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Boundary control by the displacement for the telegraphequation with a variable coe�cient and the Neumann boun-dary conditionKritskov L. V., Abdukarimov M. F.Abstract. A problem of the boundary control by the displacement at the point x = 0 with theNeumann condition at the point x = l is considered for the process which is described by thetelegraph equation with a variable coe�cient on the �nite interval 0 6 x 6 l. For the critical timeperiod T = 2l a necessary and su�cient condition for the existence of a unique boundary function
µ(t) = u(0, t) which transfers the process from any initial state at t = 0 to any terminal state at
t = T is given.Key Words and Phrases: Boundary control, telegraph equation with a variable coe�cient2000 Mathematics Subject Classi�cations: 49K20, 35L051. IntroductionIn this paper we study a problem of the boundary control by the displacement at oneendpoint for the process which is described by the one-dimensional telegraph equation witha variable coe�cient

Lu ≡ utt(x, t)− uxx(x, t)− q(x, t)u(x, t) = 0, 0 < x < l, (1)assuming that, on the other endpoint x = l, the homogeneous Neumann condition ux(l, t) ≡
0 holds for all t ∈ [0, T ]. The coe�cient q(x, t) in (1) is supposed to be a bounded andmeasurable function in the rectangle QT = [0 6 x 6 l]× [0 6 t 6 T ].The goal of this paper is to obtain the existence of a unique boundary control at theend-point x = 0: µ(t) = u(0, t) that transfers the process from any initial state {u(x, 0) =
ϕ(x), ut(x, 0) = ψ(x)} at t = 0 to any terminal state {u(x, T ) = ϕ1(x), ut(x, T ) = ψ1(x)}at t = T in the case when T = 2l. It is supposed that u(x, t) satis�es Eq. (1) in thegeneralized sense (see Section 1) and has a �nite energy.Investigations of a similar problem for the one-dimensional wave equation (q(x, t) ≡ 0)in [1-3] showed that the time period T = 2l of the boundary control's action at one endpointis critical in the following sense. When T = 2l the boundary control is de�ned uniquelyhttp://www.cjamee.org 51 c© 2013 CJAMEE All rights reserved.



52 Kritskov L. V., Abdukarimov M. F.for a rather wide class of initial and terminal data, while in the case T > 2l the boundarycontrol is not unique and in the case T < 2l the control's existence demands the initialand terminal data satisfy restrictive additional conditions.Note also that certain boundary control problems for Eq. (1) with a constant coe�cient
q(x, t) ≡ −c2 are studied in [4-6]. Existence of the boundary control for general hyperbolicequations is considered in [7-12] in the case when the time period T exceeds its criticalvalue.This paper is the development of results announced in [13].2. Main de�nitionsIn order to de�ne the notion of a generalized solution, we use the classes Ŵ 1

2 (QT ) and
Ŵ 2

2 (QT ) which are quiet natural for hyperbolic equations (see, e.g., [1,2]). Let us considerthe following three problems for Eq. (1) in the rectangle QT :� the initial boundary-value problem I with conditions
u(0, t) = µ(t), ux(l, t) ≡ 0 for 0 6 t 6 T, (2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) for 0 6 x 6 l (3)where µ(t) ∈ W 1
2 [0, T ], ϕ(x) ∈ W 1

2 [0, l], ψ(x) ∈ L2[0, l] and the compatibility condition
µ(0) = ϕ(0) is satis�ed;� the initial boundary-value problem II with conditions (2) for 0 6 t 6 T and conditions

u(x, T ) = ϕ1(x), ut(x, T ) = ψ1(x) for 0 6 x 6 l, (4)where µ(t) ∈ W 1
2 [0, T ], ϕ1(x) ∈ W 1

2 [0, l], ψ1(x) ∈ L2[0, l] and the compatibility condition
µ(T ) = ϕ1(0) is satis�ed;� the boundary control problem III with the Neumann condition ux(l, t) ≡ 0 for 0 6

t 6 T , with the initial data (3) and the terminal data (4) where ϕ(x), ϕ1(x) ∈ W 1
2 [0, l],

