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A Variable Exponent Hardy’s Inequality Approach for
Some Nonlinear Eigenvalue Problem
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x
Abstract. Applying a new bounded ness and compactness result for Hardy’s operator ([ f(t)dt)

0
l

and its conjugate ([ f(t)dt) in variable exponent spaces L0)(0,1) and applying the Mountain

x
Pass Theorem approaches in this paper it has been proved an existence result for the eigenvalue
problem

T)— ! n(x)— 1 q(z)—-1 a(x
- (|y/|p( ) 2y/) = )‘yi( )=t + ($°(lqiw)") w”(l(—gc)(“
y(z) > 0, O<x<l,
y(0) =y(l) =0.

where the exponent function p: (0,1) — (1,00) is monotone near the origin and [ also satisfying a
log-regularity conditions in this points.
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1. Introduction

In this paper, we shall study an existence result for the nonlinear eigenvalue problem

_( ’y/’p(:p)72y/)’ _ /\yp(:p)fl + ( y )q(m)flﬂ

2 (l—x)e
y(x) >0, 0<zx<l, (1)
y(0) = y(1) =0.

Let Lipo(0,1) be a class of Lipshitsz continuous functions f : (0,1) — R with f(0) =
f(1) = 0. Close this class of functions in a norm

HfHWI}(')(O,l) - HfIHLP(-)(O,l)‘
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The obtained variable exponent Sobolev type space denote as WI}(.) (0,1). This is a reflexive
Banach space if 1 < p~ := (mlf) p(z), pT :=sup p(z) < oo (see, e.g. [14, 15])
0, ,
In space Wpl(.) (0,1), consider an eigenvalue problem (1) with Dirichlet conditions in the
ends of a finite interval (0,1).
Let A; be the first eigenvalue number of the p(z)-Laplace’s operator. In other words,

l

[ Iy @) e
= (yeAc(ol imof 0)=y(1)=0 Ol— .
{yeAC(0,l), y#0, y(0)=y(1)=0} f ‘y(x)]p(w) dx

0

A1

It is satisfied
— (14779 ) = A @) @),
y(r) >0, 0<ux<lI, (3)
y(0) =y(l) = 0.

for the first eigenvalue \; and the eigenfunction y;(x) of the problem (2). It has been
shown in [3] that there are infinitely many discreet eigenvalues 0 < A; < Ag... < Ag... of
the problem (3) such that Ay — oo as &k — oo. At that, the first eigenvalue may be
no strongly positive. In the cited work, it was stated that the first eigenvalue is strongly
positive ( Ay > 0) if one dimensional case and a monotony exponent function p(z) be
considered.

To prove the existence of solution of problem (1), we shall apply a Montain pass
theorem due to Ambrosetti and Rabinowitz [2, 1]. In order to carry out this, we need
some new variable exponent boundedness and compactness results for Hardy’s operator
and its conjugate [7, 8, 12, 9].

Theorem 1. Let q,p: (0,1) = (1,00) be measurable functions such that 1 < p~ < p(x) <
q(r) < q7 < oo. Assume that, o€ (1 — p%, 1), and be satisfied the conditions:

1 1
lim sup |[f(z) — f(0)|In — < oo, limsup |f(x)— f(I)|In < 00, (4)
z—0 T z— -z
moreover,
1
t<g < ——. 5
e W & ©)
P
holds.

Then the set of functions {y(t) € AC(0,1) : y(0) = y(I) = 0} with bounded norm

/
|y (3:)HLP(~)(OJ)
are compactly embedded into the class of functions with finite norm
|z
x(l — )™

L10(0,0)
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For an exact characterization of the Hardy’s inequality in variable exponent spaces not
using the regularity conditions (4) on the exponent functions see, the recent works [11, 13])

Theorem 2. Let p: (0,1) — (1,00) be measurable function, such that, 1 < p~ < p(z) <
pt < oo. Assume that, p satisfies (4) near the origin and l. Then it holds an inequality

y(x) e

Hme(x);(O,l) -1 Hy/(x)Hp(x);(O,l) (7)

for all absolutely continuous functions u : (0,1) — R with w(0) = u(l) = 0. Moreover, a
positive constant C in (7) depends on p~,p*,Cy, Co.

