Bushell-Okrasiaski type inequality for pseudo-integrals

Daraby B., Arabi L. and Firuzi S.

Abstract

In this paper, we prove Bushell-Okrasiaski inequality at decreasing case for two classes of pseudo-integrals. One of them, classes with pseudo-integrals where pseudo-operations are defined via a monotone and continuous generator function. The other one concerns the pseudo-integrals based on a semiring with an idempotent addition and a pseudo-multiplication generator.

Key Words and Phrases: B-O type inequality, Convolution type inequality, Pseudo-addition, Pseudo-multiplication, Pseudo-integral

2000 Mathematics Subject Classifications: 03E72, 28E10, 26E50

1. Introduction

Not long ago, H. Román-Flores et al. analyzed an interesting type of geometric inequalities for the Sugeno integrals with some applications to convex geometry in [12]. More precisely, a Prékopa-Leindler type inequality for fuzzy integrals was proven, and subsequently used for the characterization of some convexity properties of fuzzy measures.

In this paper, we use Pseudo-analysis for the generalization of the classical analysis, where instead of the field of the numbers a semiring is defined on a real interval $[a, b] \subset$ $[-\infty, \infty]$ with pseudo-addition \oplus and with pseudo-multiplication \odot. Thus it would be an interesting topic to generalize an inequality from the classical analysis as special cases. We prove generalizations of the Bushell-Okrasinski's type inequality for pseudo-integrals.

The classical Bushell-Okrasinski [3] is a convolution type inequality. More precisely,

$$
\begin{equation*}
0^{x}(x-t)^{s-1} g(t)^{s} d t \leq\left(\int_{0}^{x} g(t)\right)^{s}, \quad 0 \leq x \leq b, \tag{1.1}
\end{equation*}
$$

http://www.cjamee.org © 24 C 2013 CJAMEE All rights reserved.
holds for a continuous and increasing function $g:[0,1] \rightarrow[0, \infty)$ and $s \geq 1, b \leq 1$. This inequality was used by Bushell and Okrasinski [3] in the study of solutions of Volterra integral equations (see also [6]). Later on Walter and Weckesser [16] study some extensions of (1.1) and finally, after the change of variable $t=x s$, Malamud [5] analyze the B-O inequality (1.1) in the following new form:

$$
s \int_{0}^{1}(1-t)^{s-1} g(t)^{s} d t \leq\left(\int_{0}^{x} g(t)\right)^{s} .
$$

H. Román-Flores et al [11] proved Bushell-Okrasinski type inequality for the Sugeno integrals as the following way:

Theorem 1.1. (Fuzzy B-O inequality). Let $g:[0,1] \rightarrow[0, \infty)$ be a continuous and decreasing function. Then

$$
s f_{0}^{1}(1-t)^{s-1} g(t)^{s} d t \geq\left(f_{0}^{1} g(t) d t\right)^{s}
$$

holds for all $s \geq 2$.

2. Preliminaries

2.1. Pseudo-integrals

Let $[a, b]$ be a closed (in some cases can be considered semiclosed) subinterval of $[-\infty, \infty]$. The full order on $[a, b]$ will be denoted by \preceq. A binary operation \oplus on $[a, b]$ is pseudo-addition if it is commutative, non-decreasing(with respect to \preceq), associative and with a zero (neutral) element denoted by $\mathbf{0}$. Let $[a, b]_{+}=\{x \mid x \in[a, b], \mathbf{0} \preceq x\}$. A binary operation \odot on $[a, b]$ is Pseudo-multiplication if it is commutative, positively nondecreasing, i.e., $x \preceq y$ implies $x \odot z \preceq y \odot z$ for all $z \in[a, b]_{+}$, associative and with a unit element $1 \in[a, b]$, i.e., for each $x \in[a, b], 1 \odot x=x$. We assume also $\mathbf{0} \odot x=\mathbf{0}$ and that \odot is distributive over \oplus, i.e.,

