
Caspian Journal of Applied Mathematics, Ecology and Economics
V. 2, No 1, 2014, July
ISSN 1560-4055

Hardy-Littlewood-Stein-Weiss Inequality in the General-

ized Morrey Spaces with Variable Exponent

J. J. Hasanov

Abstract. We consider generalized weighted Morrey spaces Mp(·),ω,|x−x0|
γ

(Ω) with variable ex-
ponent p(x) and a general function ω(x, r) defining the Morrey-type norm. In case of bounded
sets Ω ⊂ R

n we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-
Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams
type Mp(·),ω,|x−x0|

γ

(Ω) → Mq(·),ω,|x−x0|
γ

(Ω)-theorem for the potential operators Iα(·), also of vari-
able order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type
integral inequalities on ω(x, r), which do not assume any assumption on monotonicity of ω(x, r) in
r.
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1. Introduction.

Morrey spaces were introduced by C. B. Morrey in 1938 in connection with certain
problems in elliptic partial differential equations and calculus of variations (see [45]). They
are defined by the norm

‖f‖Lp,λ := sup
x, r>0

r
−λ

p ‖f‖Lp(B(x,r)),

where 0 ≤ λ < n, 1 ≤ p < ∞. In the theory of partial differential equations, together with
weighted Lebesgue spaces, Morrey spaces Lp,λ(Ω) play an important role. Later, Morrey
spaces found important applications to Navier-Stokes ([44], [66]) and Schrödinger ([50],
[52], [53], [64], [65]) equations, elliptic problems with discontinuous coefficients ([10], [18]),
and potential theory ([1], [2]). An exposition of the Morrey spaces can be found in the
books [19] and [42].

As is known, over the last two decades there has been an increasing interest in the
study of variable exponent spaces and operators with variable parameters in such spaces,
we refer the readers to the surveying papers [16], [29], [38], [59], on the progress in this
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field, including topics of Harmonic Analysis and Operator Theory (see also references
therein).

Variable exponent Morrey spaces Lp(·),λ(·)(Ω), were introduced and studied in [3] and
[47] in the Euclidean setting and in [30] in the setting of metric measure spaces, in case of
bounded sets. In [3] there was proved the boundedness of the maximal operator in variable
exponent Morrey spaces Lp(·),λ(·)(Ω) under the log-condition on p(·) and λ(·), and for
potential operators, under the same log-condition and the assumptions infx∈Ω α(x) > 0,
supx∈Ω[λ(x) + α(x)p(x)] < n, there was proved a Sobolev type Lp(·),λ(·) → Lq(·),λ(·)–
theorem. In the case of constant α, there was also proved a boundedness theorem in the
limiting case p(x) = n−λ(x)

α
, when the potential operator Iα acts from Lp(·),λ(·) into BMO.

In [47] the maximal operator and potential operators were considered in a somewhat more
general space, but under more restrictive conditions on p(x). P. Hästö in [26] used his
new ”local-to-global” approach to extend the result of [3] on the maximal operator to the
case of the whole space R

n. In [30] there was proved the boundedness of the maximal
operator and the singular integral operator in variable exponent Morrey spaces Lp(·),λ(·)

in the general setting of metric measure spaces.

Generalized Morrey spaces of such a kind in the case of constant p were studied in
[5], [17], [43], [46], [48], [49]. In [22] there was proved the boundedness of the maximal
operator, singular integral operator and the potential operators in generalized variable
exponent Morrey spaces Mp(·),ω(Ω).

In the case of constant p and λ, the results on the boundedness of potential operators
and classical Calderon-Zygmund singular operators date back to [1] and [51], respectively,
while the boundedness of the maximal operator in the Euclidean setting was proved in
[11]; for further results in the case of constant p and λ see, e.g., [6]– [9].

We introduce the generalized variable exponent weighted Morrey spaces
Mp(·),ω,|x−x0|γ (Ω) over an open set Ω ⊆ R

n. Within the frameworks of the spaces
Mp(·),ω,|x−x0|γ (Ω), over bounded sets Ω ⊆ R

n we consider the Hardy-Littlewood maxi-
mal operator

Mf(x) = sup
r>0

|B(x, r)|−1

∫

B̃(x,r)
|f(y)|dy,

potential type operators

Iα(x)f(x) =

∫

Ω
|x− y|α(x)−nf(y)dy, 0 < α(x) < n,

the fractional maximal operator

Mα(x)f(x) = sup
r>0

|B(x, r)|
α(x)
n

−1

∫

B̃(x,r)
|f(y)|dy, 0 ≤ α(x) < n

of variable order α(x) and Calderon-Zygmund type singular operator

Tf(x) =

∫

Ω
K(x, y)f(y)dy,
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where K(x, y) is a ”standard singular kernel”, that is, a continuous function defined on
{(x, y) ∈ Ω× Ω : x 6= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|.

