 2. Under the assumption of Theorem 1, we have

lim
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] = 0. µ−a.s. ω ∈ D(0). (46)

Proof. Letting c = 0 in Corollary 1, (46) follows from (44) and (45).

Corollary 3. Let X = {Xt, t ∈ T} be the second-order nonhomogeneous Markov
chains field indexed by the double rooted tree with the initial distribution (5) and the joint
distribution (6), fn(ω) be defined as (8). Then

lim
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t ,X2t)] = 0. µQ − a.s. (47)

Proof. Let µ ≡ µQ in Theorem 1, then ϕ(µ|µQ) ≡ 0. Thereby D(0) = Ω. (47) follows
from (46) correspondingly.

Remark. When the second-order nonhomogeneous Markov chain indexed by the
tree degenerates into the first-order nonhomogeneous Markov chain indexed by a tree, we
can see easily that Qt(Xt|X1t ,X2t) = Qt(Xt|X1t), H

Q
t (Xt|X1t ,X2t) = H

Q
t (Xt|X1t). At

the moment, (47) is changed into

lim
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

H
Q
t (Xt|X1t)] = 0. µQ − a.s.

This is a main result of Yang and Ye (see [13]).
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3. Shannon-McMillan theorem for homogeneous Markov chains fields

on a double rooted tree

Let X = {Xt, t ∈ T} be another second-order homogeneous Markov chain indexed by
a double rooted tree with the initial distribution and the joint distribution on the measure
µP as follows:

µP (x0, x−1) = p(x0, x−1) (48)

µP (x
T (n)

) = p(x0, x−1)
∏

t∈T (n)\{o,−1}

P (xt|x1t , x2t), n ≥ 1, (49)

where P = P (z|x, y), x, y, z ∈ S is a strictly positive stochastic matrix on S3, p =
(p(x, y)) is a strictly positive distribution on S2. Thereby the relative entropy density of
X = {Xt, t ∈ T} on the measure µP is

fn(ω) = − 1

|T (n)| [log p(X0,X−1) +
∑

t∈T (n)\{o,−1}

logP (xt|x1t , x2t)]. (50)

Let a be a real number, denote [a]+ = max{a, 0}. We have the following result:

Theorem 2. Let X = {Xt, t ∈ T} be the second-order homogeneous Markov chains
field with the initial distribution (48) and joint distribution (49) under the measure µP .
fn(ω) is defined by (50). Let Q = Q(z|x, y), x, y, z ∈ S be defined by definition 1, α =
min{Q(j|i, k), i, k, j ∈ S} > 0. Denote

HQ(Xt|X1t ,X2t) = −
∑

xt∈S

Q(xt|X1t ,X2t) logQ(xt|X1t ,X2t), t ∈ T (n)\{o,−1}.

If
∑

i∈S

∑

k∈S

∑

j∈S

[P (j|i, k) −Q(j|i, k)]+ ≤ α · c, (51)

then

lim sup
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

HQ(Xt|X1t ,X2t)] ≤ α(c)M. µP−a.s. (52)

lim inf
n→∞

[fn(ω)−
1

|T (n)|
∑

t∈T (n)\{o,−1}

HQ(Xt|X1t ,X2t)] ≥ β(c)M − c. µP −a.s.

(53)

Proof. Let µ = µP , Qt(z|x, y) ≡ Q(z|x, y), x, y, z ∈ S, t ∈ T (n)\{o,−1}, we obtain
that H

Q
t (Xt|X1t ,X2t) = HQ(Xt|X1t ,X2t), t ∈ T (n)\{o,−1}, thus (50) follows from (7)
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and (49). By the inequalities log x ≤ x − 1 (x > 0), a ≤ [a]+ and (51), noticing that
α = min{Q(j|i, k), i, k, j ∈ S} > 0, we can conclude

ϕ(µP |µQ) = lim sup
n→∞

1

|T (n)| log
µP (X

T (n)
)

µQ(XT (n)
)

= lim sup
n→∞

1

|T (n)| log
p(X0,X−1)

∏

t∈T (n)\{o,−1}

P (Xt|X1t ,X2t)

q(X0,X−1)
∏

t∈T (n)\{o,−1}

Q(Xt|X1t ,X2t)

≤ lim sup
n→∞

1

|T (n)| log
p(X0,X−1)

q(X0,X−1)
+ lim sup

n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

log
P (Xt|X1t ,X2t)

Q(Xt|X1t ,X2t)

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

k∈S

∑

j∈S

δj(Xt)δi(X1t)δk(X2t) log
P (j|i, k)
Q(j|i, k)

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

k∈S

∑

j∈S

δj(Xt)δi(X1t)δk(X2t)
P (j|i, k) −Q(j|i, k)

Q(j|i, k)

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

k∈S

∑

j∈S

P (j|i, k) −Q(j|i, k)
Q(j|i, k)

≤ lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

k∈S

∑

j∈S

[P (j|i, k) −Q(j|i, k)]+
α

≤
∑

i∈S

∑

k∈S

∑

j∈S

lim sup
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

[P (j|i, k) −Q(j|i, k)]+
α

≤
∑

i∈S

∑

k∈S

∑

j∈S

lim sup
n→∞

|T (n)| − 2

|T (n)|
[P (j|i, k) −Q(j|i, k)]+

α

=
1

α

∑

i∈S

∑

k∈S

∑

j∈S

[P (j|i, k) −Q(j|i, k)]+. (54)

By (51) and (54) we have

ϕ(µP |µQ) ≤ c. a.s. (55)

By (16) and (55) we know D(c) = Ω. Hence (52), (53) follow from (19), (20), respectively.

Theorem 3. Let X = {Xt, t ∈ T} be a second-order homogeneous Markov chains
field indexed by the double rooted tree with the initial distribution (1) and the transition
matrix Q = Q(z|x, y), x, y, z ∈ S. Then

lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

EQ[HQ(Xt|X1t ,X2t)] = −
∑

i∈S

∑

j∈S

∑

k∈S

q(i, j)Q(k|i, j) logQ(k|i, j),
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µQ − a.s., (56)

where EQ represents the expectation under the measure µQ.
Proof. By the definition of HQ(Xt|X1t ,X2t) in Theorem 2 and the property of the

conditional expectation, we can write

lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

EQ[HQ(Xt|X1t ,X2t)]

= lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

EQ[EQ(− logQ(Xt|X1t ,X2t)|X1t ,X2t)]

= lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

EQ(− logQ(Xt|X1t ,X2t))

= lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

x1t∈S

∑

x2t∈S

∑

xt∈S

[−q(x1t , x2t , xt) logQ(xt|x1t , x2t)]

= lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

j∈S

∑

k∈S

[−q(i, j, k) logQ(k|i, j)]

= lim
n→∞

1

|T (n)|
∑

t∈T (n)\{o,−1}

∑

i∈S

∑

j∈S

∑

k∈S

[−q(i, j)Q(k|i, j) logQ(k|i, j)]

=
∑

i∈S

∑

j∈S

∑

k∈S

[−q(i, j)Q(k|i, j) logQ(k|i, j)] · lim
n→∞

|T (n)| − 2

|T (n)|

=
∑

i∈S

∑

j∈S

∑

k∈S

[−q(i, j)Q(k|i, j) logQ(k|i, j)]. (57)

Therefore, (56) follows from (57) directly.
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