$$
x \odot(y \oplus z)=(x \odot y) \oplus(x \odot z) .
$$

The structure $([a, b], \oplus, \odot)$ is a semiring $([2,4,9,15])$. In this paper we will consider semirings with following continuous operations:
Case I. The pseudo-addition is idempotent operation and the pseudo-multiplication is not.
(a) $x \oplus y=\sup (x, y), \odot$ is arbitrary not idempotent pseudo-multiplication on the interval $[a, b]$. We have $\mathbf{0}=a$ and the idempotent operation sup induces a full order in the following way: $x \preceq y$ if and only if $\sup (x, y)=y$.
(b) $x \oplus y=\inf (x, y), \odot$ is arbitrary not idempotent pseudo-multiplication on the interval $[a, b]$. We have $\mathbf{0}=b$ and the the idempotent operation inf induces a full order in the following way: $x \preceq y$ if and only if $\inf (x, y)=y$.

Case II. The pseudo-operations are defined by a monotone and continuous function g : $[a, b] \rightarrow[0, \infty]$ (additive generator of \oplus), i.e., pseudo-operations are given with

$$
x \oplus y=g^{-1}(g(x)+g(y)) \quad \text { and } \quad x \odot y=g^{-1}(g(x) \cdot g(y)) .
$$

If the zero element for the pseudo-addition is a, we will consider increasing generators.Then $g(a)=0$ and $g(b)=\infty$. If the zero element for the pseudo-addition is b , we will consider decreasing generators. Then $g(b)=0$ and $g(a)=\infty$.
If the generator g is increasing (respectively decreasing), the operation \oplus induce the usual order (respectively opposite to the usual order) on the interval $[a, b]$ in the following way: $x \preceq y$ if and only if $g(x) \preceq g(y)$.
Case III. Both operation are idempotent. We have
(a) $x \oplus y=\sup (x, y), x \odot y=\inf (x, y)$, on the interval $[a, b]$. We have $\mathbf{0}=a$ and $\mathbf{1}=b$. The idempotent operation sup induces a usual order $(x \prec y$ if and only if $\sup (x, y)=y)$.
(b) $x \oplus y=\inf (x, y), x \odot y=\sup (x, y)$, on the interval $[a, b]$. We have $\mathbf{0}=b$ and $\mathbf{1}=a$. The idempotent operation inf induces an order opposite to the usual order ($x \preceq y$ if and only if $\inf (x, y)=y)$.

2.2. Explicit forms of special Pseudo-integrals

We shall consider the semiring $([a, b], \oplus, \odot)$ for three (with completely different behaviour) cases, namely $\mathrm{I}(\mathrm{a})$, II, and $\operatorname{III}(\mathrm{a})$. Observe that the cases $\mathrm{I}(\mathrm{b})$ and $\operatorname{III}(\mathrm{b})$ are linked to the cases $\mathrm{I}(\mathrm{a})$ and $\operatorname{III}(\mathrm{a})$ by duality. First case is when pseudo-operations are generated by a monotone and continuous function $g:[a, b] \rightarrow[0, \infty]$, case then the pseudointegral for a measurable function $f: X \rightarrow[a, b]$ is given by

$$
\begin{equation*}
X^{\oplus} f \odot d m=g^{-1}\left(\int_{X}(g o f) d(g o m)\right), \tag{2.1}
\end{equation*}
$$

Where the integral applied on the right side is the standard Lebesgue integral. In spacial case, when $X=[c, d], \mathcal{A}=\mathcal{B}(X)$ and $m=g^{-1} o \lambda, \lambda$ the standard Lebesgue measure on $[c, d]$, then we use notation

$$
\int_{[c, d]}^{\oplus} f(x) d x=\int_{X}^{\oplus} f \odot d m
$$

By (2.1)

$$
\int_{[c, d]}^{\oplus} f(x) d x=g^{-1}\left(\int_{c}^{d} g(f(x)) d x\right)
$$

i.e., we have recovered the g -integral (see $[8,9]$).