From Theorem 2 one gets easily the following Sobolev type inequality

1
Ic H?JHLp(»)(o,z) < Hy/HLP(-)(O,l) (8)

for any absolutely continuous function y in (0,7) with limits y(0) = y(I) = 0.

Theorem 3. Let ¢q,p : (0,1) — (1,00) be measurable functions, such that, 1 < p~ <
p(x) < pt < q <q(x) < q" < oo, and the conditions (4) be satisfied. Let the exponent
function p be monotony near the origin and l. Assume a real positive number a satisfies
(5). Then there exists a positive solution of the problem (1) from space Wp(.)(O, l) for any

A < A1 and a(z) € L*(0,1).

The proof of the above result relies on the celebrated Mountain Pass Theorem of
Ambrosetti and Rabinowitz [1] in the following variant.

Theorem 4. Let X be a real Banach space and let F : X — R be C'-functional. Suppose
that F' satisfies the Palas-Smale condition and the following geometric assumptions:

e 1) there exists positive constants p,co such that F(u) > co for all u € X with
lull = p;

e 2) F(0) < ¢ and there exists v € X such that ||v|| > p and F(v) < cp.

Then the functional F' posseses at least a critical point.

For the multidimensional case n > 3 and constant exponents p =2, 2 < q¢ < %,

0, a(z) = 1 we refer to [4], where an enhanced description of nonlinearities and eigenvalue
number ranges, enabling multiplicity of solutions for the problem (1) is given applying the
Lusternik-Schnirelman category approache in manifold. For the variable exponent setting,
we cite [6], where constant exponents ¢, & = 0, a(z) = 1 has been considered in case n > 2.

o =
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For a solution of problem (1) we call a function y € WI}(_) (0,1) that satisfies the integral
identity

l l
/]y |p(x) 29" da — )\/yf_(x)lvdx
0

/ 0 )
9(@)-1  wva(z
B 0/ (q;a(lyijx)oJ ﬂ?a(l(—.i)a dr =0

for any test function v € Wpl(.)((), l).

Consider in W]}(.)(O, 1) the functional I : W1

p(.)(O, ) = R defined as

where y; = max (y(z),0).

Correct setting a solution notion. Verify correctness of the solution notion and the
functional I(y) setled in E := Wl( )(O [). The first integral in (9) is well defined by virtue
of Holder’s inequality and y,v € Wpl( )(O,l). By virtue of (7) and Holder’s inequalities
second and third integrals are well-defined:

z
/’y+|p(x)2|y+v| dr < COH|y+’p($)7lHLp’(»>(o,z) 1ol s 0

_
< (1 + v+ | ip(»l(o,z)) ¥ 2ot 0y

+_ +—1
COZ<1 +CPF 1HZ~//HZP<.>(0,5)> ””,”Lp(')(O,l)'

For the third integral by use of Young’s inequality, it follows

l
q(z)—1 v
/(mal—m > ‘aja(l—w)a‘dx
0
l l

a(ﬂf) Y+ q(x) . a(x) v q(x) = i
!y@ﬂwﬂ—xw) d *quﬂwﬂ—xw’ do=n+i

For every summand here we have the inequalities

. K9 oy e, L+ KT Y+ e
< <
Zl_/ q- (K:Ea(l—m)o‘) dz < q- /(Kxo‘ 0‘) du
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1+ K7 -1
T (1 + (el ll ooy o0y + CEHyHLP(')(O,l))q )
gt =1

p +—= = ( 1y’ I Lp)(0,0) + Ce 12‘}7’&?()(01))
<L e+ )T I < ol

> q LrO)(0,0) — WPO(O,Z)
with

Y+

m e > 0.

L1000’

Notice, here it has been used the inequality
lvlly < ellyllx +Cellvll, (11)

for a triple Banach spaces Y C X C Z with the imbedding Y CC X to be compactly

[10] and Theorem 1 and Theorem 2.
Same chain of inequalities hold for the i5 too.

