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Boundary control by the displacement for the telegraph
equation with a variable coefficient and the Neumann boun-
dary condition

Kritskov L. V., Abdukarimov M. F.

Abstract. A problem of the boundary control by the displacement at the point x = 0 with the
Neumann condition at the point = = [ is considered for the process which is described by the
telegraph equation with a variable coefficient on the finite interval 0 < z < [. For the critical time
period T' = 2l a necessary and sufficient condition for the existence of a unique boundary function
w1(t) = u(0,t) which transfers the process from any initial state at ¢ = 0 to any terminal state at
t =T is given.
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1. Introduction

In this paper we study a problem of the boundary control by the displacement at one
endpoint for the process which is described by the one-dimensional telegraph equation with
a variable coefficient

Lu = uy(z,t) — Uge(z,t) — gz, t)u(z,t) =0, 0 <z <, (1)

assuming that, on the other endpoint = [, the homogeneous Neumann condition u,(l,t) =
0 holds for all ¢t € [0,7]. The coefficient g(z,t) in (1) is supposed to be a bounded and
measurable function in the rectangle Qr = [0 < z <[] x [0 <t < T).

The goal of this paper is to obtain the existence of a unique boundary control at the
end-point x = 0: p(t) = u(0,t) that transfers the process from any initial state {u(z,0) =
o(x),u(z,0) = Y(x)} at t = 0 to any terminal state {u(z,T) = p1(x),w(z,T) = ¢P1(z)}
at t = T in the case when T' = 2[. It is supposed that u(z,t) satisfies Eq. (1) in the
generalized sense (see Section 1) and has a finite energy.

Investigations of a similar problem for the one-dimensional wave equation (g(x,t) = 0)
in [1-3] showed that the time period 7' = 21 of the boundary control’s action at one endpoint
is critical in the following sense. When T' = 2[ the boundary control is defined uniquely
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for a rather wide class of initial and terminal data, while in the case T' > 2l the boundary
control is not unique and in the case T" < 2l the control’s existence demands the initial
and terminal data satisfy restrictive additional conditions.

Note also that certain boundary control problems for Eq. (1) with a constant coefficient
q(w,t) = —c? are studied in [4-6]. Existence of the boundary control for general hyperbolic
equations is considered in |7-12| in the case when the time period T exceeds its critical
value.

This paper is the development of results announced in [13].

2. Main definitions

In order to define the notion of a generalized solution, we use the classes W%(QT) and
/W?QQ(QT) which are quiet natural for hyperbolic equations (see, e.g., [1,2]). Let us consider
the following three problems for Eq. (1) in the rectangle Qrp:

— the initial boundary-value problem I with conditions

w(0,t) = pu(t), ug(l,t) =0 for 0<t<T, (2)

where u(t) € Wi[0,T), p(z) € W4[0,1], 9(z) € L2[0,1] and the compatibility condition

1(0) = p(0) is satisfied,;
— the initial boundary-value problem IT with conditions (2) for 0 < ¢t < T and conditions

u(z, T) = ¢1(x), ue(z, T) =11(x) for 0<x <, (4)

where p(t) € Wi0,T), ¢1(x) € W4[0,1], ¥1(z) € L2[0,1] and the compatibility condition
w(T) = ¢1(0) is satisfied;

— the boundary control problem III with the Neumann condition wu,(l,t) = 0 for 0 <
t < T, with the initial data (3) and the terminal data (4) where (), p1(x) € W20,1],
¥(z),¥1(x) € Lo[0,1]. N

The function u(z,t) is called the solution from the class W3 (Qr) to the problem 1 if it
belongs to this class and the identity

I T l T
//u z, ) LP(x,t) d$dt+/ z)P¢(x,0) — YP(z)P(z,0)] dr — //,L(t)q)x(o,t) dt =0 (5)
00 0 0

holds for any test function ®(x,t) € /V[722(QT) which satisfies the conditions ®(0,t) =
®,(l,t) =0for 0 <t < T and ®(x,T) = &(2,T) =0for 0 <z < I.

Analogously the function u(z,t) is called the solution from the class WQI(QT) to the
problem 1II if it belongs to this class and the identity similar to (5) holds* for any test

*The second integral in (5) should be substituted by — fo [p1(2)P¢ (2, T) — Y1 (z)P (2, T)] dz.
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function ®(z,t) € /W?QQ(QT) which satisfies the conditions ®(0,¢) = ®,(l,t) =0 for 0 < t <
T and ®(z,0) = ®4(z,0) =0 for 0 <z < I.

The solution to the initial boundary value problem I u(x,t) is called the solution from
the class W;(QT) to the boundary control problem IITif the boundary function ju(t) enables
the first terminal condition (4) to hold pointwise and the second terminal condition (4) to
hold almost everywhere on [0, ].

It is easy to check (see [4]) that if a function wu(z,t) is the solution from /W?%(QT) to
the problem I then the function w;(x,t) = u(xz,T —t) gives a solution from the same class
to the problem IT with the coefficient ¢(z,t) in (1) substituted by ¢(z,T — t), the function

u(t) in (2) — by u(T — ) and with @1 (z) = @(x), ¥1(x) = —(2) in (4).

3. Auxiliary statements

Applying the technique of [13, ¢.163-165] one can obtain the following

Assertion 1. Let T > 0 and the coefficient q(z,t) in Eq. (1) be bounded and measurable
in Qr. Then both initial boundary-value problems I and II have at most one solution from
the class W;(QT)

In what follows we use the notation p(t) for the function that coincides with p(t) for
t > 0 and vanishes for all ¢ < 0. Hence H(t) € Wi [—e,T] for any ¢ > 0.