We find the condition on the function ω(x, r) for the boundedness of the maximal
operator M and the singular integral operators T in generalized weighted Morrey space
Mp(·),ω,|x−x0|γ (Ω) with variable p(x) under the log-condition on p(·). For potential opera-
tors, under the same log-condition and the assumptions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n

we also find the condition on ω(x, r) for the validity of a Sobolev-Adams type
Mp(·),ω,|x−x0|γ (Ω) → Mq(·),ω,,|x−x0|µ(Ω)-theorem, which recovers the known result for the
case of the classical weighted Morrey spaces with variable exponents, when ω(x, r) =

r
λ(x)−n
p(x) and 1

q(x) =
1

p(x) −
α(x)

n−λ(x) .

The paper is organized as follows. In Section 2 we provide necessary preliminaries on
variable exponent Lebesgue and Morrey spaces. In Section 3 we introduce the generalized
Morrey spaces with variable exponents and recall some facts about generalized Morrey
spaces with constant p. In Section 4 we deal with the maximal operator, while potential
operators are studied in Section 5. In Section 6 we treat Calderon-Zygmund singular
operators.

The main results are given in Theorems 17, 18, 19, 20, 24, 25. We emphasize that the
results we obtain for generalized weighted Morrey spaces are new even in the case when
p(x) is constant, because we do not impose any monotonicity type condition on ω(x, r).

N o t a t i o n :
R
n is the n-dimensional Euclidean space,

Ω ⊆ R
n is an open set, ℓ = diam Ω;

0 ∈ Ω;
χE(x) is the characteristic function of a set E ⊆ R

n;
B(x, r) = {y ∈ R

n : |x− y| < r}), B̃(x, r) = B(x, r) ∩ Ω;
by c,C, c1, c2 etc, we denote various absolute positive constants, which may have different
values even in the same line.
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2. Preliminaries on variable exponent Lebesgue and Morrey spaces

Let p(·) be a measurable function on Ω with values in [1,∞). An open set Ω is
assumed to be bounded throughout the whole paper. We suppose that

1 < p− ≤ p(x) ≤ p+ < ∞, (1)

where p− := ess inf
x∈Ω

p(x) > 1, p+ := ess sup
x∈Ω

p(x) < ∞.

By Lp(·)(Ω) we denote the space of all measurable functions f(x) on Ω such that

Ip(·)(f) =

∫

Ω
|f(x)|p(x)dx < ∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent. The Hölder inequality is valid in the form

∫

Ω
|f(x)||g(x)|dx ≤

(
1

p−
+

1

p′−

)
‖f‖p(·)‖g‖p′(·).

For the basics on variable exponent Lebesgue spaces we refer to [63], [41].
The weighted Lebesgue space Lp(·),ω(Ω) is defined as the set of all measurable functions

for which

‖f‖Lp(·),ω(Ω) = inf

{
η > 0 :

∫

Ω

(
|f(x)|

η

)p(x)

ω(x)dx ≤ 1

}
.

Definition 1. By WL(Ω) (weak Lipschitz) we denote the class of functions defined on Ω
satisfying the log-condition

|p(x)− p(y)| ≤
A

− ln |x− y|
, |x− y| ≤

1

2
x, y ∈ Ω, (2)

where A = A(p) > 0 does not depend on x, y.

Theorem 1. ([14]) Let Ω ⊂ R
n be an open bounded set and p ∈ WL(Ω) satisfy condition

(1). Then the maximal operator M is bounded in Lp(·)(Ω).

Theorem 2. ([36]) Let Ω be bounded and p ∈ WL(Ω) satisfy condition (1), (9), x0 ∈ Ω
and let

−
n

p(x0)
< β <

n

p′(x0)
. (3)

Then the weighted maximal operator Mβ is bounded in Lp(·)(Ω).



42 J. J. Hasanov

The following theorem for bounded sets Ω, but for variable α(x), was proved in [59].

Theorem 3. Let Ω ⊂ R
n be bounded, p, α ∈ WL(Ω) satisfy assumption (1), x0 ∈ Ω and

the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

α(x)p(x) < n, (4)

α(x0)p(x0)− n < γ < n(p(x0)− 1), (5)

µ =
q(x0)γ

p(x0)
. (6)

Then the operator Iα(·) is bounded from Lp(·),|x−x0|γ (Ω) to Lq(·),|x−x0|µ(Ω) with

1

q(x)
=

1

p(x)
−

α(x)

n
. (7)

Singular operators within the framework of the spaces with variable exponents were
studied in [15]. From Theorem 4.8 and Remark 4.6 of [15] and the known results on
the boundedness of the maximal operator, we have the following statement, which is
formulated below for our goals for a bounded Ω, but valid for an arbitrary open set Ω
under the corresponding condition on p(x) at infinity.

Theorem 4. ([15]) Let Ω ⊂ R
n be a bounded open set and p ∈ WL(Ω) satisfy condition

(1). Then the singular integral operator T is bounded in Lp(·)(Ω).

We will also make use of the estimate provided by the following lemma (see [57],
Corollary to Lemma 3.22).