Second case is when the semiring is of the form $([a, b]$, sup, $\odot)$, case $\mathrm{I}(\mathrm{a})$ and $\operatorname{III}(\mathrm{a})$. We will consider complete sup-measure m only and $\mathcal{A}=2^{x}$, i.e., for any system $\left(A_{i}\right)_{i} \in I$ of measurable sets,

$$
m\left(\cup_{i \in I} A_{i}\right)=\sup _{i \in I} m\left(A_{i}\right) .
$$

Recall that if X is countable (especially, if X is finite) then any σ-sup-measure m is complete and, moreover, $m(A)=\sup _{x \in A} \psi(X)$, where $\psi: X \rightarrow[a, b]$ is a density function given by $\psi(x)=m(\{x\})$. Then the pseudo-integral for a function $f: X \rightarrow[a, b]$ is given by

$$
\int_{X}^{\oplus} f \odot d m=\sup _{x \in X}(f(x) \odot \psi(x))
$$

where function ψ defines sup-measure m.
Theorem 2.1. Let m be a sup-measure on $([0, \infty], \mathfrak{B}([0, \infty])$, where $\mathfrak{B}([0, \infty])$ is the Borel σ-algebra on $[0, \infty], m(A)=\operatorname{esssup}_{\mu}(\psi(x) \mid x \in A)$, where $\psi:[0, \infty] \rightarrow[0, \infty]$ is a continuous density. Then for any pseudo-addition \oplus with a generator g there exists a family $\left\{m_{\lambda}\right\}$ of \oplus_{λ}-measure on $\left(\left[0, \infty[, \mathfrak{B})\right.\right.$, where \oplus_{λ} is generated by g^{λ} (the function g of the power λ), $\lambda \in] 0, \infty\left[\right.$, such that $\lim _{\lambda \rightarrow \infty} m_{\lambda}=m$.

For any continuous function $f:[0, \infty] \rightarrow[0, \infty]$ the integral $\int{ }^{\oplus} f \odot d m$ can be obtained as a limit of g -integrals, [7].

Theorem 2.2. Let $([0, \infty]$, sup,$\odot)$ be a semiring with \odot generated by some increasing generator g , i.e., we have $x \odot y=g^{-1}(g(x) g(y))$ for every $x, y \in[a, b]$. Let m be the same as in Theorem 2.1. Then there exists a family $\left\{m_{\lambda}\right\}$ of \oplus_{λ}-measure, where \oplus_{λ} is generated by $\left.g^{\lambda}, \lambda \in\right] 0, \infty[$, such that for every continuous function $f:[0, \infty] \rightarrow[0, \infty]$

$$
\int^{\text {sup }} f \odot d m=\lim _{\lambda \rightarrow \infty} \int^{\oplus_{\lambda}} f \odot d m_{\lambda}=\lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1}\left(\int g^{\lambda}(f(x)) d x\right)
$$

Now we recall generalization of the Jensen inequality for pseudo-integral that proved by E. Pap et al. on [10].

Theorem 2.3. Let $\Phi:[a, b] \rightarrow[a, b]$ be a convex and nondecreasing function. If a generator $g:[a, b] \rightarrow[a, b]$ of the pseudo-addition \oplus and the pseudo-multiplication \odot is a convex and increasing function, then for any measurable function $f:[0,1] \rightarrow[a, b]$ we have

$$
\Phi\left(\int_{[0,1]}^{\oplus} f(x) d x\right) \leq \int_{[0,1]}^{\oplus} \Phi(f(x)) d x
$$

Theorem 2.4. Let $\Phi:[a, b] \rightarrow[a, b]$ be a convex and nondecreasing function, and the pseudo-multiplication \odot is represented by a convex and increasing generator g . Let m be the same as in Theorem 2.1. Then for any continuous function $f:[0,1] \rightarrow[a, b]$ we have

$$
\Phi\left(\int_{[0,1]}^{\text {sup }} f \odot d m\right) \leq \int_{[0,1]}^{\text {sup }} \Phi(f) \odot d m
$$

Theorem 2.5. Let $u, v:[0,1] \rightarrow[a, b]$ be two measurable functions and let a generator g : $[a, b] \rightarrow[0, \infty)$ of the pseudo-addition \oplus and the pseudo-multiplication \odot be an increasing function. If u and v are comonotone functions, then the inequality

$$
\int_{[0,1]}^{\oplus}(u \odot v) d x \geq\left(\int_{[0,1]}^{\oplus} u d x\right) \odot\left(\int_{[0,1]}^{\oplus} v d x\right)
$$

holds and the reserve inequality also holds whenever u and v are countermonotone functions.