Assertion 2. Let T < 2. Then the unique solution from W%(QT) to the problem I with
¢o(x) =0 for x € [0,1], ¥(x) =0 a.e. on [0,1] and an arbitrary function u(t) € W4[0,T)
such that p(0) = 0, satisfies the relation

t l—|z+t—7— l\
u(w,t) = p(t —x) / / ,T) dédT+
0 |t

max{0,z+t—1} 1

i / / a(¢, )u(E, 7) dedr (6)

0 22—z —t+1

in the case 0 <t <1 and the relation

—ll—|t—z—1— T\
u(w,t) = pt —z) +pt+x—20) + - / / ,T) dédT+
0 |20—z—t+7|
t l—|t+z—1— 7'| r+t—I1 l
v [ [ denuendars | [ aenuenagr @
t—l  |z—t+7| max{0,t—zx—l} l—z+|l—t+7|

in the case | <t < T.
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Proof. In order to obtain relations (6) and (7), it is sufficient to construct the solution
from the class W3 (Qr) to the following initial boundary-value problem for the inhomoge-
neous wave equation

utt($7t) - UII(J?,t) = f($7t)7 ($7t) € QT:
u(z,0) =0, u(z,0) =0for 0 <z <, (8)
w(0,t) = pu(t), ug(l,t) =0for 0 <t < T

and take f(x,t) = q(z, t)u(z,t).

The solution to (8) is a sum of the solution u(t — x) + u(t +  — 2I) to the similar
problem for the homogeneous wave equation (see Assertion 2 in [3]) and the solution to
the problem (8) with zero 1n1t1al and boundary data. The latter solution is given by the
well-known integral F(z,t) = 5 fo f;tﬂr: ,7)dédr in which the integrand coincides
with f(x,t) inside Qp and is the odd extenswn of f(x,t) over the boundary x = 0 and
its even extension over the boundary x = [. One can easily show that if f(x,t) € L2(Q7)
then F(z,t) is a unique solution from /V[721(QT) to the corresponding problem. Using
the symmetric properties of the continued function f(z,t) one can refine the bounds of
integration for F'(x,t) that immediately leads to relations (6) and (7). m

Assertion 3. Let T < 2l. Then the solution u(zx,t) from /V[721 (Qr) to the problem I with
o(z) =0 for x € [0,1], ¥(z) = 0 a.e. on [0,1] and an arbitrary function u(t) € W4[0,T]
such that (1(0) = 0, is defined uniquely; moreover, u(z,t) = 0 in the domain {(z,t) | 0 <
t<Lt<z<U}NQr.

Proof. All the values T' € (0,2!] are discussed similarly. Thus for the sake of brevity
let us confine ourselves to the case T' = 2. Let the rectangle Qo be subdivided into seven
parts by the characteristic lines starting from its vertices. In these domains:

— the triangle Ay = {(x,t) |0 <t <1/2, t <x <[ —t} which is adjacent to the lower
base of Qg,

— the triangles Ay = {(2,t) |0 <t <, 0< 2 <1/2— |t —1/2|} and Az = {(z,t) | 0 <
t <, 1/2+ |t —1/2] <z <} which are adjacent to the lateral sides of Qg in its lower
half,

— the square Ay = {(z,t) | [/2 <t < 31/2, |t—l| <U—|t =1},

— the triangles Ay = {(33, Hll<t<2l,0<z< l/2 — |t = 31/2|} and Ag = {(z,1) |
I <t<2, 1/24|t—3l/2] < x <1} which are adjacent to the lateral sides of Q9 in its
upper half, and

— the triangle A7 = {(z,t) | 31/2 <t < 2l, 2l —t <z <t — 1} which is adjacent to the
upper base of @y,
let us assign u;(z,t) = u(z,t) for (z,t) € A;, j = 1,7, and consider Egs. (6) and
(7) successively for the points (z,t) € Ay, Ag, ..., A7 as integral equations for obtaining
ui(z,t), us(x,t), ..., ur(x,t).

In the case j = 1 Eq. (6) leads to the following equation for wuy(x,t):

=5 [ [ st Pt dear )
D1
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where Dy (z,t) ={({,7) |0<7<t, e —t+7<E{E<x+t—T}

Rewriting Eq. (9) in the operator form u(z,t) = [Nyju|(z,t) one can note that the
operator N is bounded in Lo (A7) and its powers N satisfy the estimate!
2k

sup |x(z,t)], (x,t) € A;. (10)

Wi 0] < el gy sun,

Thus Eq. (9) is a homogeneous Volterra-type integral equation of the second kind and
has only the trivial solution.
As ui(z,t) = 0 and p(t —x) = 0 for (z,t) € As, the function uz(w,t) satisfies the

equation similar to (9):
[+ [ | ate.rmateryazar (11)

by, DY

where the quadrangle Dj(x,t) = {({,7) |0< 7 <¢t, (I+x—t)/24+ |t — (1 —2+1)/2| <
E<(I+xz+t—7)/2—|(r —x—t+1)/2|} and the triangle Df(x,t) = {(§,7) | 0 < 7 <
x+t—1, Bl—z—1t)/2+|1—(z+t—1)/2] <& <} lay entirely in Ag.

