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Oscillatory Integral Operators and Their Commutators
on Vanishing Generalized Morrey Spaces with Variable
Exponent
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Abstract. We consider the generalized Morrey spacesMp(·),ϕ(Ω) with variable exponent p(x) and
a general function ϕ(x, r) defining the Morrey-type norm. In case of unbounded sets Ω ⊂ Rn we
prove the boundedness of the conditions in terms of Calderón-Zygmund-type integral inequalities
for oscillatory integral operators and its commutators in the vanishing generalized weighted Morrey
spaces with variable exponent.
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1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [51] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [20, 22, 24,
51]. Mizuhara [52] and Nakai [55] introduced generalized Morrey spaces. Later, Guliyev
[24] defined the generalized Morrey spaces Mp,ϕ with normalized norm.

As it is known, last two decades there is an increasing interest to the study of vari-
able exponent spaces and operators with variable parameters in such spaces, we refer for
instance to the surveying papers [18, 40, 43, 59], on the progress in this field, including top-
ics of Harmonic Analysis and Operator Theory, see also references therein. For mapping
properties of maximal functions and singular integrals on Lebesgue spaces with variable
exponent we refer to [11, 12, 13, 15, 16, 17, 42, 45].

Variable exponent Morrey spaces Lp(·),λ(·)(Ω), were introduced and studied in [2] and
[53] in the Euclidean setting and in [41] in the setting of metric measure spaces, in case
of bounded sets. The boundedness of the maximal operator in variable exponent Morrey
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spaces Lp(·),λ(·)(Ω) under the log-condition on p(·), λ(·) was proved in [2]. In [54] the
maximal operator was considered in a somewhat more general space, but under more
restrictive conditions on p(x). P. Hästö in [35] used his new ”local-to-global” approach
to extend the result of [2] on the maximal operator to the case of the whole space Rn.
The boundedness of the maximal operator and the singular integral operator in variable
exponent Morrey spaces Lp(·),λ(·) in the general setting of metric measure spaces was proved
in [41].

Generalized Morrey spaces of such a kind in the case of constant p were studied in
[4], [46], [52], [55]. In the case of bounded sets the boundedness of the maximal operator,
singular integral operators and the potential operator in generalized variable exponent
Morrey type spaces was proved in [29], [30], [31] and in the case of unbounded sets in [32],
see also [36, 37, 56].

In the case of constant p and λ, the results on the boundedness of potential operators
and classical Calderón-Zygmund singular operators go back to [1] and [58], respectively,
while the boundedness of the maximal operator in the Euclidean setting was proved in
[14]; for further results in the case of constant p and λ (see, for instance, [3]– [5]).

We consider the Hardy-Littlewood maximal operator

Mf(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)|dy.

A distribution kernel K(x, y) is a ”standard singular kernel”, that is, a continuous
function defined on {(x, y) ∈ Ω× Ω : x 6= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x 6= y,

|K(x, y)−K(x, z)| ≤ C |y − z|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C |x− ξ|σ

|x− y|n+σ
, σ > 0, if |x− y| > 2|x− ξ|

Calderón-Zygmund type singular operator and the oscillatory integral operator are
defined by

Tf(x) =

∫
Ω
K(x, y)f(y)dy, (1)

Sf(x) =

∫
Ω
eP (x,y)K(x, y)f(y)dy, (2)

where P (x, y) is a real valued polynomial defined on Ω × Ω. Lu and Zhang [50] used
L2-boundedness of T to get Lp- boundedness of S with 1 < p <∞.

Let
T ∗f(x) = sup

ε>0
|Tεf(x)|

be the maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫
{y∈Ω:|x−y|≥ε}

K(x, y)f(y)dy.
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We find the condition on the Morrey function ϕ(x, r) for the boundedness of the

oscillatory integral operator in generalized weighted Morrey spaceMp(·),ϕ
ω (Ω) with variable

p(x) under the log-condition on p(·).
The paper is organized as follows. In Section 2 we provide necessary preliminaries on

variable exponent weighted Lebesgue and generalized weighted Morrey spaces. In Section
3 we treat oscillatory integral operators and its commutators in Mp(·),ϕ(Ω).