Lemma 1. Let Ω be a bounded domain and p satisfy the assumption 1 ≤ p− ≤ p(x) ≤
p+ < ∞ and condition (2). Let also β ∈ WL(Ω) and supx∈Ω[n+ν(x)p(x)] < 0, supx∈Ω[n+
ν(x)p(x) + β(x)] < 0. Then

‖|x− y|ν(x)χB(x,r)(y)‖Lp(·),|·|β(x) ≤ Cr
ν(x)+ n

p(x) (r + |x|)
β(x)
p(x) , x ∈ Ω, 0 < r < ℓ, (8)

where C does not depend on x and r.

Remark 1. It can be shown that the constant C in (8) may be estimated as C =

C0ℓ
n
(

1
p−

− 1
p+

)

, where C0 does not depend on Ω.

Let λ(x) be a measurable function on Ω with values in [0, n]. The variable Morrey
space Lp(·),λ(·)(Ω) and variable weighted Morrey space Lp(·),λ(·),|·|γ(Ω) are defined as the
set of integrable functions f on Ω with the finite norms

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−

λ(x)
p(x) ‖fχ

B̃(x,t)
‖Lp(·)(Ω),
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‖f‖Lp(·),λ(·),|·|γ (Ω) = sup
x∈Ω, t>0

t
−λ(x)

p(x) ‖| · |
γ

p(·) fχ
B̃(x,t)

‖Lp(·)(Ω),

respectively. Let M ♯ be the sharp maximal function defined by

M ♯f(x) = sup
r>0

|B(x, r)|−1

∫

B̃(x,r)
|f(y)− f

B̃(x,r)
|dy,

where f
B̃(x,t)(x) = |B̃(x, t)|−1

∫
B̃(x,t) f(y)dy.

Definition 2. We define the BMO|·|β(Ω) space as the set of all locally integrable functions
f with the finite norm

‖f‖BMO
|·|β

= sup
x∈Ω

|x|βM ♯f(x) = ‖M ♯f‖L
∞,|·|β

.

The following statements are known.

Theorem 5. ([3]) Let Ω be bounded and p ∈ WL(Ω) satisfy condition (1) and let a
measurable function λ satisfy the conditions

0 ≤ λ(x), sup
x∈Ω

λ(x) < n. (9)

Then the maximal operator M is bounded in Lp(·),λ(·)(Ω).

Theorem 5 was extended to unbounded domains in [26].

Note that the boundedness of the maximal operator in Morrey spaces with variable
p(x) was studied in [30] in the more general setting of quasimetric measure spaces.

Theorem 6. ([3]) Let Ω be bounded, p, α, λ ∈ WL(Ω) and p satisfy condition (1). Let
also λ(x) ≥ 0 and the conditions (4), (7) be fulfilled. Then the operator Iα(·) is bounded
from Lp(·),λ(·)(Ω) to Lq(·),µ(·)(Ω), where

µ(x)

q(x)
=

λ(x)

p(x)
. (10)

Theorem 7. ([3]) Let Ω be bounded, p, α, λ ∈ WL(Ω) and p satisfy condition (1). Let
also λ(x) ≥ 0 and the conditions

inf
x∈Ω

α(x) > 0, sup
x∈Ω

[λ(x) + α(x)p(x)] < n (11)

hold. Then the operator Iα(·) is bounded from Lp(·),λ(·)(Ω) to Lq(·),λ(·)(Ω), where

1

q(x)
=

1

p(x)
−

α

n− λ(x)
. (12)
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Theorem 8. ([3]) Let Ω be bounded and p, α, λ ∈ WL(Ω) satisfy conditions (1) and the
conditions

inf
x∈Ω

α(x) > 0, λ(x) + α(x)p(x) = n

hold. Then the operator Mα(·) is bounded from Lp(·),λ(·)(Ω) to L∞(Ω).

Theorem 9. ([3]) Let Ω be bounded and p, λ ∈ WL(Ω) satisfy conditions (1) and let
0 < α < n, 0 ≤ λ(x), supλ(x) < n− α,

p(x) =
n− λ(x)

α
.

Then the operator Iα is bounded from Lp(·),λ(·)(Ω) to BMO(Ω).

3. Variable exponent generalized Morrey spaces

Throughout this paper the functions ω(x, r), ω1(x, r) and ω2(x, r) are non-negative
measurable functions on Ω× (0, ℓ), ℓ = diamΩ.

We find it convenient to define the generalized Morrey spaces as follows.

Definition 3. Let 1 ≤ p < ∞. The generalized Morrey space Mp(·),ω(Ω) is defined by the
norms

‖f‖Mp(·),ω = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖

Lp(·)(B̃(x,r)),

‖f‖Mp(·),ω,|·|γ = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖

Lp(·),|·|γ (B̃(x,r)).

According to this definition, we recover the space Lp(·),λ(·)(Ω) under the choice ω(x, r) =

r
λ(x)−n
p(x) :

Lp(·),λ(·)(Ω) = Mp(·),ω(·)(Ω)

∣∣∣∣∣
ω(x,r)=r

λ(x)−n
p(x)

.