The Gatox derivative of /(y) and its continuity.
Show that the functional I(u) has a continuous Gatox derivative I'(u) € E* and for

every v € F it holds

l
< I'(u),v >—/|y'\p(x)_2y’1/ dx—)\/\y|p(x)_2yvdx
0

!
q(z)—2 Y+ v
. . 12
/a x( l—x) ) z(l —x)* zo(l —x) da (12)

0

!
Derivatives of J(y). For a functional J(u) = [ |y/|P®) dz number 7, a function v € E

0
using the mean value theorem, and Lebesgue’s limit theorem tending r — 0, it follows

l
J(y‘f"r?} /1)1 —I—T’U ( )‘p(a:) . ‘y/(w”p(a:)) dr
T
0

l l
= / |y (@) + 0rd/ ()P 72y (2)0 (z) do = / |y (@)["D 72y () () dz,  (13)
0

where 6 € (0,1) depends on z, y(x).
We have used that |/ (z) + v/ (z)[P®) =2 — |y ()|P®)-
have also used that there exists an integrable majorant function for all » € (—1,1) in order

Zasr — 0ae. xe(0,1). We

to apply the Legesgue theorem:
|y (2) + 0r0' ()P 2y ()0 ()
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< <|y/(a:)| + |T||U’($)|)P(x)2<|y/’;|v/|>2

< (W@ + 1 @)1)" < 2207 (1 @)@ 4 120 ).

Therefore, the upper passage to the limit in (13) is legitimately.
The continuity of derivatives J(y). Show J € C1(E, E*). Let y,, — y in E. Then for a
v € E we have

1
‘<J/(yn) J/ 1)>‘_ ’/ ‘yn’pl‘) 2 I |y |p(:p —2 /)’U d:l}‘
0

Using Egorov’s theorem, there is a set A C (0,1) with |A| < 6 such that y], — v uniformly
in (0,1) \ A. Let N(e) € N be such that |y, (z) — ¢/ (z)| <e, =z € (0,])\ Aasn> N(e).
Then

< () — T ()0 > | < / g P24, — |y P2y ||| de
(0,1)\A

4 / [y PO 1 |y PO | de

< C€H'U||W1 (0.0 +CO||UHW1 oz)<||yn”p N Iy’ Hp >(A))

Therefore and since y,, — 3’ in L,(0, 1),
1T (yn) = T (W)= < Ce + collynllr, ) + ol Iz, )

< (C 4 e+ 2¢0lly [l 4y < €

choosing sufficiently small § > 0 and .
Derivatives of F(y). For a functional

l
F(y) = / Y7 dz,  where y.(z) = max{y(x),0},

o

show that

By the same way, as above,

r

l
F(y+rv) — Fy) / R et
T
0
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l
/Cp(x vdac—)/yﬂ?_(x)lvdx as 1 — 0,

where ( is a number between y; and (y + 7v) 4.
Continuity of derivatives of F(y). To show F € CY(E,E*) let y, — y in E. From
Theorem 2 it follows y, — vy in LP1)(0,1). For a fixed v € F we have

| < F'(yn) — F'(y ‘/l p(x y+(x) 1>vd$‘
0

Since y, — y in Lp(')(O, l) there exists a subsequence y,,, converging y almost everywhere
n (0,1). Denote it again y,. Using Egorov’s theorem there exists a set |A| < ¢ with any
small 0 > 0, such that, the convergence y, to y is uniformly on (0,1) \ A.

Then since |(yn)+ — y+| < |yn — y|, it follows

| < F'(yn) — F'(y),v > | = ‘ / ((yn)i(z)fl — yﬁ(x%l) vdx’
(0,1)\A
# [ (7 =9 o
A
<e / ] d + / ()2 o] da + / 2O o] da
(0,1)\A A A

Applying Holder’s inequality here one gets

| < F'(yn) — F'(y),v > |

1
< (G + M7 o cay + 155 oy ) 1ollzoo o) (14)
Applying for any g € L) the inequality
+-1 -1
19" ey < gl + Nlgll e

in the right hand side (14) one gets

| < Fl(yn) — F'(y),v > |

-1
(€ + D)=+ 3lIglt 5y ) o o0

Choosing sufficiently small 6 > 0 and applying inequality (11) this is exceeded

(C+2)Cie||v||E.
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Hence
1F(yn) — F)le

which proves the continuity of derivative of functional F.
Derivatives of G(y). By the same way, find the Gatox derivative of the functional

l
a(z) q(z)
u) = 0/ q(z) (ma(lyj x)a> de

in F and show its continuity. Show that

S (C + 2)018,

l

y q(z)—1 v
<G'(y),v>= /a —a l—x)a) (=2 dx. (15)
0
By the same way, as above,
l
G (y+rv) a(x) 1 (y + rv)4 9@ n q(x)
/qx r :Ua(l—x) ) (:L'O‘(l—:r)a) )vdw
0