The main results are given in Theorems 7, 8, 9, 11, 12, 13. We emphasize that the
results we obtain for generalized weighted Morrey spaces are new even in the case when
p(x) is constant, because we do not impose any monotonicity type condition on ϕ(x, r).

We use the following notation: Rn is the n-dimensional Euclidean space, Ω ⊂ Rn is
an open set, χE(x) is the characteristic function of a set E ⊆ Rn, B(x, r) = {y ∈ Rn :
|x− y| < r}), B̃(x, r) = B(x, r)∩Ω, by c,C, c1, c2 etc, we denote various absolute positive
constants, which may have different values even in the same line. By A . B we mean that
A ≤ CB with some positive constant C independent of appropriate quantities. If A . B
and B . A, we write A ≈ B and say that A and B are equivalent.

2. Preliminaries on variable exponent weighted Lebesgue and
generalized weighted Morrey spaces

We refer to the book [16] for variable exponent Lebesgue spaces but give some basic
definitions and facts. Let p(·) be a measurable function on Ω with values in (1,∞). An
open set Ω which may be unbounded throughout the whole paper. We mainly suppose
that

1 < p− ≤ p(x) ≤ p+ <∞, (3)

where p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x). By Lp(·)(Ω) we denote the space of all

measurable functions f(x) on Ω such that

Ip(·)(f) =

∫
Ω
|f(x)|p(x)dx <∞.

Equipped with the norm

‖f‖p(·) = inf

{
η > 0 : Ip(·)

(
f

η

)
≤ 1

}
,

this is a Banach function space. By p′(·) = p(x)
p(x)−1 , x ∈ Ω, we denote the conjugate

exponent.

The space Lp(·)(Ω) coincides with the space{
f(x) :

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ <∞ for all g ∈ Lp′(·)(Ω)

}
(4)
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up to the equivalence of the norms

‖f‖Lp(·)(Ω) ≈ sup
‖g‖

Lp
′(·)≤1

∣∣∣∣∫
Ω
f(y)g(y)dy

∣∣∣∣ (5)

see [47, Proposition 2.2], see also [44, Theorem 2.3], or [60, Theorem 3.5].
For the basics on variable exponent Lebesgue spaces we refer to [61], [44].

P(Ω) is the set of bounded measurable functions p : Ω→ [1,∞);
P log(Ω) is the set of exponents p ∈ P(Ω) satisfying the local log-condition

|p(x)− p(y)| ≤ A

− ln |x− y|
, |x− y| ≤ 1

2
x, y ∈ Ω, (6)

where A = A(p) > 0 does not depend on x, y;
Alog(Ω) is the set of bounded exponents p : Ω→ Rn satisfying the condition (6);
Plog(Ω) is the set of exponents p ∈ P log(Ω) with 1 < p− ≤ p+ <∞;

for Ω which may be unbounded, by P∞(Ω), P log∞ (Ω), Plog∞ (Ω), Alog∞ (Ω) we denote the subsets
of the above sets of exponents satisfying the decay condition (when Ω is unbounded)

|p(x)− p(∞)| ≤ A∞
ln(2 + |x|)

, x ∈ Rn, (7)

where p∞ = lim
x→∞

p(x) > 1.

We will also make use of the estimate provided by the following lemma ( see [16],
Corollary 4.5.9).

‖χ
B̃(x,r)

(·)‖p(·) ≤ Crθp(x,r), x ∈ Ω, p ∈ Plog∞ (Ω), (8)

where θp(x, r) =

{
n
p(x) , r ≤ 1,
n

p(∞) , r ≥ 1.

A locally integrable function ω : Ω→ (0,∞) is called a weight. We say that ω ∈ Ap(Ω),
1 < p <∞, if there is a constant C > 0 such that(

1

|B̃(x, t)|

∫
B̃(x,t)

ω(x)dx

)(
1

|B̃(x, t)|

∫
B̃(x,t)

ω1−p′(x)dx

)p−1

≤ C,

where 1/p + 1/p′ = 1. We say that ω ∈ A1(Ω) if there is a constant C > 0 such that
Mω(x) ≤ Cω(x) almost everywhere.