ψ(x), ψ1(x) ∈ L2[0, l].The function u(x, t) is called the solution from the class Ŵ 1
2 (QT ) to the problem I if itbelongs to this class and the identity

l∫

0

T∫

0

u(x, t)LΦ(x, t) dxdt+

l∫

0

[ϕ(x)Φt(x, 0) − ψ(x)Φ(x, 0)] dx −

T∫

0

µ(t)Φx(0, t) dt = 0 (5)holds for any test function Φ(x, t) ∈ Ŵ 2
2 (QT ) which satis�es the conditions Φ(0, t) =

Φx(l, t) ≡ 0 for 0 6 t 6 T and Φ(x, T ) = Φt(x, T ) ≡ 0 for 0 6 x 6 l.Analogously the function u(x, t) is called the solution from the class Ŵ 1
2 (QT ) to theproblem II if it belongs to this class and the identity similar to (5) holds∗ for any test

∗The second integral in (5) should be substituted by −
∫ l

0
[ϕ1(x)Φt(x, T )− ψ1(x)Φ(x, T )] dx.
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2 (QT ) which satis�es the conditions Φ(0, t) = Φx(l, t) ≡ 0 for 0 6 t 6

T and Φ(x, 0) = Φt(x, 0) ≡ 0 for 0 6 x 6 l.The solution to the initial boundary value problem I u(x, t) is called the solution fromthe class Ŵ 1
2 (QT ) to the boundary control problem III if the boundary function µ(t) enablesthe �rst terminal condition (4) to hold pointwise and the second terminal condition (4) tohold almost everywhere on [0, l].It is easy to check (see [4]) that if a function u(x, t) is the solution from Ŵ 1

2 (QT ) tothe problem I then the function u1(x, t) = u(x, T − t) gives a solution from the same classto the problem II with the coe�cient q(x, t) in (1) substituted by q(x, T − t), the function
µ(t) in (2) � by µ(T − t) and with ϕ1(x) = ϕ(x), ψ1(x) = −ψ(x) in (4).3. Auxiliary statementsApplying the technique of [13, ñ.163-165] one can obtain the followingAssertion 1. Let T > 0 and the coe�cient q(x, t) in Eq. (1) be bounded and measurablein QT . Then both initial boundary-value problems I and II have at most one solution fromthe class Ŵ 1

2 (QT ).In what follows we use the notation µ(t) for the function that coincides with µ(t) for
t ≥ 0 and vanishes for all t < 0. Hence µ(t) ∈W 1

2 [−ε, T ] for any ε > 0.Assertion 2. Let T 6 2l. Then the unique solution from Ŵ 1
2 (QT ) to the problem I with

ϕ(x) ≡ 0 for x ∈ [0, l], ψ(x) = 0 a.e. on [0, l] and an arbitrary function µ(t) ∈ W 1
2 [0, T ]such that µ(0) = 0, satis�es the relation

u(x, t) = µ(t− x) +
1

2

t∫

0

l−|x+t−τ−l|∫

|x−t+τ |

q(ξ, τ)u(ξ, τ) dξdτ+

+

max{0,x+t−l}∫

0

l∫

2l−x−t+τ

q(ξ, τ)u(ξ, τ) dξdτ (6)in the case 0 6 t 6 l and the relation
u(x, t) = µ(t− x) + µ(t+ x− 2l) +

1

2

t−l∫

0

l−|t−x−l−τ |∫

|2l−x−t+τ |

q(ξ, τ)u(ξ, τ) dξdτ+

+
1

2

t∫

t−l

l−|t+x−l−τ |∫

|x−t+τ |

q(ξ, τ)u(ξ, τ) dξdτ +

x+t−l∫

max{0,t−x−l}

l∫

l−x+|l−t+τ |

q(ξ, τ)u(ξ, τ) dξdτ (7)in the case l 6 t 6 T .