:/la(x). 1 <(y+m)i()_y+())vdx

q(z) xo(l —x) r

Using the mean value formula this equals

l
q(z)—1
/a l— e — 1 vdzr,
0

where 0 is a quantity ranged between y; and (y + rv)y. Tending r — 0 and applying
Lebesgue convergence theorem from this one gets (15). For this, it has been used that
a € L*® and v,0 € L2)(0,1). The last inclusion follows from Holder’s inequality and
Theorem 2:

101l a0,y < N1+ rv) -l ey 0,0) + 194 Latr (0)

< 2|yl Lacr 0,0 + 711Vl Latr 0

v

200 Y 2c0
<2l HW”L(I(')(O,U +rl Hm”mt)(o,l)'

Applying the compact embedding result from Theorem 2 by using inequality (11) from
here we get

161l a0y < €20°Ch (Hy/HLP(')(O,l) + T||U/||Lp(-)(o,Z))+

C.21% (HyHLP(‘)(O,l) + 212&7"”””LP"><0J>>'
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This guaranties the limiting prosses using Lebesgue Theorem.
Continuity of derivatives of G(y). Show the continuity of derivative of the functional
G. Let y, — y in E. Show that G'(y,) — G'(y) in E*. In this way, let v € E be any
function.
We have
| < G'(yn) — G'(y),v > |

!
() \O )y Y@ v
= _InJr (I R S |
‘/a(az) <<xa(l—aj)a) <xa(l—aj)a> ) zo(l — )™ x‘
0
As the preceding estimates since |(yn)+ — y+| < |yn — y|, we have

|a(2)|
[ —x))?*

<G -Gwsi=] [

(0,1)\A

a(@)| o1 gt
+‘A/ (zo(1 _x)a)q(ﬂi) ((yn) @-1_ ( ) 1) vdm’

|a )2 o)

(0,1)\A

@) ((y”)(x) 1 y3@0i1>1’d$‘

Ja(x >\yq<$ o]
g (@ =)

(we have included a little neighborhoods of origin and [ to the set A).
Applying Holder’s inequality in the preceding inequality, one gets

’ < G/(yn) - G/(y)ﬂ} > |

< [os+ | ()™

)

q(x)—1
Applying in the case g(z) = ( y-(2) ) and p(x) = q(z) the inequality

2 (l—a)

Lq’(~)(A)
v

T (16)

Lq’<')(A)} ' ’ La)(0,0)

- -1 -1
ng() IHLP’(J < ”g”ip(~) + ||9H]Zp(<)
in the right hand side (16) one gets

| < G'(yn) — G'(y),v > |

@C+1e+3H

N e
lfx) La) Ay (I — z)* llLat)(o,)
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Choosing sufficiently small § > 0 and applying inequality (11) this is exceeded
(C+2)Cie||v||E.
This entails
IG"(y) = G'(yn) 1+ < Che,

which proves the continuity of functional G’.

Weak lower semi continuity of I(y).

Lower semi continuity of J(y) . First show the weak lower semi continuity (w.l.s.c.)
of J(y). (In order to show this, some people use the fact from [5] asserting that a convex
functional is w.l.s.c. if it is a strongly lower semi continuous).