The extrapolation theorems (Lemma 1 and Lemma 2 below) are originally due to
Cruz-Uribe, Fiorenza, Martell and Pérez [12]. Here we use the form in [16], see Theorem
7.2.1 and Theorem 7.2.3 in [16].

Lemma 1. ([16]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 <∞, every (f, g) ∈ F and every ω ∈ A1,∫

Ω
|f(x)|p0ω(x)dx ≤ C0

∫
Ω|g(x)|p0ω(x)dx.
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Let p(·) ∈ P (Ω) with p0 ≤ p−. If maximal operator is bounded on L

(
p(·)
p0

)′
(Ω), then

there exists a constant C > 0 such that for all (f, g) ∈ F ,

‖f‖Lp(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Lemma 2. ([16]). Given a family F of ordered pairs of measurable functions, suppose
that for some fixed 0 < p0 < q0 <∞, every (f, g) ∈ F and every ω ∈ A1(∫

Ω
|f(x)|q0ω(x)dx

) 1
q0

≤ C0

(∫
Ω
|g(x)|p0ω

p0
q0 (x)dx

) 1
p0

.

Let p(·) ∈ P (Ω) with p0 ≤ p− and 1
p0
− 1

q0
< 1

p+
, and define q(x) by

1

p(x)
− 1

q(x)
=

1

p0
− 1

q0
.

If maximal operator is bounded on L

(
q(·)
q0

)′
(Ω), then there exists a constant C > 0 such

that for all (f, g) ∈ F ,
‖f‖Lq(·)(Ω) ≤ C‖g‖Lp(·)(Ω).

Singular operators within the framework of the spaces with variable exponents were
studied in [17]. From Theorem 4.8 and Remark 4.6 of [17] and the known results on
the boundedness of the maximal operator, we have the following statement, which is
formulated below for our goals for a bounded Ω, but valid for an arbitrary open set Ω
under the corresponding condition in p(x) at infinity.

Theorem 1. ([17, Theorem 4.8]) Let Ω ⊂ Rn be a unbounded open set and p ∈ Plog(Ω).
Then the singular integral operator T is bounded in Lp(·)(Ω).

Let λ(x) be a measurable function on Ω with values in [0, n]. The variable Morrey
space Lp(·),λ(·)(Ω) is defined as the set of integrable functions f on Ω with the finite norms

‖f‖Lp(·),λ(·)(Ω) = sup
x∈Ω, t>0

t
−λ(x)
p(x) ‖fχ

B̃(x,t)
‖Lp(·)(Ω),

respectively.
Let M ] be the sharp maximal function defined by

M ]f(x) = sup
r>0
|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy,

where f
B̃(x,t)

(x) = |B̃(x, t)|−1
∫
B̃(x,t)

f(y)dy.

Definition 1. We define the BMO(Ω) space as the set of all locally integrable functions
f with finite norm

‖f‖BMO = sup
x∈Ω

M ]f(x) = sup
x∈Ω, r>0

|B(x, r)|−1

∫
B̃(x,r)

|f(y)− f
B̃(x,r)

|dy.
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Definition 2. We define the BMOp(·)(Ω) space as the set of all locally integrable functions
f with finite norm

‖f‖BMOp(·) = sup
x∈Ω, r>0

‖(f(·)− f
B̃(x,r)

)χ
B̃(x,r)

‖Lp(·)(Ω)

‖χ
B̃(x,r)

‖Lp(·)(Ω)

.

Theorem 2. [47] Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), then the norms
‖ · ‖BMOp(·) and ‖ · ‖BMO are mutually equivalent.

Before proving the main theorems, we need the following lemma.

Lemma 3. [34] Let b ∈ BMO(Ω). Then there is a constant C > 0 such that∣∣∣bB̃(x,r)
− b

B̃(x,t)

∣∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C is independent of b, x, r, and t.