54 Kritskov L. V., Abdukarimov M. F.Proof. In order to obtain relations (6) and (7), it is su�cient to construct the solutionfrom the class Ŵ 1
2 (QT ) to the following initial boundary-value problem for the inhomoge-neous wave equation





utt(x, t)− uxx(x, t) = f(x, t), (x, t) ∈ QT ,

u(x, 0) = 0, ut(x, 0) = 0 for 0 6 x 6 l,

u(0, t) = µ(t), ux(l, t) = 0 for 0 6 t 6 T

(8)and take f(x, t) = q(x, t)u(x, t).The solution to (8) is a sum of the solution µ(t − x) + µ(t + x − 2l) to the similarproblem for the homogeneous wave equation (see Assertion 2 in [3]) and the solution tothe problem (8) with zero initial and boundary data. The latter solution is given by thewell-known integral F (x, t) = 1
2

∫ t

0

∫ x+t−τ

x−t+τ
f(ξ, τ) dξdτ in which the integrand coincideswith f(x, t) inside QT and is the odd extension of f(x, t) over the boundary x = 0 andits even extension over the boundary x = l. One can easily show that if f(x, t) ∈ L2(QT )then F (x, t) is a unique solution from Ŵ 1
2 (QT ) to the corresponding problem. Usingthe symmetric properties of the continued function f(x, t) one can re�ne the bounds ofintegration for F (x, t) that immediately leads to relations (6) and (7).Assertion 3. Let T 6 2l. Then the solution u(x, t) from Ŵ 1

2 (QT ) to the problem I with
ϕ(x) ≡ 0 for x ∈ [0, l], ψ(x) = 0 a.e. on [0, l] and an arbitrary function µ(t) ∈ W 1

2 [0, T ]such that µ(0) = 0, is de�ned uniquely; moreover, u(x, t) ≡ 0 in the domain {(x, t) | 0 6

t 6 l, t 6 x 6 l}
⋂
QT .Proof. All the values T ∈ (0, 2l] are discussed similarly. Thus for the sake of brevitylet us con�ne ourselves to the case T = 2l. Let the rectangle Q2l be subdivided into sevenparts by the characteristic lines starting from its vertices. In these domains:� the triangle ∆1 = {(x, t) | 0 6 t 6 l/2, t 6 x 6 l − t} which is adjacent to the lowerbase of Q2l,� the triangles ∆2 = {(x, t) | 0 6 t 6 l, 0 6 x 6 l/2− |t− l/2|} and ∆3 = {(x, t) | 0 6

t 6 l, l/2 + |t − l/2| 6 x 6 l} which are adjacent to the lateral sides of Q2l in its lowerhalf,� the square ∆4 = {(x, t) | l/2 6 t 6 3l/2, |t− l| 6 x 6 l − |t− l|},� the triangles ∆5 = {(x, t) | l 6 t 6 2l, 0 6 x 6 l/2 − |t − 3l/2|} and ∆6 = {(x, t) |
l 6 t 6 2l, l/2 + |t − 3l/2| 6 x 6 l} which are adjacent to the lateral sides of Q2l in itsupper half, and� the triangle ∆7 = {(x, t) | 3l/2 6 t 6 2l, 2l − t 6 x 6 t− l} which is adjacent to theupper base of Q2l,let us assign uj(x, t) = u(x, t) for (x, t) ∈ ∆j , j = 1, 7, and consider Eqs. (6) and(7) successively for the points (x, t) ∈ ∆1,∆2, ...,∆7 as integral equations for obtaining
u1(x, t), u2(x, t), ..., u7(x, t).In the case j = 1 Eq. (6) leads to the following equation for u1(x, t):

u1(x, t) =
1

2

∫∫

D1

q(ξ, τ)u1(ξ, τ) dξdτ (9)