Show that J(y) is convex in E. For any 6 € (0,1) and y, z € E we have

l

J(0y + (1 0)2) = / 10y (2) + (1 — 0)2' ()" da,
0

by convexity of the function P,

l l

< (9/ ‘y’(x)‘p(m) +(1-90) / ‘z’(x)‘p(m) dx

0 0
To show the strong lower semi continuity of J(y) in E set y,, — y. We have

l

! l
d
Jup e [1pear= [ s, —y)pe a
0 0 0

l
= / p(@)y + t(yl — )PO2(Y + ty, — ) (v — ) dw
0

l
d
= [p@) (I + th, )P 100t ) — )+t - ) - )
0

[
+ / Y/ P72y (yl, — ) da,
0

since the first integral is positive by the convexity it holds an inequality, (|a\p_2a —
[b|P~2)(a — b) > 0, for any a,b € R that entails [bP"2b > |a[P~2?a + p|a|P"2a(b — a),
therefore,

l
> / Y/ P2y (yl, — ) da.
0
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Now, it remains to take a limit in the preseeding inequality, in order to show that J(y) is
weakly lower semi continues in FE :

l l l
liminf/\y;]p(x) dr > /\y’\p(x) da:—l—liminf/\y’\p(x)_zy’(y;—y’)dm
n—00 n—oo
0 0 0

l
Sy
0

liminf J(yn) > J(y)

n—oo

ie.

Lower semi continuity of I(y). Let {y,} C E be a weakly convergent subsequence of
E tending toy € E, i.e. y, — y . Show that liminf I(y,) > I(y). By Theorem 1 the space
n—oo

E compactly imbedded into the class (6). By this, there exists a subsequence y,, that
—Q
converges strongly to y in the norm H (a:(l — m)) . ‘

and H”LP(')(O,Z) This means

a0 (0,0)
l
p(z)
hnnilogf I(yn,) = lllglol.}f /p( ) (Y, [P dee
0
L / @)
— lim / |P(:"" 2z — lim a(z) ’ (s )+ dz
n—00 p(;c n—00 q(x) lz*(l — z)>
0 0

! !

1
/ ' |P®) da — / A ly4 |P®) da
) () ) p(x)

Therefore,
liminf I(yy,) > I(y),
n—oo

that proves lower semi continuity of I(y).
Palas-Smale condition (PS). Recall the notion of PS -condition.
Let {yn} C E be a sequence such that

1) I(yn) is bounded ;

2) I'(yn) — I'(y) in E*.
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Then there exists a subsequence y,, that converges to y strongly in E. Since I(y,) is
bounded, we may assume that I(y,,) — ¢ by some real number ¢ € R. To save simplicity,
denote y,, as yn.

Boundedness of y,, in E . From condition 1) it follows that there exists an M > 0 not
depending on n such that |I(y,)| < M, i.e.

! l
0/ 5 (P = A ) / qg‘”i (maif;’“_);)a)q( \de < M,

0

or
l l

0/ ZEQ (xa((gﬁ;)a)qu) dz > /p(lx) (ka\p(””) — A(%)ﬁ"”) dx — M.

0

Then by assumption A; > 0 it follows that

! ! l
(Yn)+ 'S (@) AG™, \p(a) _
/G(UC) (m Tr [y [P\ dz — o — (o) de — Mg~ (17)
0 0
On other hand, from condition 2) it follows that

| < I'(yn),0 > | < o(W)llvllw 00

i.e.
l

l
/ lyn [P 2y da — A / () 0 dee
0

0

l
- O/Q(m) (azaigl/n—);)a)q(x) g a:o‘(lzi )™ &

= 0(1)HUIHLP<‘>(0,1)-
Inserting here v = y,, this yields

l

l
[ ae - [z
0

0

!
- [at) (a2 0) "™ do = oW s
0

or

(\yn!p A(yn)i(x)) dx

=)
—~
8
N—
—
8
Q
|
TIE
|\_/
s [+
=
~——
=N
2
Q
H
o\
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+0(1)Hy;HLP(->(oJ)- (18)

From (18) and (17) and the assumption ¢~ > p™ it follows that

l
/ ol do <7 (“ / 2 dz + Mg~ + o)l ooy
0

or
l

!
. © Mq p*
[l do <8 [ @) do S22 o)) o
0

0

Now assuming A < A\; and a strong positivity of the first eigenvalue A; in (2), (3) from
this it follows

l
/ W P@ d < O(1).
0

The bounded ness of ¥, in £ has been proved.