Everywhere in the sequel the functions ϕ(x, r), ϕ1(x, r) and ϕ2(x, r) used in the body
of the paper, are non-negative measurable functions on Ω× (0,∞). We find it convenient
to define the generalized weighted Morrey spaces in the form as follows.

Definition 3. Let 1 ≤ p(x) <∞, x ∈ Ω. The variable exponent generalized Morrey space
Mp(·),ϕ(Ω) is defined as the set of integrable functions f on Ω with the finite norms

‖f‖Mp(·),ϕ = sup
x∈Ω,r>0

1

ϕ(x, r)tθp(x,t)
‖f‖

Lp(·)(B̃(x,r))
,

respectively.

According to this definition, we recover the space Lp(·),λ(·)(Ω) under the choice ϕ(x, r) =

r
θp(x,r)−λ(x)

p(x) :

Lp(·),λ(·)(Ω) =Mp(·),ϕ(·)(Ω)

∣∣∣∣∣
ϕ(x,r)=r

θp(x,r)−λ(x)
p(x)

.

Definition 4. (Vanishing generalized weighted Morrey space) The vanishing generalized

weighted Morrey space VMp(·),ϕ
ω (Ω) is defined as the space of functions f ∈ Mp(·),ϕ

ω (Ω)
such that

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

= 0.

Everywhere in the sequel we assume that

lim
r→0

1

‖ω‖
Lp(·)(B̃(x,t))

inf
x∈Ω

ϕ(x, t)
= 0. (9)

and

sup
0<r<∞

1

‖ω‖
Lp(·)(B̃(x,t))

inf
x∈Ω

ϕ(x, t)
= 0. (10)
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which makes the spaces VMp(·),ϕ
ω (Ω) non-trivial, because bounded functions with compact

support belong then to this space.

Let L∞v (R+) be the weighted L∞-space with the norm

‖g‖L∞v (R+) = ess sup
t>0

v(t)g(t).

In the sequel M(R+),M+(R+) and M+(R+;↑)stand for the set of Lebesgue-measurable
functions on R+, and its subspaces of nonnegative and nonnegative non-decreasing func-
tions, respectively. We also denote

A =

{
ϕ ∈M+(R+; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on R+. We define the supremal operator
Su by

(Sug)(t) := ‖u g‖Lı(0,t), t ∈ (0,∞).

The following theorem was proved in [3].

Theorem 3. Suppose that v1 and v2 are nonnegative measurable functions such that
0 < ‖v1‖L∞(0,t) < ∞ for every t > 0. Let u be a continuous nonnegative function on R.

Then the operator Su is bounded from L∞v1
(R+) to L∞v2

(R+) on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(0,·)

)∥∥∥
L∞(R+)

<∞.

We will use the following results on the boundedness of the weighted Hardy operator

Hwg(t) :=

∫ t

0
g(s)w(s)ds, H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.

The following theorem was proved in [26, 27].

Theorem 4. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neigh-
borhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞.



60 J.J. Hasanov, X.A. Badalov, L.R. Aliyeva

Theorem 5. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neigh-
borhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t)g(t) (11)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∫ t

0

w(s)ds

sup0<τ<s v1(τ)
<∞.

Moreover, the value C = B is the best constant for (11).

3. Oscillatory integral operators and its commutators in Mp(·),ϕ(Ω)

It is well-known that the commutator is an important integral operator and it plays
a key role in harmonic analysis. In 1965, Calderón [6, 7] studied a kind of commutators,
appearing in Cauchy integral problems of Lipschitz curve. Let K be a Calderón-Zygmund
singular integral operator and b ∈ BMO(Rn). A well known result of Coifman, Rochberg
and Weiss [8] states that the commutator operator [b,K]f = K(bf)− bKf is bounded on
Lp(Rn) for 1 < p <∞. The commutator of Calderón-Zygmund operators plays an impor-
tant role in studying the regularity of solutions of elliptic partial differential equations of
second order (see, for example, [9], [10], [19], [20], [22]).