Since the integral operator N3 in the right-hand side of (11) is bounded in Lo (A3) and
satisfies the estimate

IVEN (0| < (2lallo)”

2k

sup |x(x,t)], (x,t) € Ag, 12
k) W)GA3| (z,8)], (1) € As (12)

one similarly obtains that us(z,t) = 0.
As in the domain As: uq(z,t) =0, Eq. (6) there takes the form
ua(, ) = plt — ) / 4(€, 7Y (6, 7) dédr (13)

where Do (z,t) = {(§,7) | (t—2)/2 < 7 < ¢, |o—t+7| < &< (v+1)/2—|7—(x+1)/2|} C As.
As one rewrites Eq. (13) in the operator form us(x,t) = pu(t — x) + [Naug|(z, t), it is clear
that u(t — ) is bounded in As and the bounded in L. (Ay) operator Ny satisfies the
estimate

12k

sup |x(z,t)], (x,t) € As. (14)

NG 0] < (lallo/2" Gy 0P,

Therefore Eq. (13) has the solution which equals the absolutely convergent Neumann
series ug(z,t) = (I + > po 1/\/’k) (t — z) and is bounded in Ag
Now let (z,t) € As. As ui(z,t) =0, uz(x,t) =0, Egs. (6) and (7) yield

ug(x,t) = p(t — x) // (&, m)ug(§,7)dédr + = / q(&, m)ua(§, ) dédr (15)

"By ||l¢|lc We denote the norm ess SUD (4.4)e @y, 19(T, )]
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where D) (z,t) ={(&7) | (t—2)/2<7<(I+t—2)/2, [e—t+7|<EL/2— |1 —1/2|},
Dalw,t) = {(E67) |2 <7 <t, (I—t+2)/2+ |1 +1—2)/2—7| SES (t+2)/2— |(t+
x)/2 — 7|}. Since D) C A,, the first integral term on the right-hand side of (15) is the
known bounded function. As Ds C Ay, Eq. (15) can be treated as an integral equation
for us(z,t) in which the operator [Nix](z,t) = 3 [/p, a(& 1)x(& 1) dédr in the right-hand
side is bounded in Ly (Ay4) and satisfies the estimate

t— k
D G @l @ eAn  (16)
2k (e pens

VBN (@, 1)] < (gl /2)"

Similar to (13), the estimates (16) yield that Eq. (15) has a bounded in A4 solution
ug(z,t).

The solution u(x,t) in the remaining domains As, Ag, Ay is constructed using the same
approach. Let us list only the related integral equations and corresponding estimates.

In the triangle As, one obtains the equation

us(z,t) = p(t — ) // (& Tua(§, 7) dédr + o / (&, 7)us (8, 7) dédr (17)

where Df(z,t) = {(&,7) | t—2)/2 <7< ({+t+2)/2, t—z—-0/2+|t—x+1)/2—
A< €< (tra)f2 it +a)/2— 11} € Ay, Ds(awnt) = {(€7) | (t—a+1)/2 < 7 <
tle—t+7|<ES(E+2—-0)/2—|(t+2x+1)/2— 7|} C As, and the integral operator
Nsx](z,t) = %ff% q(&,7)x(&,7) dédr satisfies the estimate

)k
e 0] < oo S5 s el e 09

In the triangle Ag, one obtains the equation

(xt)—/,t(t—$)+u(t+x—2l+— // // q(&, Tug (&, 7) dedr+

r
+ // // a6 P)ua(E,7) dédr + & // [ |atermsienagar o)
6 D”

where D62(x t) = {(f, )| (t+xz—-20/2 <7< (t+x—-10/2, [x+t—-20l—7| <<
1/2 =12 — 7|} C Ag, Diy(z,t) ={(&7) | t—2)/2<7<(I+t—2)/2, [x—t+ 7| <
€ <1/2—-|l/2—7]} C Ag, Diy(x,t) = {(&7)|1l/2<7< 2 —-a+1)/2, (I+2x—
D2+ 0-c+0)/2-7 <& Il =7} C Ay, Dgy(a,t) = {(§,7) [ /2 <7 <
(x4+1)/2, Bl—x—t)2+|(x+t—=1)/2—7| <ELI—|l—7|} C Ay, Di(z,t) = {(&,7) | <
T<e+t—1 A—-—x—t)/2+|(x+1t)/2—7] <L} C Ag, DE(z,t) ={(§,7) | I <7<



Boundary control by the displacement for the telegraph equation with a variable coefficient o7

t, Ql+z—t)/24+|2l—2+1)/2—7| < (l+$—i—t T/) —|(r—x—t+1)/2|} C Ag, and
the integral operator [Ngx](z,t) = ( ffD/ + ffDu X (&, 7) ddT satisfies the estimate
x4t —20)F
WG 0] < Ul 2wy x@nl @ ens 20)
. (z,t) A6