In the sequel we assume that

inf
x∈Ω,r>0

ω(x, r) > 0 (13)

which makes the space Mp(·),ω(Ω) nontrivial. Note that when p is constant, in the case of
w(x, r) ≡ const > 0, we have the space L∞(Ω).
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3.1. Preliminaries on Morrey spaces with constant exponents p

In [20], [21], [46] and [48] sufficient conditions on weights ω1 and ω2 for the boundedness
of the singular operator T from Mp,ω1(Rn) to Mp,ω2(Rn) were obtained. In [48] the
following condition was imposed on w(x, r):

c−1ω(x, r) ≤ ω(x, t) ≤ c ω(x, r) (14)

whenever r ≤ t ≤ 2r, where c(≥ 1) does not depend on t, r and x ∈ R
n, with

∫ ∞

r

ω(x, t)p
dt

t
≤ C ω(x, r)p (15)

for tmaximal or singular operator and
∫ ∞

r

tαpω(x, t)p
dt

t
≤ C rαpω(x, r)p (16)

for potential or fractional maximal operator, where C(> 0) does not depend on r and
x ∈ R

n.

Remark 2. The left-hand side inequality in (14) is satisfied for any non-negative function
w(x, r) such that there exists a number a ∈ R

1 such that the function raw(x, r) is almost
increasing in r uniformly in x:

taw(x, t) ≤ craw(x, r) for all 0 < t ≤ r < ∞

where c ≥ 1 does not depend on x, r, t.

Note that integral conditions of type (15) after the paper [4] of 1956 are often referred
to as Bary-Stechkin or Zygmund-Bary-Stechkin conditions, see also [25]. The classes of
almost monotonic functions satisfying such integral conditions were later studied in a
number of papers (see [28], [54], [55] and references therein), where the characterization
of integral inequalities of such a kind was given in terms of certain lower and upper
indices known as Matuszewska-Orlicz indices. Note that in the cited papers the integral
inequalities were studied as r → 0. Such inequalities are also of interest when they allow
to impose different conditions as r → 0 and r → ∞; such a case was dealt with in [56],
[40].

In [48] the following statements were proved.

Theorem 10. [48] Let 1 < p < ∞ and ω(x, r) satisfy conditions (14)-(15). Then the
operators M and T are bounded in Mp,ω(Rn).

Theorem 11. [48] Let 1 < p < ∞, 0 < α < n
p
, and ω(x, t) satisfy conditions (14)

and (16). Then the operators Mα and Iα are bounded from Mp,ω(Rn) to Mq,ω(Rn) with
1
q
= 1

p
− α

n
.
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The following statement, containing the results in [46], [48], was proved in [20] (see
also [21]). Note that Theorems 12 and 13 do not impose condition (14).

Theorem 12. [20] Let 1 < p < ∞ and ω1(x, r), ω2(x, r) be positive measurable functions
satisfying the condition ∫ ∞

r

ω1(x, t)
dt

t
≤ c1 ω2(x, r) (17)

with c1 > 0 not depending on x ∈ R
n and t > 0. Then the operators M and T are bounded

from Mp,ω1(·)(Rn) to Mp,ω2(·)(Rn).

Theorem 13. [20] Let 0 < α < n, 1 < p < ∞, 1
q
= 1

p
− α

n
and ω1(x, r), ω2(x, r) be

positive measurable functions satisfying the condition
∫ ∞

r

tαω1(x, t)
dt

t
≤ c1 ω2(x, r). (18)

Then the operators Mα and Iα are bounded from Mp,ω1(·)(Rn) to Mq,ω2(·)(Rn).

Theorem 14. [22] Let Ω ⊂ R
n be an open bounded set and p ∈ WL(Ω) satisfy assumption

(1) and the function ω1(x, r) and ω2(x, r) satisfy the condition
∫ ℓ

r

ω1(x, t)
dt

t
≤ C ω2(x, r), (19)

where C does not depend on x and t. Then the maximal operators M and T are bounded
from the space Mp(·),ω1(Ω) to the space Mp(·),ω2(Ω).

Theorem 15. [22] Let Ω ⊂ R
n be an open bounded set and p, q ∈ WL(Ω) satisfy assump-

tion (1), α(x), q(x) satisfy the conditions (4), (7) and the functions ω1(x, r) and ω2(x, r)
fulfill the condition ∫ ℓ

r

tα(x)ω1(x, t)
dt

t
≤ C ω2(x, r), (20)

where C does not depend on x and r. Then the operators Mα(·) and Iα(·) are bounded
from Mp(·),ω1(·)(Ω) to Mq(·),ω2(·)(Ω).

Theorem 16. [22] Let p ∈ WL(Ω) satisfy assumption (1), α(x) fulfill the condition (4)
and let ω(x, t) satisfy condition (19) and the conditions

ω(x, r) ≤
C

r

α(x)

1−
p(x)
q(x)

, (21)

∫ ℓ

r

tα(x)−1 ω(x, t)dt ≤ Cω(x, r)
p(x)
q(x) , (22)

where q(x) ≥ p(x) and C does not depend on x ∈ Ω and r ∈ (0, ℓ]. Suppose also that for
almost every x ∈ Ω, the function w(x, r) fulfills the condition

there exist an a = a(x) > 0 such that ω(x, ·) : [0, ℓ] → [a,∞) is surjective. (23)

