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Abstract. In this paper, we prove Bushell-Okrasiaski inequality at decreasing case for two classes

of pseudo-integrals. One of them, classes with pseudo-integrals where pseudo-operations are defined

via a monotone and continuous generator function. The other one concerns the pseudo-integrals

based on a semiring with an idempotent addition and a pseudo-multiplication generator.
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1. Introduction

Not long ago, H. Román-Flores et al. analyzed an interesting type of geometric in-

equalities for the Sugeno integrals with some applications to convex geometry in [12].

More precisely, a Prékopa-Leindler type inequality for fuzzy integrals was proven, and

subsequently used for the characterization of some convexity properties of fuzzy measures.

In this paper, we use Pseudo-analysis for the generalization of the classical analysis,

where instead of the field of the numbers a semiring is defined on a real interval [a, b] ⊂

[−∞,∞] with pseudo-addition ⊕ and with pseudo-multiplication �. Thus it would be an

interesting topic to generalize an inequality from the classical analysis as special cases.

We prove generalizations of the Bushell-Okrasinski’s type inequality for pseudo-integrals.

The classical Bushell-Okrasinski [3] is a convolution type inequality. More precisely,

0x(x− t)s−1g(t)sdt ≤
(

∫ x

0
g(t)

)s
, 0 ≤ x ≤ b, (1.1)
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holds for a continuous and increasing function g : [0, 1] → [0,∞) and s ≥ 1, b ≤ 1. This

inequality was used by Bushell and Okrasinski [3] in the study of solutions of Volterra

integral equations (see also [6]). Later on Walter and Weckesser [16] study some extensions

of (1.1) and finally, after the change of variable t = xs, Malamud [5] analyze the B-O

inequality (1.1) in the following new form:

s

∫ 1

0
(1− t)s−1g(t)sdt ≤

(

∫ x

0
g(t)

)s
.

H. Román-Flores et al [11] proved Bushell-Okrasinski type inequality for the Sugeno inte-

grals as the following way:

Theorem 1.1. (Fuzzy B-O inequality). Let g : [0, 1] → [0,∞) be a continuous and

decreasing function. Then

s−

∫ 1

0
(1− t)s−1g(t)sdt ≥

(

−

∫ 1

0
g(t)dt

)s
,

holds for all s ≥ 2.

2. Preliminaries

2.1. Pseudo-integrals

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of

[−∞,∞]. The full order on [a, b] will be denoted by �. A binary operation ⊕ on [a, b]

is pseudo-addition if it is commutative, non-decreasing(with respect to �), associative

and with a zero (neutral) element denoted by 0. Let [a, b]+ = {x|x ∈ [a, b],0 � x}. A

binary operation � on [a, b] is Pseudo-multiplication if it is commutative, positively non-

decreasing, i.e., x � y implies x� z � y � z for all z ∈ [a, b]+, associative and with a unit

element 1 ∈ [a, b], i.e., for each x ∈ [a, b], 1 � x = x. We assume also 0� x = 0 and that

� is distributive over ⊕, i.e.,

x� (y ⊕ z) = (x� y)⊕ (x� z).

The structure ([a, b],⊕,�) is a semiring ([2, 4, 9, 15]). In this paper we will consider

semirings with following continuous operations:

Case I. The pseudo-addition is idempotent operation and the pseudo-multiplication is

not.
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(a) x⊕y = sup(x, y), � is arbitrary not idempotent pseudo-multiplication on the interval

[a, b]. We have 0 = a and the idempotent operation sup induces a full order in the

following way: x � y if and only if sup(x, y) = y.

(b) x⊕y = inf(x, y), � is arbitrary not idempotent pseudo-multiplication on the interval

[a, b]. We have 0 = b and the the idempotent operation inf induces a full order in

the following way: x � y if and only if inf(x, y) = y.

Case II. The pseudo-operations are defined by a monotone and continuous function g :

[a, b] → [0,∞] (additive generator of ⊕), i.e., pseudo-operations are given with

x⊕ y = g−1(g(x) + g(y)) and x� y = g−1(g(x).g(y)).