Boundary control by the displacement for the telegraph equation with a variable coe�cient 55where D1(x, t) = {(ξ, τ) | 0 6 τ 6 t, x− t+ τ 6 ξ 6 x+ t− τ}.Rewriting Eq. (9) in the operator form u1(x, t) = [N1u1](x, t) one can note that theoperator N1 is bounded in L∞(∆1) and its powers N k
1 satisfy the estimate†

∣∣∣[N k
1 χ](x, t)

∣∣∣ 6 ‖q‖k∞
t2k

(2k)!
sup

(x,t)∈∆1

|χ(x, t)|, (x, t) ∈ ∆1. (10)Thus Eq. (9) is a homogeneous Volterra-type integral equation of the second kind andhas only the trivial solution.As u1(x, t) ≡ 0 and µ(t − x) ≡ 0 for (x, t) ∈ ∆3, the function u3(x, t) satis�es theequation similar to (9):
u3(x, t) =

1

2



∫∫

D′
3

+

∫∫

D′′
3


 q(ξ, τ)u3(ξ, τ) dξdτ (11)where the quadrangle D′

3(x, t) = {(ξ, τ) | 0 6 τ 6 t, (l + x − t)/2 + |τ − (l − x + t)/2| 6
ξ 6 (l + x + t − τ)/2 − |(τ − x − t + l)/2|} and the triangle D′′

3(x, t) = {(ξ, τ) | 0 6 τ 6

x+ t− l, (3l − x− t)/2 + |τ − (x+ t− l)/2| 6 ξ 6 l} lay entirely in ∆3.Since the integral operator N3 in the right-hand side of (11) is bounded in L∞(∆3) andsatis�es the estimate
∣∣∣[N k

3 χ](x, t)
∣∣∣ 6 (2‖q‖∞)k

t2k

(2k)!
sup

(x,t)∈∆3

|χ(x, t)|, (x, t) ∈ ∆3, (12)one similarly obtains that u3(x, t) ≡ 0.As in the domain ∆2: u1(x, t) ≡ 0, Eq. (6) there takes the form
u2(x, t) = µ(t− x) +

1

2

∫∫

D2

q(ξ, τ)u2(ξ, τ) dξdτ (13)whereD2(x, t) = {(ξ, τ) | (t−x)/2 6 τ 6 t, |x−t+τ | 6 ξ 6 (x+t)/2−|τ−(x+t)/2|} ⊂ ∆2.As one rewrites Eq. (13) in the operator form u2(x, t) = µ(t− x) + [N2u2](x, t), it is clearthat µ(t − x) is bounded in ∆2 and the bounded in L∞(∆2) operator N2 satis�es theestimate
∣∣∣[N k

2 χ](x, t)
∣∣∣ 6 (‖q‖∞/2)

k t2k

(2k − 1)!!
sup

(x,t)∈∆2

|χ(x, t)|, (x, t) ∈ ∆2. (14)Therefore Eq. (13) has the solution which equals the absolutely convergent Neumannseries u2(x, t) = (I +
∑∞

k=1N
k
2 )µ(t− x) and is bounded in ∆2.Now let (x, t) ∈ ∆4. As u1(x, t) ≡ 0, u3(x, t) ≡ 0, Eqs. (6) and (7) yield

u4(x, t) = µ(t− x) +
1

2

∫∫

D′
4

q(ξ, τ)u2(ξ, τ) dξdτ +
1

2

∫∫

D4

q(ξ, τ)u4(ξ, τ) dξdτ (15)
†By ‖q‖∞ we denote the norm ess sup(x,t)∈Q2l

|q(x, t)|.