Then the operators Mα(·) and Iα(·) are bounded from Mp(·),ω(·)(Ω) to Mq(·),ω(·)(Ω).
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4. The maximal operator in the spaces Mp(·),ω(·),|·|γ(Ω)

Theorem 17. Let Ω be bounded and p ∈ WL(Ω) satisfy condition (1), x0 ∈ Ω and (3).
Then

‖Mf‖
Lp(·),|x−x0|

β
(B̃(x,t))

≤ Ct
n

p(x) (t+|x−x0|)
β

p(x)

∫ ℓ

t

s
− n

p(x)
−1

(s+|x|)
− β

p(x) ‖f‖
Lp(·),|x−x0|

β
(B̃(x,s))

ds, 0 < t <
ℓ

2
, (24)

for every f ∈ Lp(·),|x−x0|β(Ω), where C does not depend on f, x ∈ Ω and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χ
B̃(x,2t)

(y), f2(y) = f(y)χ
Ω\B̃(x,2t)

(y), t > 0. (25)

Then

‖Mf‖
Lp(·),|x−x0|

β
(B̃(x,t))

≤ ‖Mf1‖Lp(·),|x−x0|
β
(B̃(x,t))

+ ‖Mf2‖Lp(·),|x−x0|
β
(B̃(x,t))

.

By the Theorem 2 we obtain

‖Mf1‖Lp(·),|x−x0|
β
(B̃(x,t))

≤ ‖Mf1‖Lp(·),|x−x0|
β
(Ω)

≤ C‖f1‖Lp(·),|x−x0|
β
(Ω)

= C‖f‖
Lp(·),|x−x0|

β
(B̃(x,2t))

, (26)

where C does not depend on f . We assume for simplicity that x0 = 0. From (26) we
obtain

‖Mf1‖Lp(·),|·|β (B̃(x,t))
≤ Ct

n
p(x) (t+ |x−x0|)

β
p(x)

∫ ℓ

2t
s
− n

p(x)
−1

(s+ |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds

≤ Ct
n

p(x) (t+ |x− x0|)
β

p(x)

∫ ℓ

t

s
− n

p(x)
−1

(s+ |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds (27)

easily obtained from the fact that ‖f‖
Lp(·),|·|β (B̃(x,2t))

is non-decreasing in t, so that

‖f‖
Lp(·),|·|β (B̃(x,2t))

on the right-hand side of (26) is dominated by the right-hand side of

(27). Note that this ”complication” of estimate in comparison with (26) is done because
the term Mf2 will be estimated below in a similar way (see (29)).

To estimate Mf2, we first prove the following auxiliary inequality

∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy ≤ C

∫ ℓ

t

s
− n

p(x)
−1

(s + |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds, 0 < t < ℓ.

(28)
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To this end, we choose δ > n
p−

and proceed as follows:

∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy ≤ δ

∫

Ω\B̃(x,t)
|x− y|−n+δ|f(y)|dy

∫ ℓ

|x−y|
s−δ−1ds

= δ

∫ ℓ

t

s−δ−1ds

∫

{y∈Ω:2t≤|x−y|≤s}
|x− y|−n+δ|f(y)|dy

≤ C

∫ ℓ

t

s−δ−1‖f‖
Lp(·),|·|β (B̃(x,s))

‖|x− y|−n+δ‖
Lp′(·),|·|β/(1−p(x))

(B̃(x,s))
ds.

We then make use of Lemma 1 and obtain (28).
For z ∈ B̃(x, t) we get

Mf2(z) = sup
r>0

|B(z, r)|−1

∫

B̃(z,r)
|f2(y)|dy

≤ C sup
r≥2t

∫

(Ω\B̃(x,2t))∩B̃(z,r)
|y − z|−n|f(y)|dy

≤ C sup
r≥2t

∫

(Ω\B̃(x,2t))∩B̃(z,r)
|x− y|−n|f(y)|dy

≤ C

∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy.

Then by (28)

Mf2(z) ≤ C

∫ ℓ

2t
s
− n

p(x)
−1

(s+ |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds,

≤ C

∫ ℓ

t

s
− n

p(x)
−1

(s+ |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds,

where C does not depend on x, r. Thus, the function Mf2(z), with fixed x and t, is
dominated by the expression not depending on z. Then

‖Mf2‖Lp(·),|·|β (B̃(x,t))
≤ C

∫ ℓ

t

s
− n

p(x)
−1

(s+ |x|)
− β

p(x) ‖f‖
Lp(·),|·|β (B̃(x,s))

ds ‖χ
B̃(x,t)

‖
Lp(·),|·|β (Ω)

.

(29)

Since ‖χ
B̃(x,t)

‖
Lp(·),|·|β (Ω)

≤ Ct
n

p(x) (t+ |x|)
β

p(x) by Lemma 1, we then obtain (24) from (27)

and (29).

The following theorem extends Theorem 15 to the case of generalized weighted Morrey
spaces Mp(·),ω,|·|β(Ω).