And finally, in the triangle A7, the following equation holds:

ur(o,t) = it = 2) + plt 2 = 20) + 5 [ [ a6 st ) der
Do

+_ // // q(§, m)ua(§, 7) dEdT + 5 // (&, 7)us(&,7) dédr+

"
D7 74 D 74

—I—% //—I—// Q(ﬁ,T)ues(i,T)dﬁdT—i—%/ q(&, T)ur (&, 7) dédr (21)
D7g D7 D7

where Dyo(z,t) = {({,7) | t+x—20)/2 < 7 < (x+t—-0/2, [z +t—-2l—7] < <
1/2 —|l/2 = 7|} C Ag, Dhy(z,t) = {(&7) | 1/2 < 7 < (x+1)/2, Bl—z—1)/2+
(z+t=0/2-7 << I—|l—7|} C Ay, Dyy(z,t) = {(&7) | (t—2)/2 <7 <
BD/2, t—z=02+|t—z+)/2-7| <& T |l —7[} C Ay, Drs(,t) = {(§,7) |
(t—z+1)/2 <7< (2l—2+1)/2, |z—t+7| < EL1/2—|31/2—7|} C As, Dhg(z,t) = {(&,7) |
I<T<(e+t+1)/2, 1/24|8)/2—7| <ES<(I+z+t—7)/2—|(t+2—1—7)/2|} C A,
Dl(z,t) ={(n)|I<T7<z+t—1, l—z—-t)24+|(x+1)/2—-7| <1} C Ag,
Dr(z,t) ={(&7) |3l/2<7<¢t, RQL+x—t)/24+|2l+t—2)/2—7|<EL (4+t-1)/2—
|(z+t+1)/2—7|} C A7, and the integral operator [N7x](z,t) = %ffm q(&,7)x(&, 1) dédT
satisfies the estimate

(t+x—20)F

V(@8] < Ulalloo/ D == sup [x(@, Dl (@0) € Ar. (22)
: (z,t)eA7

Thus it is proved that Egs. (6) and (7) have the bounded solution u(zx,t) in the
rectangle Q7. The next step is to study its smoothness.

As all the terms in the right-hand sides of (6) and (7) are continuous with respect
to (z,t) in Qp, the obtained solution u(z,t) is also continuous in Qp. For the sake of
simplicity, let us introduce the bounded function U(z,t) = q(x,t)u(x,t) in Q7 and make
its odd extension over x = 0 and its even extension over x = [. Then Egs. (6) and (7) can
be coupled into one equation

t x+t—71

u(a,t) = plt —2) + ult 7 —2) + / / U(e, ) dedr. (23)

0 z—t+71
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By the straightforward differentiation, Eq. (23) yields that, a.e. in Qr,

ug(w,t) = —p/'(t —x) +p'(t+2 —20) +

N —

/[U($+t—7',7')—U(x—t—{—T,T)]dT, (24)
0

ug(x,t) :E/(t—x)+ﬁ/(t+ﬂ?—21)+%/[U($+t—7’,7’)+U($—t+7’,7’)]d7’, (25)
0

and therefore the derivatives uy(z,t) and w(x,t) belong to La(0 < x < 1) for all ¢ € [0, 2]
and to Lo(0 <t < 2) for all x € [0,1]. m

Remark. The direct analysis of the Neumann series for the solutions of Egs. (9), (11),
(13), (15), (17), (19), (21) and the inequalities (10), (12), (14), (16), (18), (20), (22) lead
to the estimate

max |u(z, 1) - u*(2,5)] < Cllallc (26)
(z,t)eQT

where u*(x,t) = p(t—x)+pu(t+x—21) is the solution from WQI(QT) to the initial boundary-
value problem I for the homogeneous wave equation with zero initial data in the case when
T < 2l (see the proof of Assertion 2).

Together with Egs. (24) and (25), it means that

e = il Lo@r) + lue — 4l Loy < Clldlloo- (27)

Thus, combining (26) and (27), one obtains the estimate

lu = u*llwy @) < Cllalloo- (28)

For the problem II the following similar statement holds.

Assertion 4. Let T < 2l. Then the solution from W3 (Qr) to the problem II where
¢1(z) =0 for x € [0,1], ¥1(x) =0 a.e. on [0,1] and an arbitrary function u(t) € W4[0,T)
such that u(T) = 0, is defined uniquely; moreover, u(x,t) = 0 in the domain {(x,t) |
T-1<t<T, T—t<z<I}NQr

Let us proceed with the proof of uniqueness for the solution to the boundary control
problem III.

Assertion 5. For any T € (0,2l], the boundary control problem III has at most one
solution from W%(QT)

Proof. Let us consider only* the case T' = 21. Suppose that in this case the problem
ITI has two solutions u™") (z,t) and u® (z,t) from the class W4 (Qg;). Then their difference
u(z,t) = u® (x,t) —u®(z,t) gives a solution from the same class to the problem III with
zero initial and terminal data. Let u(t) = u(0,¢). It follows from the definition of the class
W1(Qq) that u(t) € WL[0,2(] and u(0) = p(21) = 0.

fAs it can be easily obtained from what follows, in the case T < 2l it is essential that the domains where
the solutions considered in Assertions 2-4 vanish should have common points.
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The function u(x,t) is the solution from /W?%(le) both to the problem I with zero
initial data and to the problem II with zero terminal data coupled with the boundary
condition pu(t) = u(0,t). It follows from Assertions 2-4 that u(x,t) vanishes in the domain
Ag={(z,t) |0<t <2, |- |l —t| <x <} Let us show that u(z,t) vanishes also in the
remaining domain Qg \ Ay.

Let ¢; be an arbitrary value in [0, 2{]. The characteristic line t—x = ¢; that starts at the
point (0,¢1) intersects the characteristic line ¢t +x = 2 at the point (I —1¢1/2,14+t1/2) € Ay
where u(z,t) = 0. Thus Egs. (6) and (7) yield

T / a(€, Tyulé, 7) dedr, (20)

DE)(H

where Di(t) = {(6,7) | t1/2 <7 < t1/2+1, |1 —ti| <€ <I—|l—7]}.