56 Kritskov L. V., Abdukarimov M. F.where D′
4(x, t) = {(ξ, τ) | (t− x)/2 6 τ 6 (l+ t− x)/2, |x− t+ τ | 6 ξ 6 l/2− |τ − l/2|},

D4(x, t) = {(ξ, τ) | l/2 6 τ 6 t, (l − t+ x)/2 + |(l + t− x)/2 − τ | 6 ξ 6 (t+ x)/2 − |(t+
x)/2 − τ |}. Since D′

4 ⊂ ∆2, the �rst integral term on the right-hand side of (15) is theknown bounded function. As D4 ⊂ ∆4, Eq. (15) can be treated as an integral equationfor u4(x, t) in which the operator [N4χ](x, t) ≡
1
2

∫∫
D4
q(ξ, τ)χ(ξ, τ) dξdτ in the right-handside is bounded in L∞(∆4) and satis�es the estimate

∣∣∣[N k
4 χ](x, t)

∣∣∣ 6 (l‖q‖∞/2)
k (t− x)k

2k!
sup

(x,t)∈∆4

|χ(x, t)|, (x, t) ∈ ∆4. (16)Similar to (13), the estimates (16) yield that Eq. (15) has a bounded in ∆4 solution
u4(x, t).The solution u(x, t) in the remaining domains ∆5, ∆6, ∆7 is constructed using the sameapproach. Let us list only the related integral equations and corresponding estimates.In the triangle ∆5, one obtains the equation

u5(x, t) = µ(t− x) +
1

2

∫∫

D′
5

q(ξ, τ)u4(ξ, τ) dξdτ +
1

2

∫∫

D5

q(ξ, τ)u5(ξ, τ) dξdτ (17)where D′
5(x, t) = {(ξ, τ) | (t − x)/2 6 τ 6 (l + t + x)/2, (t − x − l)/2 + |(t − x + l)/2 −

τ | 6 ξ 6 (t + x)/2 − |(t + x)/2 − τ |} ⊂ ∆4, D5(x, t) = {(ξ, τ) | (t − x + l)/2 6 τ 6

t, |x − t + τ | 6 ξ 6 (t + x − l)/2 − |(t + x + l)/2 − τ |} ⊂ ∆5, and the integral operator
[N5χ](x, t) ≡

1
2

∫∫
D5
q(ξ, τ)χ(ξ, τ) dξdτ satis�es the estimate

∣∣∣[N k
5 χ](x, t)

∣∣∣ 6 (l‖q‖∞/4)
k (t− x− l)k

k!
sup

(x,t)∈∆5

|χ(x, t)|, (x, t) ∈ ∆5. (18)In the triangle ∆6, one obtains the equation
u6(x, t) = µ(t− x) + µ(t+ x− 2l) +

1

2



∫∫

D′
62

+

∫∫

D′′
62


 q(ξ, τ)u2(ξ, τ) dξdτ+

+
1

2



∫∫

D′
64

+

∫∫

D′′
64


 q(ξ, τ)u4(ξ, τ) dξdτ +

1

2



∫∫

D′
6

+

∫∫

D′′
6


 q(ξ, τ)u6(ξ, τ) dξdτ (19)where D′

62(x, t) = {(ξ, τ) | (t + x − 2l)/2 6 τ 6 (t + x − l)/2, |x + t − 2l − τ | 6 ξ 6

l/2 − |l/2 − τ |} ⊂ ∆2, D′′
62(x, t) = {(ξ, τ) | (t − x)/2 6 τ 6 (l + t − x)/2, |x − t + τ | 6

ξ 6 l/2 − |l/2 − τ |} ⊂ ∆2, D′
64(x, t) = {(ξ, τ) | l/2 6 τ 6 (2l − x + t)/2, (l + x −

t)/2 + |(l − x + t)/2 − τ | 6 ξ 6 l − |l − τ |} ⊂ ∆4, D′′
64(x, t) = {(ξ, τ) | l/2 6 τ 6

(x+ t)/2, (3l−x− t)/2+ |(x+ t− l)/2− τ | 6 ξ 6 l−|l− τ |} ⊂ ∆4, D′
6(x, t) = {(ξ, τ) | l 6