If the zero element for the pseudo-addition is a, we will consider increasing generators.Then

g(a) = 0 and g(b) = ∞. If the zero element for the pseudo-addition is b, we will consider

decreasing generators. Then g(b) = 0 and g(a) = ∞.

If the generator g is increasing (respectively decreasing), the operation ⊕ induce the usual

order (respectively opposite to the usual order) on the interval [a, b] in the following way:

x � y if and only if g(x) � g(y).

Case III. Both operation are idempotent. We have

(a) x ⊕ y = sup(x, y), x � y = inf(x, y), on the interval [a, b]. We have 0 = a and

1 = b. The idempotent operation sup induces a usual order (x ≺ y if and only if

sup(x, y) = y).

(b) x⊕ y = inf(x, y), x� y = sup(x, y), on the interval [a, b]. We have 0 = b and 1 = a.

The idempotent operation inf induces an order opposite to the usual order( x � y if

and only if inf(x, y) = y).

2.2. Explicit forms of special Pseudo-integrals

We shall consider the semiring ([a, b],⊕,�) for three (with completely different be-

haviour) cases, namely I(a), II, and III(a). Observe that the cases I(b) and III(b) are

linked to the cases I(a) and III(a) by duality. First case is when pseudo-operations are

generated by a monotone and continuous function g : [a, b] → [0,∞], case then the pseudo-

integral for a measurable function f : X → [a, b] is given by

X⊕f � dm = g−1(

∫

X

(gof)d(gom)), (2.1)
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Where the integral applied on the right side is the standard Lebesgue integral. In

spacial case, when X = [c, d], A = B(X) and m = g−1oλ, λ the standard Lebesgue

measure on [c, d], then we use notation
∫

⊕

[c,d]
f(x)dx =

∫

⊕

X

f � dm.

By (2.1)
∫

⊕

[c,d]
f(x)dx = g−1

(

∫ d

c

g(f(x))dx
)

,

i.e., we have recovered the g-integral (see[8, 9]).

Second case is when the semiring is of the form ([a, b], sup,�), case I(a) and III(a). We

will consider complete sup-measure m only and A = 2x, i.e., for any system (Ai)i ∈ I of

measurable sets,

m( ∪
i∈I
Ai) = sup

i∈I

m(Ai).

Recall that if X is countable (especially, if X is finite) then any σ-sup-measure m is

complete and, moreover, m(A) = supx∈A ψ(X), where ψ : X → [a, b] is a density function

given by ψ(x) = m({x}). Then the pseudo-integral for a function f : X → [a, b] is given

by
∫

⊕

X

f � dm = sup
x∈X

(f(x)� ψ(x)),

where function ψ defines sup-measure m.

Theorem 2.1. Let m be a sup-measure on ([0,∞],B([0,∞])), where B([0,∞]) is the

Borel σ-algebra on [0,∞], m(A) = esssupµ(ψ(x)|x ∈ A), where ψ : [0,∞] → [0,∞] is

a continuous density. Then for any pseudo-addition ⊕ with a generator g there exists a

family {mλ} of ⊕λ-measure on ([0,∞[,B), where ⊕λ is generated by gλ (the function g

of the power λ), λ ∈]0,∞[, such that limλ→∞mλ = m.

For any continuous function f : [0,∞] → [0,∞] the integral
∫

⊕
f�dm can be obtained

as a limit of g-integrals, [7].

Theorem 2.2. Let ([0,∞], sup,�) be a semiring with � generated by some increasing

generator g, i.e., we have x� y = g−1(g(x)g(y)) for every x, y ∈ [a, b]. Let m be the same

as in Theorem 2.1. Then there exists a family {mλ} of ⊕λ-measure, where ⊕λ is generated

by gλ, λ ∈]0,∞[, such that for every continuous function f : [0,∞] → [0,∞]
∫ sup

f � dm = lim
λ→∞

∫

⊕λ

f � dmλ = lim
λ→∞

(gλ)−1
(

∫

gλ(f(x))dx
)

.
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Now we recall generalization of the Jensen inequality for pseudo-integral that proved

by E. Pap et al. on [10].