Consider an arbitrary point (x,t) € Qa \ Ag. It follows from (6) and (7) that u(x,t) =
p(t —x) + 5 ffDo o) Yu(€,7) dédT, hence, by Eq. (29) with ¢t = ¢ — x, one obtains
the relation

(@, ) = — / / r)dedr = [Nou (@, 1); (30)

D()(t z)\ Do (x,t)

here the domain D{(t — z) \ Dy(z,t) is the triangle {({,7) | (z +¢)/2 < 7 < 1+ (t —
x)/2, x+|t—7| <ELTI—|l—T|}

Eq. (30) is the homogeneous Volterra-type equation of the second kind since the op-
erator Ny in its right-hand side is bounded in L (Q29 \ Ag) and satisfies the estimates
[INEX](, t)| < (Ulgllos/2)" (t — x)% k! SUP(3,1)cQa\Ao |X (25 )|. Thus Eq. (30) has only the
trivial solution, and it follows from Eq. (29) that p(t1) = 0 for all ¢; € [0,2]]. m
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4. Main results

First of all let us note a certain peculiarity of the boundary control problem III for the
critical value T' = 2I. It follows from [3] that the function

T4t
pla+t)+oe—0)+ | v(E)de in A,

T+t t—x
p(x +1)+p(0)+ f (€ d§+901(t—33)—901(0)+{¢1(§)d§ in Ag,

[ [
oz —t)+ o2l —z—t) + [ t Y(€) dE +217f y Y(€) dE in Ag,
1
GOl —z =)+ o0)+ [ wlE)d+ [U()de+
Bt =1 Tt — ) — pr(0) + tof%@ de i Ay,

l

l
P2l =z =)+ pl0)+ | PO d+ [UlE)de+

! !
+o12l+z—t) —p1(0)+ [ (&) dE+ [¥1(§)dE in As,
0

2l+x—t
l l
prz+t =20+t —x)— [ Y1(§)dE— [ P(§)dE in Ag,
r+t—21 t—x
r—t+21
o1z +t=20)+pi(@x—t+20)— [ ¢1(&)d¢ in Ay
\ x+t—21

(31)
is a unique solution to the boundary control problem III for the homogeneous wave equation
if and only if its data satisfy the relation

l l
0+ [ 06 ds = 1(0) - [ 01(€)de = B (32
0 0
Similarly, in the inhomogeneous case one can prove that the function’
t r+t—T7
u(z,t) = 8(;1:,75) + %/ / f(&, ) dédr (33)
0 z—ttr

is the unique solution to the boundary control problem III for the forced oscillations (see
(8)) if and only if the relation

1 21 [
Ao+ 0/ / J(€.7) dedr = By + 1/21 [ f(€.7) dédr (34)

$The integrand in (33) is obtained by the extension of the right-hand side f(z,t) outside Q7 similar to (8).
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holds where Ay, By are constants in the left-hand and in the right-hand sides of (32).
The boundary control problem III for the telegraph equation (1) is also governed by a

similar condition which is necessary for the existence of its solution from W;(QT)
Theorem 1. Let T = 2[. Then, for the existence of the solution from W;(Qm) to the

boundary control problem III, it is necessary to observe the following conditions:

1) o(x), p1(x) € W3[0,1), ¥(x), ¢1(x) € L2[0,1],

2) the initial and terminal data satisfy the relation

I 2l—1 2 T
Ap +0/ T/ qa (&)A€, 7)dsdr = By + /21_/ qp (&, 7)B(&, 1) dédr, (35)

where Ag, By are the constants in (32), the values A(E,7), B(§,7) are computed via the
wnstial and terminal data by the formulas

E+7
Algr) =5 |- lerr—th+o—lg=r=t)+ [wa-Ic-tdc|,  (30)
E—1
. E—1421
B, r)=5|will—[€+7 =3+l = |€ =7 +1])~ / il —[¢=1)dc|  (37)
E+r—21

and the kernels q (&, 7) and g5 (&, 7) of the integral operators are connected with the coef-
ficient q(&,T) in (1) by the relations

ai&m) =al-le=1ln) 2 iPa e, @ ter)=1/2
min(;—i—t—n E—T471)

t
@fkﬂ)(ﬂ%t;ﬁﬁ):%f S/ Q(l—|f51—l|771)q~,§k)(§1,71;§’7)dfldﬁ,
T max(z—t+71,E+7—71) (38)

GEn) = o~ e~ 10 S a0 nen, @ e nen) =1/

7 min(z—t+71,E+7—71)
oyt =4 / a(l = [0 = 17T (€1, €. 7) damy.
t

max(x+t—71,—74+71)

Proof. Let the function u(z,t) be the solution from /V[721 (Q21) to the boundary control
problem III. Then it is also the solution to the problem I in the triangles Ay, Ag and the
solution to the problem II in the triangles Ag, A7. Mimicking the proof of Assertion 2, we
construct the integral relations for the function u(z,t) in the domains Ay, Az, Ag and Ar.

Let (z,t) € A1 |JAs. Denoting by 31 (z,t) and 33(33, t) the solutions (31) to the problem
I for the homogeneous wave equation in A; and Ag respectively, one obtains the equations

w(z t) = % (2, 1) + % / / o(&. TYu(E, 7Y dedr,  (3,1) € Ay, (39)
971
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w(z,t) = Us(z, t) +% / / + / / (&, TIu(E, 7Y dedr, (z,t) € As, (40)

o, o
where Q(z,t) = Di(z,t), Qs(z,t) ={({,7) |0< 7 <t o —t+7<ELS (IHax+t—7)/2—
(T —z—t+1)/2} and Qf(z,t) ={(,7)|0<T7<z+t—-1, 2l—x—t+7<EL )

Let the functions u(z,t), g(x,t) in (40) and the initial data ¢(z), ¥(x) in ’(L)Lg(x,t)
be continued evenly over = [ to the domain Q) = [ < o < 2] x [0 < t < 2I].