τ 6 x+ t− l, (4l − x− t)/2 + |(x + t)/2 − τ | 6 ξ 6 l} ⊂ ∆6, D′′
6(x, t) = {(ξ, τ) | l 6 τ 6
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t, (2l+x− t)/2+ |(2l−x+ t)/2− τ | 6 ξ 6 (l+x+ t− τ/)2−|(τ −x− t+ l)/2|} ⊂ ∆6, andthe integral operator [N6χ](x, t) ≡

1
2(
∫∫

D′
6
+
∫∫

D′′
6
)q(ξ, τ)χ(ξ, τ) dξdτ satis�es the estimate

∣∣∣[N k
6 χ](x, t)

∣∣∣ 6 (l‖q‖∞)k
(x+ t− 2l)k

k!
sup

(x,t)∈∆6

|χ(x, t)|, (x, t) ∈ ∆6. (20)And �nally, in the triangle ∆7, the following equation holds:
u7(x, t) = µ(t− x) + µ(t+ x− 2l) +

1

2

∫∫

D72

q(ξ, τ)u2(ξ, τ) dξdτ+

+
1

2



∫∫

D′
74

+

∫∫

D′′
74


 q(ξ, τ)u4(ξ, τ) dξdτ +

1

2

∫∫

D75

q(ξ, τ)u5(ξ, τ) dξdτ+

+
1

2



∫∫

D′
76

+

∫∫

D′′
76


 q(ξ, τ)u6(ξ, τ) dξdτ +

1

2

∫∫

D7

q(ξ, τ)u7(ξ, τ) dξdτ (21)where D72(x, t) = {(ξ, τ) | (t + x − 2l)/2 6 τ 6 (x + t − l)/2, |x + t − 2l − τ | 6 ξ 6

l/2 − |l/2 − τ |} ⊂ ∆2, D′
74(x, t) = {(ξ, τ) | l/2 6 τ 6 (x + t)/2, (3l − x − t)/2 +

|(x + t − l)/2 − τ | 6 ξ 6 l − |l − τ |} ⊂ ∆4, D′′
74(x, t) = {(ξ, τ) | (t − x)/2 6 τ 6

(3l)/2, (t − x − l)/2 + |(t − x + l)/2 − τ | 6 ξ 6 l − |l − τ |} ⊂ ∆4, D75(x, t) = {(ξ, τ) |
(t−x+l)/2 6 τ 6 (2l−x+t)/2, |x−t+τ | 6 ξ 6 l/2−|3l/2−τ |} ⊂ ∆5, D′

76(x, t) = {(ξ, τ) |
l 6 τ 6 (x+ t+ l)/2, l/2+ |(3l)/2− τ | 6 ξ 6 (l+ x+ t− τ)/2− |(t+x− l− τ)/2|} ⊂ ∆6,
D′′

76(x, t) = {(ξ, τ) | l 6 τ 6 x + t − l, (4l − x − t)/2 + |(x + t)/2 − τ | 6 ξ 6 l} ⊂ ∆6,
D7(x, t) = {(ξ, τ) | 3l/2 6 τ 6 t, (2l+ x− t)/2 + |(2l+ t− x)/2− τ | 6 ξ 6 (x+ t− l)/2−
|(x+ t+ l)/2− τ |} ⊂ ∆7, and the integral operator [N7χ](x, t) ≡

1
2

∫∫
D7
q(ξ, τ)χ(ξ, τ) dξdτsatis�es the estimate

∣∣∣[N k
7 χ](x, t)

∣∣∣ 6 (l‖q‖∞/4)
k (t+ x− 2l)k

k!
sup

(x,t)∈∆7

|χ(x, t)|, (x, t) ∈ ∆7. (22)Thus it is proved that Eqs. (6) and (7) have the bounded solution u(x, t) in therectangle QT . The next step is to study its smoothness.As all the terms in the right-hand sides of (6) and (7) are continuous with respectto (x, t) in QT , the obtained solution u(x, t) is also continuous in QT . For the sake ofsimplicity, let us introduce the bounded function U(x, t) ≡ q(x, t)u(x, t) in QT and makeits odd extension over x = 0 and its even extension over x = l. Then Eqs. (6) and (7) canbe coupled into one equation
u(x, t) = µ(t− x) + µ(t+ x− 2l) +