Theorem 18. Let Ω ⊂ R
n be an open bounded set and p ∈ WL(Ω) satisfy assumption

(1), x0 ∈ Ω, (3) and the function ω1(x, r) and ω2(x, r) satisfy the condition

∫ ℓ

t

(r + |x− x0|)
− β

p(x)ω1(x, r)
dr

r
≤ C (t+ |x− x0|)

− β
p(x)ω2(x, t). (30)
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Then the maximal operator M is bounded from the space Mp(·),ω1,|x−x0|β(Ω) to the

space Mp(·),ω2,|x−x0|β (Ω).

Proof. Let f ∈ Mp(·),ω1,|x−x0|β(Ω). We have

‖Mf‖
Mp(·),ω2,|x−x0|

β
(Ω)

= sup
x∈Ω, t∈(0,ℓ)

ω−1
2 (x, t)t

− n
p(x) ‖Mf‖

Lp(·),|x−x0|
β
(B̃(x,t))

.

The estimation is obvious for ℓ
2 ≤ t ≤ ℓ in view of (13). For

‖Mf‖
∼

Mp(·),ω2,|x−x0|
β
(Ω)

= sup
x∈Ω, t∈(0, ℓ2)

ω−1
2 (x, t)t

− n
p(x)‖Mf‖

Lp(·),|x−x0|
β
(B̃(x,t))

by Theorem 17 we obtain

‖Mf‖
∼

Mp(·),ω2,|x−x0|
β
(Ω)

≤ C sup
x∈Ω, 0<t≤ℓ

ω−1
2 (x, t)(t+ |x− x0|)

β
p(x)

∫ ℓ

t

r
− n

p(x)
−1

(r + |x− x0|)
− β

p(x) ‖f‖
Lp(·),|x−x0|

β
(B̃(x,r))

dr.

Hence
‖Mf‖

∼

Mp(·),ω2,|x−x0|
β
(Ω)

≤

≤ C‖f‖
Mp(·),ω1,|x−x0|

β
(Ω)

sup
x∈Ω, t∈(0,ℓ)

ω−1
2 (x, t)(t+ |x− x0|)

β
p(x)

∫ ℓ

t

ω1(x, r)(r + |x− x0|)
− β

p(x)
dr

r
≤ C‖f‖

Mp(·),ω1,|x−x0|
β
(Ω)

,

by (30), which completes the proof.

5. Riesz potential operator in the spaces Mp(·),ω(·),|·|γ(Ω)

5.1. Spanne type result

Theorem 19. Let p ∈ WL(Ω) satisfy conditions (1) and let (3), x0 ∈ Ω, (5), (6),
α(x), q(x) satisfy the conditions (4) and (7). Then

‖Iα(·)f‖
Lq(·),|x−x0|

µ
(B̃(x,t))

≤ Ct
n

q(x) (t+ |x−x0|)
γ

p(x)

∫ l

t

s
− n

q(x)
−1

(s+ |x−x0|)
− γ

p(x)‖f‖
Lp(·),|x−x0|

γ
(B̃(x,s))ds, 0 < t ≤

ℓ

2
(31)

where t is an arbitrary number in
(
0, ℓ

2

)
and C does not depend on f , x and t.
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Proof. As in the proof of Theorem 17, we represent function f in form (25) and have

Iα(·)f(x) = Iα(·)f1(x) + Iα(·)f2(x).

By Theorem 3 we obtain

‖Iα(·)f1‖Lq(·),|x−x0|
µ
(B̃(x,t))

≤ ‖Iα(·)f1‖Lq(·),|x−x0|
µ
(Ω)

≤ C‖f1‖Lp(·),|x−x0|
γ
(Ω) = C‖f‖

Lp(·),|x−x0|
γ
(B̃(x,2t)).

Then

‖Iα(·)f1‖Lq(·),|x−x0|
µ
(B̃(x,t)) ≤ C‖f‖

Lp(·),|x−x0|
γ
(B̃(x,2t)),

where the constant C is independent of f .
We assume for simplicity that x0 = 0. Taking into account that

‖f‖
Lp(·),|·|γ (B̃(x,2t)) ≤ Ct

n
q(x) (t+ |x|)

γ
p(x)

∫ l

t

s
− n

q(x)
−1

(s+ |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,s))ds,

we get

‖Iα(·)f1‖Lq(·),|·|µ (B̃(x,t))
≤ Ct

n
q(x) (t+ |x|)

γ
p(x)

∫ l

t

s
− n

q(x)
−1

(s+ |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,s))

ds.

(32)
When |x− z| ≤ t, |z − y| ≥ 2t, we have 1

2 |z − y| ≤ |x− y| ≤ 3
2 |z − y|, and therefore

|Iα(·)f2(x)| ≤

∫

Ω\B̃(x,2t)
|z − y|α(y)−n|f(y)|dy

≤ C

∫

Ω\B̃(x,2t)
|x− y|α(x)−n|f(y)|dy.