Lemma 4. (see [49]). If K is a standard Calderón-Zygmund kernel and the Calderón-
Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)), then for any real polyno-
mial P (x, y) and ω ∈ Ap (1 < p < ∞), there exists constants C > 0 independent of the
coefficients of P such that

‖Sf‖Lpω(Ω) ≤ C‖f‖Lpω(Ω).

Theorem 6. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω). Then the operator S is
bounded in the space Lp(·)(Ω).

Proof. By the Lemma 1 and Lemma 4, we derive the operator S is bounded in the
space Lp(·)(Ω).

The following local estimates are valid.

Theorem 7. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and f ∈ Lp(·)(Ω). Then

‖Sf‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
, (12)

where C does not depend on f , x ∈ Ω and t.

Proof. We represent f as

f = f1 + f2, f1(y) = f(y)χ
B̃(x,2t)

(y), f2(y) = f(y)χ
Ω\B̃(x,2t)

(y), t > 0, (13)
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and have

‖Sf‖
Lp(·)(B̃(x,t))

≤ ‖Sf1‖Lp(·)(B̃(x,t))
+ ‖Sf2‖Lp(·)(B̃(x,t))

.

By the Theorem 6 we obtain

‖Sf1‖Lp(·)(B̃(x,t))
≤ ‖Sf1‖Lp(·)(Ω) ≤ C‖f1‖Lp(·)(Ω),

so that

‖Sf1‖Lp(·)(B̃(x,t))
≤ C‖f‖

Lp(·)(B̃(x,2t))
.

Taking into account the inequality

‖f‖
Lp(·)(B̃(x,t))

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,

we get

‖Sf1‖Lp(·)(B̃(x,t))
≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (14)

To estimate ‖Sf2‖Lp(·)(B̃(x,t))
, we observe that

|Sf2(z)| ≤ C
∫

Ω\B(x,2t)

|f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y|, and therefore

|Sf2(z)| ≤ C
∫

Ω\B̃(x,2t)
|x− y|−n|f(y)|dy,

To estimate Sf2, we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy

≤ Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (15)

To this end, we choose δ > 0 and proceed as follows∫
Ω\B̃(x,t)

|x− y|−n|f(y)|dy ≤ δ
∫

Ω\B̃(x,t)
|x− y|−n+δ|f(y)|dy

∫ ∞
|x−y|

s−δ−1ds

≤ C
∫ ∞
t

s−n
ds

s

∫
{y∈Ω:2t≤|x−y|≤s}

|f(y)|dy ≤ C
∫ ∞
t

s−n‖f‖
Lp(·)(B̃(x,s))

‖χ
B̃(x,s)

‖Lp′(·)(Ω)

ds

s

≤ C
∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (16)
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Hence by inequality (16), we get

‖Sf2‖Lp(·)(B̃(x,t))
≤ C‖χ

B̃(x,t)
‖Lp(·)(Ω)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

= Ctθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
. (17)

From (14) and (17) we arrive at (12).

Theorem 8. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), ω ∈ Ap(·)(Ω) and ϕ1(x, t)
and ϕ2(x, r) fulfill condition

∫ ∞
t

ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
≤ Cϕ2(x, t), (18)

where C does not depend on x ∈ Ω and t. Then the singular integral operators T and T ∗

are bounded from the space Mp(·),ϕ1(Ω) to the space Mp(·),ϕ2(Ω).

Proof. Let f ∈Mp(·),ϕ1(Ω). As usual, when estimating the norm

‖Sf‖Mp(·),ϕ2 (Ω) = sup
x∈Ω, t>0

ϕ2(x, t)−1t−θp(x,t)‖Sfχ
B̃(x,t)

‖Lp(·)(Ω). (19)

We estimate ‖Sfχ
B̃(x,t)

‖Lp(·)(Ω) in (19) by means of Theorem 7 and obtain

‖Sf‖Mp(·),ϕ2 (Ω)

≤ C sup
x∈Ω, t>0

tθp(x,t)

ϕ2(x, t)tθp(x,t)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ C sup
x∈Ω, t>0

1

ϕ1(x, t)tθp(x,t)
‖f‖

Lp(·)(B̃(x,t))
= C‖f‖Mp(·),ϕ1 (Ω).