Theorem 2.3. Let Φ : [a, b] → [a, b] be a convex and nondecreasing function. If a

generator g : [a, b] → [a, b] of the pseudo-addition ⊕ and the pseudo-multiplication � is

a convex and increasing function, then for any measurable function f : [0, 1] → [a, b] we

have

Φ
(

∫

⊕

[0,1]
f(x)dx

)

≤

∫

⊕

[0,1]
Φ(f(x))dx.

Theorem 2.4. Let Φ : [a, b] → [a, b] be a convex and nondecreasing function, and the

pseudo-multiplication � is represented by a convex and increasing generator g. Let m be

the same as in Theorem 2.1. Then for any continuous function f : [0, 1] → [a, b] we have

Φ
(

∫ sup

[0,1]
f � dm

)

≤

∫ sup

[0,1]
Φ(f)� dm.

Theorem 2.5. Let u, v : [0, 1] → [a, b] be two measurable functions and let a generator g :

[a, b] → [0,∞) of the pseudo-addition ⊕ and the pseudo-multiplication � be an increasing

function. If u and v are comonotone functions, then the inequality

∫

⊕

[0,1]
(u� v)dx ≥

(

∫

⊕

[0,1]
udx

)

�
(

∫

⊕

[0,1]
vdx

)

,

holds and the reserve inequality also holds whenever u and v are countermonotone func-

tions.

3. Main results

In this section, we prove Bushell-Okrasiaski inequality for pseudo-integrals.

Theorem 3.1. (Pseudo Bushell-Okrasiaski inequality) Let f : [0, 1] →]a, b[ be a continu-

ous and decreasing function. If a generator g :]a, b[→]a, b[ of the pseudo-addition ⊕ and

the pseudo-multiplication � is a convex and increasing function, then

∫

⊕

[0,1]
(1− t)s−1 � f s(t)dt ≥

1

s
�

(

∫

⊕

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.
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Proof. By the definition of pseudo-integral and pseudo-operations we have
∫

⊕

[0,1]
(1− t)s−1 � f s(t)dt = g−1

(

∫ 1

0
g
[

(1− t)s−1 � f s(t)
]

dt
)

= g−1
(

∫ 1

0
g
[

g−1(g((1 − t)s−1)g(f s(t))
]

dt
)

= g−1
(

∫ 1

0
g((1 − t)s−1)g(f s(t))dt

)

.

By classic Chebyshev’s integral inequality ([14]), we have;

g−1
(

∫ 1

0
g((1 − t)s−1)g(f s(t))dt

)

≥ g−1
[(

∫ 1

0
g((1 − t)s−1)dt

(

∫ 1

0
g(f s(t))dt

)]

= g−1
[

gg−1
(

∫ 1

0
g((1 − t)s−1)dt

)

gg−1
(

∫ 1

0
g(f s(t))dt

)]

= g−1
[

g
(

∫

⊕

[0,1]
(1− t)s−1dt

)

g
(

∫

⊕

[0,1]
f s(t)dt

)]

=
(

∫

⊕

[0,1]
(1− t)s−1dt

)

�
(

∫

⊕

[0,1]
f s(t)dt

)

.

By using the Theorem 2.3,

[0, 1]⊕(1− t)s−1 � f s(t)dt ≥
(

∫

⊕

[0,1]
(1− t)s−1dt

)

�
(

∫

⊕

[0,1]
f(t)dt

)s
, (3.1)

in the other hand by using the classic Jensen inequality ([13]), we can show that
∫

⊕

[0,1]
(1− t)s−1dt = g−1

(

∫ 1

0
g((1 − t)s−1)dt

)

≥ g−1
(

g

∫ 1

0
(1− t)s−1dt

)

=

∫ 1

0
(1− t)s−1dt =

1

s
(3.2)

so by (3.1) and (3.2) we obtain that:
∫

⊕

[0,1]
(1− t)s−1 � f s(t)dt ≥

1

s
�

(

∫

⊕

[0,1]
f(t)dt

)s
.