Denote these new functions by @(z,t), §(z,t), @(z), ¥(z) respectively. Thus 83(3;,15) =
T+t __ 0
Sz +t)+@(x—t)+ [ (£)d€] = Ui (w,t) and using this continuation one can rewrite

r—t

Eq. (40) in the following form

0
(e t) = 1y (2, 1) / G(6, TV, T) dedT,  (2,1) € As. (41)

One can easily see that Eq. (41) transforms into Eq. (39) for (z,t) € A; and, by
the symmetry, keeps its form if the point (z,t) belongs to the triangle which is mirror
symmetric to the triangle Aj|JAs with respect to = [. Thus the continued solution
u(z,t) satisfies Eq. (41) for all (z,t) € Ay ={(x,t) |0 <t <, t <x < 20—t}

o . 0 0 ,
Similarly denoting by wug(z,t) and uy(z,t) the solutions (31) to the problem II for the
homogeneous wave equation in Ag and A7 respectively, one obtains from the equations

u(z,t) = / q(&, T)u(€, 7)dedr, (z,t) € Ay, (42)

w(z,t) = gz, t) +% / / + / / (&, T)u(E, ) dedr, (z,t) € Ag, (43)

Qi af

where Q7 (z,t) = {({,7) |t <7 <2, x+t—7<E<x—t+7) Qla,t) = {&7) |

t<7<2 a+t—7<ES (I —t+7)/2—-|(T+x—t—-1)/2]}, Q(x,t) = {(71) |

l—z+t<7<2, 2-2+t-7<E< [}, that the evenly extended solution wu(z,t) for
all (z,t) € Ay = {(x,t) | I <t <2, 2l —t < x < t} satisfies the relation

u(x,t) = u7 x,t) // (&, m)u(&, 1) dédr. (44)

0 r—t+20 _ _ _
Here u7(z,t) = g[p1(z+t —20) + @1(x —t +20) — [ p1(§)d€] where Gy (z), ¢y (x)
T+t—21

are the terminal data which are extended evenly over x = I.
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Since the function u(x,t) (and therefore the function u(x,t)) is continuous in Qg (as
it belongs to W (Qs)) the value u(l,1) = u(l,1) should be the same no matter whether it
is computed from (41) or from (44). Therefore

u1 (1,1) // (&, m)u(&, ) dédr —u7 (1,10) // & m)u(g,)dédr. (45)

Ql(ll 97(11

0 9 0
As (1) = (1, 1) = @(0)+ fy ¥(€)d = Ao, (1, 1) = u(l,1) = 1(0) = [ 1 (E)de =
By and moreover Q4 (l,1) = AI, Q7(1,1) = A%, Eq. (45) yields the relation

Av+y [[[ate. e deir = By + 5 [ [[ate e dear. (46)
A Af

Following an approach introduced in [14], Eq. (46) can be transformed to its final form
0

0
(35) by expressing u(z,t) via uj(z,t) in (41) and ur(z,t) in (44) using the corresponding
Neumann series and substituting the obtained expressions in the left-hand and the right-
hand sides of (46).

Introducing the operators [G;u](x,t) = (1/2) ffﬂ ,7)dédT, j = 1,7, one
obtains
~ 9 SN ~
u(z,t) = uy(x,t) + Z[Ql ur)(z,t) for (x,t) € Aq (47)
k=1
and
_ 9 SN <
u(x,t) = ur(x,t) + Z[%u?] (z,t) for (z,t) € A7 (48)
k=1

The series in the right-hand sides of (47) and (48) are absolutely convergent since the
operators G; and Gr satisfy the estimates:

2k
gt 0] < lal)* s (o) (49)

(20 — t)*

S s ()l (50)

(:DJ)GE?

1G5 x)(2,)| < (2llglloe)*

Applying (47) and (48) in (46), changing the order of integration and taking into

0 0 ~
account that A(z,t) = uy(x,t), B(z,t) = ur(,t), ¢(x) = p(l—|z—1|), ¥(z) = p(l—|z-1|),
o1(z) = pr1(l—|z—=1]), Y1 (z) = Y1 (I—|z—1]|), g(z,t) = q(I—|z—1]|, 1), one obtains (35)—(38).
[
Let us show that the necessary condition (35) in Theorem 1 is also sufficient for the
existence of the solution to the boundary control problem III.
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Theorem 2. Let T' = 2l and the condition 1 in Theorem 1 be satisfied. Then the
relation (35) is sufficient for the existence of the unique solution from W3(Qy) to the
boundary control problem III.

Proof. Let us define the function u(x, t) in the triangles A; and Ag as the solution to Eq.
(41) constructed in the proof of Theorem 1 and in the triangles Ag and Ay — as the solution
to Eq. (44). Due to the estimates (49) and (50) these equations have bounded solutions
which are given by the series (47) and (48). As the right-hand sides of (41) and (44) are
continuous these solutions are also continuous in Aj|JAs and Ag|JA7. If the relation
(35) holds true then, as it follows from the proof of Theorem 1, the relation (45) is satisfied
and thus the function u(z,t) is continuous in the union of domains A; [JAs|JAgJ A7.