Now, after establishment of the bounded ness {y,} in E, we may apply the the weak
convergence for some subsequence {y,, }. Moreover, show the strong convergence y,, — y
in . Remaining the notation ¥, in place of y,,, the weak convergence y, — y in F, we
have the equality for PS-sequence:

l

l
/ P2y of dz — A / ()"
0

0

l
q(z)—1 v
/a lfx) ) ':L“O‘(lf:zz)adx
0

= o1Vl zotr 0.1)- (19)

Inserting in (19) v = y,, — y, we get

l
/ L PO =2y (o, — o) do — A / ()2 (g — y) d
0

o\
Q
N
|
8
N—
Q
N——
=8
8
|
L
%
~
]
SRS
SN—
Q
QL
)

Wllyn =¥l et 0.y (20)
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From (20), we easily get

l

(I =20, = 1/ 7972y ) (4, — o) i + / Y172y (g, — o)
0

o _

l l
= A/ ()27 = ) (g — ) da + A/yﬁ(gﬁ)_l(yn ~v)
0 0
l
+0/a(az) [(xa((l%_);)a)q( - (W(lyir x)a>q( | 1} ' xf’fy(?:il)a e

+ o) (o) e da

0

~

+o(Dllyn = ¥'ll o 0,0y (21)

Now, since y, — y weakly in E , we see that the additional terms in (21) tend to zero:
those are

lim / [y P92y (g, — ) = 0 (22)
n—oo
that is implied from the fact that for y € E it is [¢/[P(®)=2y' € E* (that is |y/[P®*) =2y € LV

The convergence
!

lim [ o2 (g —y) =0 (23)

n—00
0

follows from the fact that yﬁ(x) e E*, and y, — y weakly in E since

l l

‘/yz(x)_l( dx‘ <C(l / p(x 2 :x | dz, (24)

ZU
0 0

where C(I) = I? max {lp+_1, [P~ ~1}. Applying inequality (7) to the expression (24) we find
that is exceeded

B p(z—1)
= C(l)‘ a:y(? - i) ’ LP”‘ 5(7 — ) ‘ L0

< GO — ¥/l oo (W10 + 19/ 12,0") < Cllyn =o'
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The convergence

Y+ @)=y, —y
S o — —— = dx = 2
)0‘> x(l — ) v=0 (25)

(z)-1
follows from the fact that —2&) ( Yt )q € E*, since

zo(l—2)= \ zo(l—2)®
l
‘O/CL x( l—x) )q(m) 11;0‘1/(1—;/) dx‘
< Glells - || =551

—x)llLa®) H( lyi:c)>qm_1‘

v =¥ lloer - (19150 + 1¥11560") < Callym =l

where C(l) = max{lz(l_o‘)q+, l2(l_a)q_}. Applying the limits (22), (23), (25) it follows
from (21) that

()

< C1()C5l|all e -

(I 7724, = 1y 1792y ) (5, — o) dx

o _

l
_ / KR COnt VR g
0

l

+ [ [(rts) " - Gr) ) e

0
+o(Dllgn = ¥'ll ooy + 0(1)- (26)

We need the following two inequalities for a,b € R (see e.g., [? | in the case of n
-dimensional vectors)

(I o= P 2) (@ =) > m@la—bP i p>2,

a—bl2
(a0~ 6 (@~ b) = o (p) 2

(al + 16l)""

In order to finish the proof of convergence y, — y in F , we shall use Egorov’s theorem
in order to show a convergence to zero of the first summand in the right hand side (26),
and compact imbedding theorem, to show the convergence of second summand.

if p<2. (27)
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For A > 0, p > 2 using (27) it follows from (21) that

l

[
1(p) / lyl, — oI da < A/ ()57 = 2N (g — y) da
0

0

l
e[ [Gt) - G) R

oDl = ¥'ll oo o) + (1)

Using mean value theorem, the last integral (28) is estimated as

!
)0/“ ) - Gae) )

l

Yn — Y 2 Un q(x)_Q _.l_ Y Q(x)_2
<0~ D)l - [ (=) B

o] — « a)a(x)—2
; a(l—x (z(l — z)*)

Further, applying Holder’s inequality in the right hand side it is exceeded

2 qgt—2
i ) o
ra)

|Yn
zo(l — z)>

Yn — Y

< (@ = Dlle@)ll|| =

ra)

(29)

as n — oo by using the compact embedding F into the weighted class (6) in Theorem 2.
Using Egorov’s theorem there exists a set |A| < ¢ with any small § > 0, such that
the convergence y, to y is uniformly on A¢ = (0,1) \ A. Applying that, and the Holder

inequality, we see

l
/ x) 1 y]i(:c)—l)(yn . y) da
0

< s/ (R W
Ac

+ / (190 P + |y PO =21y + yn 2[y[P@ 2 + |[yP)) do < (M + 4)e
A

choosing sufficiently small § > 0 and large n.