3. Main results

In this section, we prove Bushell-Okrasiaski inequality for pseudo-integrals.
Theorem 3.1. (Pseudo Bushell-Okrasiaski inequality) Let $f:[0,1] \rightarrow] a, b[$ be a continuous and decreasing function. If a generator $g:] a, b[\rightarrow] a, b[$ of the pseudo-addition \oplus and the pseudo-multiplication \odot is a convex and increasing function, then

$$
\int_{[0,1]}^{\oplus}(1-t)^{s-1} \odot f^{s}(t) d t \geq \frac{1}{s} \odot\left(\int_{[0,1]}^{\oplus} f(t) d t\right)^{s}
$$

holds for all $s \geq 2$.

Proof. By the definition of pseudo-integral and pseudo-operations we have

$$
\begin{aligned}
\int_{[0,1]}^{\oplus}(1-t)^{s-1} \odot f^{s}(t) d t & =g^{-1}\left(\int_{0}^{1} g\left[(1-t)^{s-1} \odot f^{s}(t)\right] d t\right) \\
& =g^{-1}\left(\int_{0}^{1} g\left[g^{-1}\left(g\left((1-t)^{s-1}\right) g\left(f^{s}(t)\right)\right] d t\right)\right. \\
& =g^{-1}\left(\int_{0}^{1} g\left((1-t)^{s-1}\right) g\left(f^{s}(t)\right) d t\right)
\end{aligned}
$$

By classic Chebyshev's integral inequality ([14]), we have;

$$
\begin{aligned}
g^{-1}\left(\int_{0}^{1} g\left((1-t)^{s-1}\right) g\left(f^{s}(t)\right) d t\right) & \geq g^{-1}\left[\left(\int_{0}^{1} g\left((1-t)^{s-1}\right) d t\left(\int_{0}^{1} g\left(f^{s}(t)\right) d t\right)\right]\right. \\
& =g^{-1}\left[g g^{-1}\left(\int_{0}^{1} g\left((1-t)^{s-1}\right) d t\right) g g^{-1}\left(\int_{0}^{1} g\left(f^{s}(t)\right) d t\right)\right] \\
& =g^{-1}\left[g\left(\int_{[0,1]}^{\oplus}(1-t)^{s-1} d t\right) g\left(\int_{[0,1]}^{\oplus} f^{s}(t) d t\right)\right] \\
& =\left(\int_{[0,1]}^{\oplus}(1-t)^{s-1} d t\right) \odot\left(\int_{[0,1]}^{\oplus} f^{s}(t) d t\right)
\end{aligned}
$$

By using the Theorem 2.3,

$$
\begin{equation*}
[0,1]^{\oplus}(1-t)^{s-1} \odot f^{s}(t) d t \geq\left(\int_{[0,1]}^{\oplus}(1-t)^{s-1} d t\right) \odot\left(\int_{[0,1]}^{\oplus} f(t) d t\right)^{s} \tag{3.1}
\end{equation*}
$$

in the other hand by using the classic Jensen inequality ([13]), we can show that

$$
\begin{align*}
& \int_{[0,1]}^{\oplus}(1-t)^{s-1} d t=g^{-1}\left(\int_{0}^{1} g\left((1-t)^{s-1}\right) d t\right) \\
& \geq g^{-1}\left(g \int_{0}^{1}(1-t)^{s-1} d t\right) \\
&=\int_{0}^{1}(1-t)^{s-1} d t=\frac{1}{s} \tag{3.2}
\end{align*}
$$

so by (3.1) and (3.2) we obtain that:

$$
\int_{[0,1]}^{\oplus}(1-t)^{s-1} \odot f^{s}(t) d t \geq \frac{1}{s} \odot\left(\int_{[0,1]}^{\oplus} f(t) d t\right)^{s}
$$