It remains to make use of condition (18).

Theorem 9. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and ϕ1(x, t) and ϕ2(x, r)
fulfill satisfy the conditions (18) and

Cγ :=

∫ ∞
t

ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
<∞ (20)

for every γ.

Then the singular integral operators S is bounded from the space VMp(·),ϕ1(Ω) to the
space VMp(·),ϕ2(Ω).
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Proof. The norm inequalities follow from Theorem 7, so we only have to prove that if

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)tθp(x,t)
‖fχ

B̃(x,t)
‖Lp(·)(Ω) = 0⇒

lim
r→0

sup
x∈Ω

1

ϕ2(x, t)tθp(x,t)
‖Sfχ

B̃(x,t)
‖Lp(·)(Ω) = 0 (21)

otherwise.

To show that sup
x∈Ω

1
ϕ2(x,t)tθp(x,t) ‖SfχB̃(x,t)

‖Lp(·)(Ω) < ε for small r, we split the right-hand

side of (12):

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖Sfχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

≤ C0 (I1,γ(x, r) + I2,γ(x, r)) , (22)

where γ > 0 will be chosen as shown below (we may take γ < 1),

I1,γ(x, r) := ‖ω‖
Lp(·)(B̃(x,t))

∫ γ0

t
‖f‖

L
p(·)
ω (B̃(x,s))

‖ω‖−1

Lp(·)(B̃(x,s))

ds

s
,

I2,γ(x, r) := ‖ω‖
Lp(·)(B̃(x,t))

∫ ∞
γ0

‖f‖
L
p(·)
ω (B̃(x,s))

‖ω‖−1

Lq(·)(B̃(x,s))

ds

s
,

and it is supposed that r < γ. Now we choose any fixed γ > 0 such that

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖
L
p(·)
ω (Ω)

<
ε

2CC0
, for all 0 < t < γ,

where C and C0 are constants from (18) and (22), which is possible since f ∈ VMp(·),ϕ1
ω (Ω).

Then

sup
x∈Ω

CI1,γ(x, r) <
ε

2
, 0 < r < γ,

by (21).

The estimation of the second term now may be made already by the choice of r
sufficiently small thanks to the condition (10). We have

I2,γ(x, r) ≤ Cγ
ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

‖f‖
VMp(·),ϕ1

ω (Ω)
,

where Cγ is the constant from (20). Then, by (10) it suffices to choose r small enough
such that

ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

<
ε

2CCγ‖f‖VMp(·),ϕ1
ω (Ω)

which completes the proof of (21).
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Lemma 5. (see [62]). If K is a standard Calderón-Zygmund kernel and the Calderón-
Zygmund singular integral operator T is of type (L2(Ω), L2(Ω)), then for any real polyno-
mial P (x, y) and ω ∈ Ap (1 < p < ∞), there exists constants C > 0 independent of the
coefficients of P such that

‖[b, S]f‖Lpω(Ω) ≤ C‖b‖∗‖f‖Lpω(Ω).

Theorem 10. Let Ω ⊂ Rn be an open unbounded set, b ∈ BMO(Ω), p ∈ Plog∞ (Ω). Then
the commutator operator [b, S] is bounded on the space Lp(·)(Ω).

Proof. By Lemma 1 and Lemma 5, we derive the operator [b, S] is bounded in the
space Lp(·)(Ω).

The following weighted local estimates are valid.

Theorem 11. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω) and b ∈ BMO(Ω).
Then

‖[b, S]f‖
Lp(·)(B̃(x,t))

C‖b‖∗‖tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(23)

for every f ∈ Lp(·)(Ω), where C does not depend on f, x ∈ Ω and t.

Proof. We represent function f as in (13) and have

‖[b, S]f‖
Lp(·)(B̃(x,t))

≤ ‖[b, S]f1‖Lp(·)(B̃(x,t))
+ ‖[b, S]f2‖Lp(·)(B̃(x,t))

.