(30)

Inserting in (28) the estimates (30), (29) we get the strong convergence y, — y in E

for the case p(z) > 2.
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It remains to consider the case p < 2. Inserting the second inequality (27) in (28) and
applying the Holder inequality, we get

l l

/12
/ Y — yl _dr < A/ (9771 = 2OV (g — ) de
0 \yn! + Iyl 0

l
<[ (Gt - G e @

+o(Dllyn = ¥'ll Loty oy + (1)
The second integral in the right hand side (31) is estimated as

l
}O/a l——;:) )q( - <xa(lyi a:)O‘)q( | 1] ' xay(?:z)a d

l

_ q(z)—1 q(z)-1
< |la(x)|| oo - ( In 7Y ) . Y| + 1yl dx
wr(l=2)*/ (ga(l — g)a)?@!
0

On base of Holder’s inequality

= ‘ Lat) H

as n — oo on base of compactness Theorem 2.
By the same way, it is not difficult to show that

Yn — Y
x(l — x)™

Yn
zo(l — z)>

Y

qt-1
’ zo(l — x)>

q*—l}

ra() ra()

l
/ p(w y+(x)_1)(yn—y) dr —0 as n— oo
0

Therefore,
l

"2
/ lyn = y| dxr =o0(l) as n — oco.
0 Iyn!+ly|

Applying it Holder’s inequality, we get

+

o, — /|1 ) (el + lsellpo ) = o)
Yo — Y () > Co / T E— e < Ynllpp) T [|YUn Lp(')) =o0(l).
" L o (lyn] +|y))>7?

as n — oo.
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This proves the PS-property of the functional I(y). Now, we are ready to the ap-
plication of Mountain pass theorem in order to get an existence result for the problem

(1).

Mountain pass theorem.Let y be a fixed function in E. Inserting ty in place of y

we see that
" A/lt /l G
Y| dx — T
p(z) / p(x ) q(x) (ze( l—x) )q(x)

For sufficiently large ¢t > 0 we have the estimation

oy w o yi
I(tyo) < _/‘Z/I‘p(x) dr — )‘T /yi(x) dz — +/ - q(x) dx
P ) p J q , (aja(l—x)a)

Using the condition ¢= > p™ from this it follows I(y) < 0 for sufficiently large t > 0.
On other hand, I(y) > 0 for sufficiently small norm ||y/||; ). Indeed, for such y € E
it holds the estimates

I(ty) =

o _

; 1
(a:
Iy / 1 v %)
; ZC'/ N L N9 o
(y) 1 <||y/HLP(‘>> LP( q Nl’a l—:]j) )
0 0
X l w o(@) N ! yQ(x) q(x)
> dlis T - -
>l [ () = | Gere)
0 0
+ N7
> Culy 5y - =,

where N = HW(ZIJ%J:)QHM(A), using the Theorem 2, N < C||y/|| 10,

> Cl”l/ HLp() — Hy ||Lp() = ||y HLp()

1
g C1\a —-pt

choosing [yl 0 = (
Therefore, all conditions of Mountain pass theorem is satisfied by the sphere ||y||g = p

1
with p = (%) “="" Then there exists a point yo € E such that I(j) = ¢ = inf I(y)
and ¢ = inf sup I(y) and such that I'(§) = 0, i.e. for any v € E it holds

l l
0=<T1(g / 19172 de — A / grt
0 0
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l

—/a(l“) (W)Q(x)_l . aza(lvw dz.

0

that is a solution of the problem (1). It remains to show that yg is positive. Insert in the
preceding equality v = y_ := (—y)4+. Then

l l
0= / 1§/ P24 da — A / PO da
0 0

~

! X . )
—O/a(x)(:za(lij)a) ) 1'xa(ly—x)adx'

Therefore, j_ = 0, i.e §=0, then ¢ is a positive solution of the problem (1).
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