We choose β > n
q(x) and obtain

∫

Ω\B̃(x,2t)
|x− y|α(x)−n|f(y)|dy

= β

∫

Ω\B̃(x,2t)
|x− y|α(x)−n+β|f(y)|

(∫ l

|x−y|
s−β−1ds

)
dy

= β

∫ l

2t
s−β−1

(∫

{y∈Ω:2t≤|x−y|≤s}
|x− y|α(x)−n+β |f(y)|dy

)
ds

≤ C

∫ l

2t
s−β−1‖f‖

Lp(·),|·|γ (B̃(x,s))
‖|x− y|α(x)−n+β‖

Lp′(·),|·|γ/(1−p(x))
(B̃(x,s))

ds

≤ C

∫ l

2t
s
α(x)− n

p(x)
−1

(s+ |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,s))ds.
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Hence

‖Iα(·)f2‖Lq(·),|·|µ (B̃(x,t))
≤ C

∫ l

2t
s
− n

q(x)
−1

(s+ |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,s))

ds‖χ
B̃(x,t)

‖Lq(·),|·|µ (Ω).

Therefore

‖Iα(·)f2‖Lq(·),|·|µ (B̃(x,t))
≤ Ct

n
q(x) (t+ |x|)

γ
p(x)

∫ l

2t
s
− n

q(x)
−1

(s+ |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,s))

ds

(33)
which together with (32) yields (31).

Theorem 20. Let Ω ⊂ R
n be an open bounded set and p, q ∈ WL(Ω) satisfy assumptions

(1), (5), (6), (3), x0 ∈ Ω, α(x), q(x) satisfy the conditions (4), (7) and the functions
ω1(x, r) and ω2(x, r) fulfill the condition

∫ ℓ

r

tα(x)(t+ |x− x0|)
− γ

p(x)ω1(x, t)
dt

t
≤ C (r + |x− x0|)

− γ
p(x)ω2(x, r). (34)

Then the operators Mα(·) and Iα(·) are bounded from Mp(·),ω1(·),|x−x0|γ (Ω) to
Mq(·),ω2(·),|x−x0|µ(Ω).

Proof. Let f ∈ Mp(·),ω,|x−x0|γ (Ω). As usual, when estimating the norm

‖Iα(·)f‖Mq(·),ω2,|x−x0|
µ
(Ω) = sup

x∈Ω, t>0

t
− n

q(x)

ω2(x, t)
‖Iα(·)fχ

B̃(x,t)‖Lq(·),|x−x0|
µ
(Ω), (35)

it suffices to consider only the values t ∈
(
0, ℓ

2

)
, thanks to condition (13). We estimate

‖Iα(·)fχ
B̃(x,t)‖Lq(·),|x−x0|

µ
(Ω) in (35) by means of Theorem 19 and obtain

‖Iα(·)f‖Mq(·),ω2,|x−x0|
µ
(Ω)

≤ C sup
x∈Ω, t>0

(t+ |x− x0|)
γ

p(x)

ω2(x, t)

∫ ℓ

t

r
− n

q(x)
−1

(r + |x− x0|)
− γ

p(x) ‖f‖
Lp(·),|x−x0|

γ
(B̃(x,r))

dr

≤ C‖f‖Mp(·),ω1,|x−x0|
γ
(Ω) sup

x∈Ω, t>0

(t+ |x− x0|)
γ

p(x)

ω2(x, t)

∫ ℓ

t

rα(x)(r + |x− x0|)
− γ

p(x)ω1(x, r)

r
dr.

It remains to make use of condition (34).

Theorem 21. Let p ∈ WL(Ω) satisfy assumption (1), x0 ∈ Ω, γ, µ satisfy conditions

0 ≤ γ <
n

p′(x0)
, µ =

γ

p(x0)
, (36)

inf
x∈Ω

α(x) > 0 and let ω(x, t) satisfy condition

rα(x)ω(x, r) ≤ C. (37)

Then the operator Mα(·) is bounded from Mp(·),ω(·),|x−x0|γ(Ω) to L∞,|x−x0|µ(Ω).
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Proof. Let x ∈ Ω and r > 0. We assume for simplicity that x0 = 0. By the Hölder
inequality we get successively

rα(x)−n

∫

B̃(x,r)
|f(y)|dy

≤ Crα(x)−nr
n

p(x)ω(x, r)r
− n

p(x)ω−1(x, r)‖f‖
Lp(·),|·|γ (B̃(x,r))

‖χ
B̃(x,r)

‖
Lp′(·),|·|γ/(1−p(·))

≤ Crα(x)ω(x, r)|x|
− γ

p(x) ‖f‖Mp(·),ω(·) ≤ C|x|
− γ

p(x) ‖f‖Mp(·),ω(·) .

We again refer to the logarithmic condition for p(x) which provides the equivalence

|x|
γ

p(x) ∼ |x|
γ

p(0) .

Theorem 22. Let p ∈ WL(Ω) satisfy assumption (1), x0 ∈ Ω, γ, µ satisfy condition
(36), 0 < α < n and let ω(x, t) satisfy condition (37).

Then the operator Iα is bounded from Mp(·),ω(·),|x−x0|γ (Ω) to BMO|x−x0|µ(Ω).

Proof. Let f ∈ Mp(·),ω(·),|x−x0|γ (Ω). In [1] it was proved that

M ♯(Iαf)(x) ≤ CMαf(x). (38)

The proof of Theorem 22 follows from the Theorem 21 and inequality (38).