By Theorem 10 we obtain

‖[b, S]f1‖Lp(·)(B̃(x,t))
≤ ‖[b, S]f1‖Lp(·)(Ω)

≤ C‖b‖∗‖f1‖Lp(·)(Ω) = C‖b‖∗‖f‖Lp(·)(B̃(x,2t))
, (24)

where C does not depend on f . From (24) we obtain

‖[b, S]f1‖Lp(·)(B̃(x,t))
≤ C‖b‖∗tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
(25)

easily obtained from the fact that ‖f‖
Lp(·)(B̃(x,2t))

is non-decreasing in t, so that ‖f‖
Lp(·)(B̃(x,2t))

on the right-hand side of (24) is dominated by the right-hand side of (25). To estimate
‖[b, S]f2‖Lp(·)(B̃(x,t))

, we observe that

|[b, S]f2(z)| ≤ C
∫

Ω\B(x,2t)

|b(z)− b(y)| |f(y)| dy
|y − z|n

,

where z ∈ B(x, t) and the inequalities |x− z| ≤ t, |z − y| ≥ 2t imply 1
2 |z − y| ≤ |x− y| ≤

3
2 |z − y|, and therefore

|[b, S]f2(z)| ≤ C
∫

Ω\B̃(x,2t)
|x− y|−n|b(z)− b(y)| |f(y)|dy.



Oscillatory Integral Operators and Their Commutators 65

To estimate [b, S]f2, we first prove the following auxiliary inequality∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (26)

To estimate [b, S]f2(z), we observe that for z ∈ B̃(x, t) we have∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b(y)||f(y)|dy

≤
∫

Ω\B̃(x,t)
|x− y|−n|b(y)− b

B̃(x,t)
||f(y)|dy

+

∫
Ω\B̃(x,t)

|x− y|−n|b(z)− b
B̃(x,t)

||f(y)|dy = J1 + J2.

To this end, we choose δ > 0, by Theorem 2 and Lemma 3 we obtain

J1 =

∫
Ω\B̃(x,t)

|x− y|−n|b(y)− b
B̃(x,t)

||f(y)|dy

≤ δ
∫

Ω\B̃(x,t)
|x− y|−n+δ|b(y)− b

B̃(x,t)
||f(y)|dy

∫ ∞
|x−y|

s−δ−1ds

≤ C
∫ ∞
t

s−n−1

∫
{y∈Ω:2t≤|x−y|≤s}

|b(y)− b
B̃(x,t)

||f(y)|dyds

≤ C
∫ ∞
t

s−n−1‖b(·)− b
B̃(x,s)

‖
Lp
′(·)(B̃(x,s))

‖f‖
Lp(·)(B̃(x,s))

ds

+ C

∫ ∞
t

s−n−1|b
B̃(x,t)

− b
B̃(x,s)

|
∫
B̃(x,s)

|f(y)|dyds

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)−n−1‖f‖
Lp(·)(B̃(x,s))

ds

+ C‖b‖∗
∫ ∞
t

s−θp(x,s)−n−1 ln
s

t
‖f‖

Lp(·)(B̃(x,s))
ds

≤ C‖b‖∗
∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
.

To estimate J2, by (15), we have

J2 =|b(z)− b
B̃(x,t)

|
∫

Ω\B̃(x,t)
|x− y|−n|f(y)|dy

≤ C|B(x, t)|−1

∫
B̃(x,t)

|b(z)− b(y)|dy
∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s

≤ CMbχB(x,t)(z)

∫ ∞
t

s−θp(x,s)‖f‖
Lp(·)(B̃(x,s))

ds

s
,
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where C does not depend on x, t.

Hence by inequality (26), we get

‖[b, S]f2‖Lp(·)(B̃(x,t))
. ‖χ

B̃(x,t)
‖Lp(·)(Ω)‖b‖∗

×
∫ ∞
t

(
1 + ln

s

t

)
s−θp(x,s)‖f‖

Lp(·)(B̃(x,s))

ds

s

= ‖b‖∗tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s
. (27)

From (25) and (27) we arrive at (23).