Let wj(z,t) stand for the obtained solution u(z,t) in A; for j = 1,3,6,7 respectively
and consider the remaining parts of the rectangle Q9.

For (z,t) € A4 the following relation holds:

u(z,t) = 84(33, t)+

VY T T I T

" "
41 Q41 43 Q43

where 34(33,t) is the solution to the boundary control problem III for the homogeneous
wave equation which is defined by (31) in the triangle Ay, and the integration domains are
given by the inequalities: ) (z,t) = {({,7) | 0 <7 <1/2, 7 < E <1 -7}, Qf(z,t) =

{&n) o< 7T< (t+ae—-0D/2,20—z—t+7 < &< -1} Qsla,t) = {(&7) |

O<7< (z+t)/2, )24+ 7—-1/2| <L (I+x+t—7)2—-|l—-x—t+71)/2|},

M@ty ={En | 0<T<z+t—-1, Bl—xz—t)2+|1—(x+t-1)/2] <& <1},
Qﬁlﬁ(x,t) ={ )| I<7T<l—z+t, 24z—1t)/2+|7—(2l—x+1t)/2] <& <1}, Vjg(z,t) =
{&m) | 1<T7<@Bl—2z+t)/2, 1)2+]7—(31)/2| <L Bl—x+t—T7)/2—|(T—1+2—1)/2|},
Qur(z,t) =

{&n) ] B)/2<r<2,20—7<ES(I—ax+t)/2—|7— Bl —z+1t)/2|},
Qu(z,t) ={(&71)| (z+t)/2<7< 2 —x+1)/2, x+|T—t|<ELST— |7 =]}

Since Q); U Q) C Ay, Qs UQs C Az, Qg U QY C Ag, Qur C A7, Q4 C Ay, all the
integral terms in the right-hand side of (51), except the last one, are known and therefore
the relation (1) can be treated as the integral equation for u(z,t) in the domain Ay:

u(@,t) = Fy(z,t) — [Gau](x, ) (52)
where [Gix](z,t) = (1/2) [[o, q ,7)dédr while the function Fy(z,t) is already
known. The operator G, is bounded in L oo(Ay) and satisfies the estimate

t—ax)F
] < Ul CEE sup [t 0) 53)
. (:B,t)GA4

This estimate yields that Eq. (52) has a bounded in Ay solution. Let us denote it by
ug(z,t). It follows from Eq. (51) that the function ug(z,t) is continuous in Ay.
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On the common boarder of A3 and Ay, i.e. for z =¢,1/2 <t <, Eq. (51) transforms
into the relation

walt. 1) :84<t,t)+%§jl / / / / g1 (€, 7) dedr. (54)

42k 1 42k l(tt

Since ug(t,t) = us(t,t), Yy (tt) = Qt, )AL = Ay, QU (1) = QUt,t) AL
V(t,t) = Q)N As, Qia(t,t) = QUL 1) As, Egs. (40) and (54) yield ug(t,t) =
U3(t,t).

On the common boarder of Ay and Ag, i.e. for x =20 —¢,1 <t < (31)/2, Eq. (51)

transforms into the relation

wi(2 — 1,8) = 4(20 — 1,1) + / / g€, 7w (6, 7) dedr + / 2(€.7)us (6, 7) dedr—
Aq A3

1 q(€, 7 )ug (€, )dde—— (&, T)ug (&, 7) dédr.  (55)
ey IS

9?46 (21—t,t) /6(21 t,t) Q47(2l t,t

As (20 — t,t) = ug(2l — t,t) + Ag — By, Eq. (46) (which is equivalent to (35)) holds,
and due to the relation (43), one comes to the equality uy (2] — t,t) = ug(2l — t,t).
Similarly, for (z,t) € Ay one obtains the equation

u(x,t)zgg(;r,t)—i—% //—//—//—//—//—// o(&,T)ule, ) dedr (56)
O o PR VAR o /A o P o S

where 22($,t) is the solution to the boundary control problem III for the homogeneous
wave equation in the triangle Ay (see (31)), and the integration domains are given by the
inequalities Qo;(x,t) = {(&, 7 ! 0<7<(t+2)/2, T<EL<z+t—T}, Qoalx, t) = {(&7) |
1/2< 1< (2l—$—i—t)/2 (l+z-t)2+|T—(l—x+1t)/2] <EST— |l —T7|}, Qg(x,t) =
{&1) |1 <7< @Bl—2+1)/2, 1/24+|7—(3])/2| < £ < (31—1:+t—7')/2—\(l—x—i—t—T)/Q\},
Q’Q/6(x )={¢n) | Il<7<l—a+t QR+z—t)/2+|7— 2 —x+1)/2] <& <1},
Qor(z,t) ={(&71) | B)2<7<2,20—7<EES<(U—az+t)/2—|71—@Bl—x+1)/2|},
Doz, t) ={(&71)| (z+t)/2<T7<(I—2x+1)/2, x+|T—t]| <EL/2—|(T7—1/2]}.

Since Q91 C Ay, Qag C Ay, Qg U, C Ag, Qa7 C A7, Qy C Ag, all the integral terms
on the right-hand side of (56), except the last one, are already known and therefore Eq.
(56) is the integral equation of the form

u(z,t) = Fa(z,t) — [Goul(z, t) (57)
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for finding u(x, t) in the domain Ay. Here the operator [Gox](7,t) = (1/2) [[q, q £,71)
dédr is bounded in Lo (Ag) and satisfies the estimate

)
98] < /2" 575 st vt (59)

Thus Eq. (57) has a bounded and continuous in Ag solution u(xz,t) = us(x,t).