Thereby, the theorem is proved
Example 3.2. Let $g(x)=e^{x}$. The corresponding pseudo-operations are $x \oplus y=\ln \left(e^{x}+e^{y}\right)$ and $x \odot y=x+y$, the Theorem 3.1 reduces on the following inequality,

$$
\ln \left(\int_{0}^{1} e^{(1-t)^{s-1}+f^{s}(t)} d t\right) \geq \frac{1}{s}+\left(\ln \left(\int_{0}^{1} e^{f(t)} d t\right)\right)^{s}
$$

In the sequel, we generalize the Bushell-Okrasiaski inequality by the semiring ($[0,1], \max , \odot)$, where \odot is generated.

Theorem 3.3. (Pseudo Bushell-Okrasiaski inequality) Let $f:[0,1] \rightarrow] a, b[$ be a continuous and decreasing function, and \odot is represented by a convex and increasing multiplication generator g and m be the same as in Theorem 2.1, then

$$
\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot f^{s}(t) \odot d m \geq \frac{1}{s} \odot\left(\int_{[0,1]}^{\text {sup }} f(t) d t\right)^{s}
$$

holds for all $s \geq 2$.
Proof. By Theorem 2.2 we have:

$$
\begin{aligned}
\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot f^{s}(t) \odot d m & =\lim _{\lambda \rightarrow \infty} \int_{[0,1]}^{\oplus \lambda}(1-t)^{s-1} \odot f^{s}(t) \odot d m_{\lambda} \\
& =\lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1}\left(\int_{0}^{1} g^{\lambda}\left((1-t)^{s-1} \odot f^{s}(t)\right) d t\right)
\end{aligned}
$$

Using the Theorem 2.5 so we have

$$
\begin{gathered}
\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot f^{s}(t) \odot d m \geq \lim _{\lambda \rightarrow \infty}\left[\left(g^{\lambda}\right)^{-1}\left(\int_{0}^{1} g^{\lambda}\left((1-t)^{s-1}\right) d t\right) \odot\left(g^{\lambda}\right)^{-1}\left(\int_{0}^{1} g^{\lambda}\left(f^{s}(t)\right) d t\right)\right] \\
=\left[\lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1} \int_{0}^{1} g^{\lambda}\left((1-t)^{s-1}\right) d t\right) \odot\left(\lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1} \int_{0}^{1} g^{\lambda}\left(\left(f^{s}(t)\right) d t\right]\right. \\
=\left(\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot d m\right) \odot\left(\int_{[0,1]}^{\text {sup }} f^{s}(t) \odot d m\right) .
\end{gathered}
$$

Applying the Theorem 2.4, we obtain that:

$$
\begin{equation*}
\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot f^{s}(t) \odot d m \geq\left(\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot d m\right) \odot\left(\int_{[0,1]}^{\text {sup }} f(t) \odot d m\right)^{s} \tag{3.3}
\end{equation*}
$$

Also we have:

$$
\begin{align*}
\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot d m & =\lim _{\lambda \rightarrow \infty}\left(\int_{[0,1]}^{\oplus_{\lambda}}(1-t)^{s-1} \odot d m_{\lambda}\right) \\
& =\lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1}\left(\int_{0}^{1} g^{\lambda}\left((1-t)^{s-1}\right) d t\right) \\
& \geq \lim _{\lambda \rightarrow \infty}\left(g^{\lambda}\right)^{-1}\left(g^{\lambda} \int_{0}^{1}\left((1-t)^{s-1}\right) d t\right) \\
& =\lim _{\lambda \rightarrow \infty} \int_{0}^{1}\left((1-t)^{s-1}\right) d t=\frac{1}{s} . \tag{3.4}
\end{align*}
$$

From (3.3) and (3.4) we have $\int_{[0,1]}^{\text {sup }}(1-t)^{s-1} \odot f^{s}(t) \odot d m \geq \frac{1}{s} \odot\left(\int_{[0,1]}^{\text {sup }} f(t) d t\right)^{s}$.