Theorem 12. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), b ∈ BMO(Ω) and the
functions ϕ1(x, r) and ϕ2(x, r) satisfy the condition

∫ ∞
t

(
1 + ln

s

t

) ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
≤ Cϕ2(x, t). (28)

Then the operator [b, S] is bounded from the space Mp(·),ϕ1(Ω) to the space Mp(·),ϕ2(Ω).

Proof. Let f ∈Mp(·),ϕ1(Ω). We have

‖[b, S]f‖Mp(·),ϕ2 (Ω) = sup
x∈Ω, t>0

1

ϕ2(x, t)tθp(x,t)
‖[b, S]f‖

Lp(·)(B̃(x,t))
.

By (28), Theorems 4 and 11 we obtain

‖[b, S]f‖Mp(·),ϕ2 (Ω)

≤ C‖b‖∗ sup
x∈Ω, t>0

tθp(x,t)

ϕ2(x, t)tθp(x,t)

∫ ∞
t

s−θp(x,s)
(

1 + ln
s

t

)
‖f‖

Lp(·)(B̃(x,s))

ds

s

≤ C‖b‖∗ sup
x∈Ω, t>0

1

ϕ1(x, t)tθp(x,t)
‖f‖

Lp(·)(B̃(x,t))
= C‖b‖∗‖f‖Mp(·),ϕ1 (Ω)

which completes the proof.

Theorem 13. Let Ω ⊂ Rn be an open unbounded set, p ∈ Plog∞ (Ω), b ∈ BMO(Ω) and the
functions ϕ1(x, r) and ϕ2(x, r) satisfy the conditions (28) and

Cδ0 :=

∫ ∞
t

(
1 + ln

t

s

) ess inf
s<r<∞

ϕ1(x, r)rθp(x,r)

sθp(x,s)

ds

s
<∞ (29)

for every δ0.

Then the operator [b, S] is bounded from the space VMp(·),ϕ1(Ω) to the space VMp(·),ϕ2(Ω).
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Proof. The norm inequalities follow from Theorem 11, so we only have to prove that if

lim
r→0

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖Lp(·)(Ω) = 0⇒

lim
r→0

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) = 0 (30)

otherwise.

To show that sup
x∈Ω

1
ϕ2(x,t)‖ω‖

Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) < ε for small r, we split the

right-hand side of (23):

sup
x∈Ω

1

ϕ2(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖[b, S]fχ
B̃(x,t)

‖Lp(·)(Ω) ≤ C0 (I1,δ0(x, r) + I2,δ0(x, r)) , (31)

where δ0 > 0 will be chosen as shown below (we may take δ0 < 1),

I1,δ0(x, r) := ‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ δ0

t

(
1 + ln

t

r

)
‖f‖

Lp(·)(B̃(x,s))
‖ω‖−1

Lp(·)(B̃(x,s))

ds

s
,

I2,δ0(x, r) := ‖b‖∗‖ω‖Lp(·)(B̃(x,t))

∫ ∞
δ0

(
1 + ln

t

r

)
‖f‖

Lp(·)(B̃(x,s))
‖ω‖−1

Lq(·)(B̃(x,s))

ds

s
,

and it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Ω

1

ϕ1(x, t)‖ω‖
Lp(·)(B̃(x,t))

‖fχ
B̃(x,t)

‖Lp(·)(Ω) <
ε

2CC0‖b‖∗
, for all 0 < t < δ0,

where C and C0 are constants from (28) and (31), which is possible since f ∈ VMp(·),ϕ1(Ω).
Then

sup
x∈Ω

CI1,δ0(x, r) <
ε

2
, 0 < r < δ0,

by (30).

The estimation of the second term now may be made already by the choice of r
sufficiently small thanks to the condition (10). We have

I2,δ0(x, r) ≤ Cδ0
ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

‖b‖∗‖f‖VMp(·),ϕ1 (Ω),

where Cδ0 is the constant from (29). Then, by (10) it suffices to choose r small enough
such that

ϕ2(x, r)

‖ω‖
Lp(·)(B̃(x,r))

<
ε

2CCδ‖b‖∗‖f‖VMp(·),ϕ1 (Ω)

which completes the proof of (30).
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