6. Singular operators in the spaces Mp(·),ω(·),|·|γ(Ω)

Theorem 23. [33] Let Ω be bounded, p ∈ WL(Ω) and p satisfy conditions (1) and (3),
x0 ∈ Ω. Then the operators T and T ∗ are bounded in the space Lp(·),|x−x0|γ (Ω).

Theorem 24. Let Ω ⊂ R
n be an open bounded set, p ∈ WL(Ω) satisfy conditions (1),

(3), x0 ∈ Ω and f ∈ Lp(·),|x−x0|γ (Ω). Then

‖Tf‖
Lp(·),|x−x0|

γ
(B̃(x,t))

≤ Ct
n

p(x) (t+ |x−x0|)
γ

p(x)

∫ ℓ

t

r
− n

p(x)
−1

(r+ |x−x0|)
− γ

p(x)‖f‖
Lp(·),|x−x0|

γ
(B̃(x,r))dr, 0 < t ≤

ℓ

2
,

(39)
where C does not depend on f and t.
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Proof. We represent function f as in (25) and have

‖Tf‖
Lp(·),|x−x0|

γ
(B̃(x,t))

≤ ‖Tf1‖Lp(·),|x−x0|
γ
(B̃(x,t))

+ ‖Tf2‖Lp(·),|x−x0|
γ
(B̃(x,t))

.

By the Theorem 23 we obtain

‖Tf1‖Lp(·),|x−x0|
γ
(B̃(x,t)) ≤ ‖Tf1‖Lp(·),|x−x0|

γ
(Ω) ≤ C‖f1‖Lp(·),|x−x0|

γ
(Ω),

so that

‖Tf1‖Lp(·),|x−x0|
γ
(B̃(x,t)) ≤ C‖f‖

Lp(·),|x−x0|
γ
(B̃(x,2t)).

We assume for simplicity that x0 = 0. Taking into account the inequality

‖f‖
Lp(·),|·|γ (B̃(x,t))

≤

Ct
n

p(x) (t+ |x|)
γ

p(x)

∫ ℓ

2t
r
− n

p(x)
−1

(r + |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,r))dr, 0 < t ≤

ℓ

2
,

we get

‖Tf1‖Lp(·),|·|γ (B̃(x,t)) ≤ Ct
n

p(x) (t+ |x|)
γ

p(x)

∫ ℓ

t

r
− n

p(x)
−1

(r + |x|)
− γ

p(x)‖f‖
Lp(·),|·|γ (B̃(x,r))dr.

(40)

To estimate ‖Tf2‖Lp(·),|·|γ (B̃(x,t)), we observe that

|Tf2(z)| ≤ C

∫

Ω\B(x,2t)

|f(y)| dy

|y − z|n
,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y|, and therefore

|Tf2(z)| ≤ C

∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy.

Hence by estimate (8) (with ν(x) ≡ 0) and inequality (28), we get

‖Tf2‖Lp(·),|·|γ (B̃(x,t))
≤ C

∫ ℓ

t

r
− n

p(x)
−1

(r + |x|)
− γ

p(x) ‖f‖
Lp(·),|·|γ (B̃(x,r))

dr ‖χ
B̃(x,t)

‖Lp(·),|·|γ (Ω).

(41)
From (40) and (41) we arrive at (39).

Theorem 25. Let Ω ⊂ R
n be an open bounded set, p ∈ WL(Ω) satisfy condition (1), (3),

x0 ∈ Ω and ω1(x, t) and ω2(x, r) fulfill conditions (30). Then the singular integral operator
T is bounded from the space Mp(·),ω1,|x−x0|γ (Ω) to the space Mp(·),ω2,|x−x0|γ (Ω).
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Proof. Let f ∈ Mp(·),ω1,|x−x0|γ(Ω). As usual, when estimating the norm

‖Tf‖Mp(·),ω2,|x−x0|
γ
(Ω) = sup

x∈Ω, t>0

t
− n

p(x)

ω2(x, t)
‖Tfχ

B̃(x,t)
‖Lp(·),|x−x0|

γ
(Ω), (42)

it suffices to consider only the values t ∈
(
0, ℓ

2

)
, thanks to condition (13). We estimate

‖Tfχ
B̃(x,t)‖Lp(·),|x−x0|

γ
(Ω) in (42) by means of Theorem 24 and obtain

‖Tf‖Mp(·),ω2,|x−x0|
γ
(Ω)

≤ C sup
x∈Ω, t>0

(t+ |x− x0|)
γ

p(x)

ω2(x, t)

∫ ℓ

t

r
− n

p(x)
−1

(r + |x− x0|)
− γ

p(x) ‖f‖
Lp(·),|x−x0|

γ
(B̃(x,r))

dr

≤ C‖f‖Mp(·),ω1,|x−x0|
γ
(Ω) sup

x∈Ω, t>0

(t+ |x− x0|)
γ

p(x)

ω2(x, t)

∫ ℓ

t

(r + |x− x0|)
− γ

p(x)ω1(x, r)

r
dr.

It remains to make use of condition (30).
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[26] P.Hästö, Local-to-global results in variable exponent spaces. M ath. Res. Letters, 15,
2008
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