Example 3.4. Let $g^{\lambda}=e^{\lambda x}$ and $\psi(x)$ be from Theorem 2.1, then

$$
x \odot_{\lambda} y=x+y \text { and } \lim _{\lambda \rightarrow \infty}\left(\frac{1}{\lambda} \ln \left(e^{\lambda x}+e^{\lambda y}\right)\right)=\max (x, y) .
$$

Therefore B-O type inequality from Theorem 3.3 reduces on

$$
\sup _{x \in[0,1]}\left[\left((1-x)^{s-1}+f^{s}(x)\right)+\psi(x)\right] \geq \frac{1}{s}+\left[\sup _{x \in[0,1]}(f(x)+\psi(x))\right]^{s} .
$$

Note that third important case $\oplus=\max$ and $\odot=\min$ has been studied in [11] and the Pseudo-integrals in such a case yields the Sugeno integral.

4. Conclusion

We have proved the B-o integral type inequality for the pseudo-integral for two characteristic cases: generated and max-plus. For further investigation we continue to explore other integral inequalities for fuzzy integrals.
Open problem: Dose B-O type inequalities hold for the Chaquet integral?

References

[1] H. Agahi, R. Mesiar, Y. Ouyang, Chebyshev type inequalities for pseudo-integrals, Nonlinear Analysis, 72 (2010) 2737-2743.
[2] B. Daraby, Genralization of the Stolaresky type inequality for pseudo-integrals, Fuzzy Sets and Systems, 194 (2012) 90-96.
[3] P. J. Bushell, W.Okrasinski, nonlinear volterra integral equations with convolution kernel, J. London Math. Soc. 41 (2) (1990) 503-510.
[4] W. Kuich, Semiring, Automata, Languages, Springer-verlag, Berlin, 1986.
[5] S. M. Malamud, Som complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, pro. Am. Math. Soc. 129 (2001) 2671-2678.
[6] M. Meehan, D. O'Regan, positive solutions of voltera integral equations using integral inequalities, J. Inequal. Appl. 7 (2) (2002) 285-307.
[7] R. Mesiar, E. Pap, Idempotent integral as limit of g-integral, Fuzzy Sets Syst. 102 (1999) 385-392.
[8] E. Pap, An integral generated by decomposable measure, Univ, u Novom sadu zb. Rad. prirod. Mat. Fak. Ser. Mat, 20 (1) (1990) 135-144.
[9] E. Pap, g-calculus, u Novom sadu zb. Rad. prirod. Mat. Fak. Ser. Mat. 23 (1) (1993) 145-156.
[10] E. Pap, M. Š trboja, Generalizationof the Jensen inequality for Pseudo-integral, Inform. Sci. 180 (2010) 543-548.
[11] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, A convolution tyoe inequality for fuzzy integrals, Applied Mathematics and Computation, 195 (2008) 94-99.
[12] H. Román-Flores, A. Flores-Franulič, Y. Chalco-Cano, Sugeno integral and geometric inequalities, International journal of Uncertainly Fuzziness and knowledgebaced Systems 15 (2007) 1-11.
[13] H. L Royden, Real Analysis, Macmillan, New York, 1988.
[14] Y. L. Tong, Relationship between stochastic inequalities and some classical mathematical inequalities, J. Inequal. Appl. 1 (1997) 85-98.
[15] Y. Ouyang, R. Mesiar, On the Chebyshev type inequality for seminormed fuzzy integral, Applied Mathematical Letter 22 (2009) 1810-1815.
[16] W. Walter, V. Weckesser, An integral inequality of convolution type, Aequationes Math. 46 (1993) 200-202.

Bayaz Daraby
Department of Mathematics, University of Maragheh, P. O. Box 55181-83111, Maragheh, Iran
E-mail: bayazdaraby@yahoo.com

Leila Arabi
Department of Mathematics, University of Maragheh,Maragheh, Iran
E-mail:arabi_188@yahoo.com

Samaneh Firuzi
Department of Mathematics, University of Maragheh, Maragheh, Iran
E-mail: samanefirouzi@gmail.com