Thereby, the theorem is proved.J

Example 3.2. Let g(x) = ex. The corresponding pseudo-operations are x⊕ y = ln(ex+ ey)

and x� y = x+ y, the Theorem 3.1 reduces on the following inequality,

ln
(

∫ 1

0
e(1−t)s−1+fs(t)dt

)

≥
1

s
+

(

ln(

∫ 1

0
ef(t)dt)

)s
.
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In the sequel, we generalize the Bushell-Okrasiaski inequality by the semiring ([0, 1],max,�),

where � is generated.

Theorem 3.3. (Pseudo Bushell-Okrasiaski inequality) Let f : [0, 1] →]a, b[ be a continu-

ous and decreasing function, and� is represented by a convex and increasing multiplication

generator g and m be the same as in Theorem 2.1, then
∫ sup

[0,1]
(1− t)s−1 � f s(t)� dm ≥

1

s
�

(

∫ sup

[0,1]
f(t)dt

)s
,

holds for all s ≥ 2.

Proof. By Theorem 2.2 we have:
∫ sup

[0,1]
(1− t)s−1 � f s(t)� dm = lim

λ→∞

∫

⊕λ

[0,1]
(1− t)s−1 � f s(t)� dmλ

= lim
λ→∞

(gλ)−1
(

∫ 1

0
gλ((1− t)s−1 � f s(t))dt

)

.

Using the Theorem 2.5 so we have
∫ sup

[0,1]
(1−t)s−1�f s(t)�dm ≥ lim

λ→∞

[

(gλ)−1
(

∫ 1

0
gλ((1−t)s−1)dt

)

�(gλ)−1
(

∫ 1

0
gλ(f s(t))dt

)]

=
[

lim
λ→∞

(gλ)−1

∫ 1

0
gλ((1− t)s−1)dt

)

�
(

lim
λ→∞

(gλ)−1

∫ 1

0
gλ((f s(t))dt

]

=
(

∫ sup

[0,1]
(1− t)s−1 � dm

)

�
(

∫ sup

[0,1]
f s(t)� dm

)

.

Applying the Theorem 2.4, we obtain that:
∫ sup

[0,1]
(1− t)s−1 � f s(t)� dm ≥

(

∫ sup

[0,1]
(1− t)s−1 � dm

)

�
(

∫ sup

[0,1]
f(t)� dm

)s
. (3.3)

Also we have:
∫ sup

[0,1]
(1− t)s−1 � dm = lim

λ→∞

(

∫

⊕λ

[0,1]
(1− t)s−1 � dmλ

)

= lim
λ→∞

(gλ)−1
(

∫ 1

0
gλ((1 − t)s−1)dt

)

≥ lim
λ→∞

(gλ)−1
(

gλ
∫ 1

0
((1 − t)s−1)dt

)

= lim
λ→∞

∫ 1

0
((1− t)s−1)dt =

1

s
. (3.4)

From (3.3) and (3.4) we have
∫ sup
[0,1](1− t)s−1 � f s(t)� dm ≥ 1

s
�
( ∫ sup

[0,1] f(t)dt
)s
. J
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Example 3.4. Let gλ = eλx and ψ(x) be from Theorem 2.1, then

x�λ y = x+ y and lim
λ→∞

( 1

λ
ln(eλx + eλy)

)

= max(x, y).

Therefore B-O type inequality from Theorem 3.3 reduces on

sup
x∈[0,1]

[(

(1− x)s−1 + f s(x)
)

+ ψ(x)
]

≥
1

s
+

[

sup
x∈[0,1]

(

f(x) + ψ(x)
)]s
.

Note that third important case ⊕ =max and � =min has been studied in [11] and the

Pseudo-integrals in such a case yields the Sugeno integral.

4. Conclusion

We have proved the B-o integral type inequality for the pseudo-integral for two char-

acteristic cases: generated and max-plus. For further investigation we continue to explore

other integral inequalities for fuzzy integrals.

Open problem: Dose B-O type inequalities hold for the Chaquet integral?
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