Egs. (39), (51), (56) yield that on the boarder between Aq, As: us(t,t) = ui(t,t) and
on the boarder between Ag, Ay: ug(l —t,t) = ug(l —t,¢).

Finally, for (z,t) € Ay the following relation holds:

u(z,t) = 85(;1:,75)—1-

[ === =] = [ =[] e nasar o
Q9 Q% Q. Os Qs QL QL Qs

where 25($,t) is the solution to the boundary control problem III for the homogeneous
wave equation in the triangle A5 (see (31)), and the integration domains are given by the
inequalities: €, (z,t) = {(£,7) | 0 < 7'< (x+t—=0/2,20—z—t+717<EEL -7}
Qy(a,t) = {(€7) | 0< 7 <12, 7 < €< L—1h Yglant) = {(67) | 0 < 7 <
(e +0)/2, 12+ 17— 1/2 <E< (I ratt—7)/2— ¢ —x—t+¢>/2|} Oy, t) = {(6,7) |
0<T<a+t—1, Bl—x—t)/2+|T—(x+t—1)/2| <€ <1}, Va(z,t) = {(&,7) | (x+1)/2 <
T<(3)/2, (x+t-0)/2+|r—(x+t+1)/2] <EL l— \T—l|}, Qsp(z,t) ={(&,7) | I <7<
2L, 12+ |1 —(3B)/2| << 1}, Uz, t) ={(§,7) | B)/2<7<2,20—7<EELST -1},
Ql(z,t) ={(&7) | Bl)/2<7<2, QR4+z—t)2+ |- —x+1)/2| <E{EL< T -1
Qs(x,t) ={(&71)| t+z+D)/2<7<Rl—2+1)/2, x+|T—t]| <EL/2—|7—(31)/2]}.

Since le Ule C Aq, Qir)gUQ C As, Q54 C Ay, Q56 C Ag, Q:WUQ 57 C A7, Q5 C As,
all the integral terms on the right-hand side of (59), except the last one, are already known
and therefore Eq. (59) is the integral equation of the form

u(z,t) = F5(z,t) — [Gsul(z, 1), (60)

for finding u(x, t) in the domain As. The operator [Gsx](z,t) = (1/2) [[q, a(§,7)x (&, 7) dsdr
is bounded in Lo (As5), and as it satisfies the estimate

20 —t —x)k
81 )| < lalloe/2r B2 ), (61)
: (z,t)EAS

Eq. (60) has the bounded and continuous in Ay solution u(x,t) = us(z,t).

Applying Eqs. (42), (51) and (59) one can easily approve that on the boarder between
As and Ay: us(t —1,t) = ug(t — 1, %), and, by virtue of Eq. (35), on the boarder between
A5 and A7: U5(2l — t,t) = U7(2l — t,t).
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Thus the solutions to the integral equations (39), (40), (42), (43), (51), (56) and (59)
define the continuous in Qg function u(z,t) for which u(x,t) = u;(x,t) if (x,t) € A,
i=1T

Differentiating both parts of these integral equations with respect to z and ¢, one
can easily show that the function u(w,t) belongs to W3(Qq) and u.(l,t) = 0 for all

€ [0,2]]. The direct substitution of the integral equations for u(z,t) in the identity (5)
and smoothness arguments similar to those in the proof of Assertion 2, show that u(z,t)
is the acquired generalized solution to the boundary control problem III. m

Remark 1. Estimates (49), (50), (53), (58), (61) and formulas that define the solutions
u;(z,t), j = 1,7, to the corresponding integral equations in the form of the Neumann series
(see, e.g., Eqs. (47), (48) for j = 1 and j = 7), yield the a priori estimate for the solution
to the boundary control problem III

e, Ollw gan < € (Ielhwzion + Iotlwzion + 1l zatog + 11 liapog ) :

it claims that this solution is stable with respect to perturbations of initial and terminal
data.

Remark 2. If Eq. (35) holds true then, generally speaking, the function 2(3: t)
defined in (31) is not a solution from VV2 (Q21) to the boundary control problem III for the
homogeneous wave equation. Let us define the constant Co = Co( ) by the formula

I 21—

Co=—2 // Alg, T dfdr+2/2/T T)dedr | . (62)

. =~ . . 0 .
If one adds this constant Cj to the expressions that define the function u(x,t) in the

. .0 . .
domains Ag and Ay, the new function wu.(z,t) becomes the generalized solution to the
considered problem for the homogeneous wave equation but with a modified first terminal

condition 3*(33, 21) = ¢1(z) + Co.

Applying Eqs. (36)—(38), one can easily show that if ||g[loc — 0 then the constant Co,
defined in (62), vanishes while the function 1(1*(;1:, t) transforms into 3(;1:, t).

Moreover, the estimates (49), (50), (53), (58), (61) and integral representations for
partial derivatives of the solution u(x,t) show that if ||¢|/cc — O then [ju — 3||W21(Q21) —0
and respectively || — /(,)LHWJ[O’QZ] — 0 where /g(t) = 3(0,25). In other words, the solution

to the boundary control problem III is regular with respect the additive perturbation
q(z,t)u(z,t) of the wave operator in (1) with a bounded and measurable coefficient g(z, ).

Authors are grateful to the Academician V. A. [I'in for his kind attention to the results
of this paper.
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