1

2

t∫

0

x+t−τ∫

x−t+τ

U(ξ, τ) dξdτ. (23)
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ux(x, t) = −µ′(t− x) + µ′(t+ x− 2l) +

1

2

t∫

0

[U(x+ t− τ, τ)− U(x− t+ τ, τ)] dτ, (24)
ut(x, t) = µ′(t− x) + µ′(t+ x− 2l) +

1

2

t∫

0

[U(x+ t− τ, τ) + U(x− t+ τ, τ)] dτ, (25)and therefore the derivatives ux(x, t) and ut(x, t) belong to L2(0 6 x 6 l) for all t ∈ [0, 2l]and to L2(0 6 t 6 2l) for all x ∈ [0, l].Remark. The direct analysis of the Neumann series for the solutions of Eqs. (9), (11),(13), (15), (17), (19), (21) and the inequalities (10), (12), (14), (16), (18), (20), (22) leadto the estimate
max

(x,t)∈QT

|u(x, t) − u∗(x, t)| 6 C‖q‖∞ (26)where u∗(x, t) = µ(t−x)+µ(t+x−2l) is the solution from Ŵ 1
2 (QT ) to the initial boundary-value problem I for the homogeneous wave equation with zero initial data in the case when

T 6 2l (see the proof of Assertion 2).Together with Eqs. (24) and (25), it means that
‖ux − u∗x‖L2(QT ) + ‖ut − u∗t ‖L2(QT ) 6 C‖q‖∞. (27)Thus, combining (26) and (27), one obtains the estimate

‖u− u∗‖W 1
2 (QT ) 6 C‖q‖∞. (28)For the problem II the following similar statement holds.Assertion 4. Let T 6 2l. Then the solution from Ŵ 1

2 (QT ) to the problem II where
ϕ1(x) ≡ 0 for x ∈ [0, l], ψ1(x) = 0 a.e. on [0, l] and an arbitrary function µ(t) ∈W 1

2 [0, T ]such that µ(T ) = 0, is de�ned uniquely; moreover, u(x, t) ≡ 0 in the domain {(x, t) |
T − l 6 t 6 T, T − t 6 x 6 l}

⋂
QT .Let us proceed with the proof of uniqueness for the solution to the boundary controlproblem III.Assertion 5. For any T ∈ (0, 2l], the boundary control problem III has at most onesolution from Ŵ 1

2 (QT ).Proof. Let us consider only‡ the case T = 2l. Suppose that in this case the problemIII has two solutions u(1)(x, t) and u(2)(x, t) from the class Ŵ 1
2 (Q2l). Then their di�erence

u(x, t) = u(2)(x, t)− u(1)(x, t) gives a solution from the same class to the problem III withzero initial and terminal data. Let µ(t) = u(0, t). It follows from the de�nition of the class
Ŵ 1

2 (Q2l) that µ(t) ∈W 1
2 [0, 2l] and µ(0) = µ(2l) = 0.

‡As it can be easily obtained from what follows, in the case T < 2l it is essential that the domains wherethe solutions considered in Assertions 2-4 vanish should have common points.



Boundary control by the displacement for the telegraph equation with a variable coe�cient 59The function u(x, t) is the solution from Ŵ 1
2 (Q2l) both to the problem I with zeroinitial data and to the problem II with zero terminal data coupled with the boundarycondition µ(t) = u(0, t). It follows from Assertions 2-4 that u(x, t) vanishes in the domain

∆0 = {(x, t) | 0 6 t 6 2l, l− |l− t| 6 x 6 l}. Let us show that u(x, t) vanishes also in theremaining domain Q2l \∆0.Let t1 be an arbitrary value in [0, 2l]. The characteristic line t−x = t1 that starts at thepoint (0, t1) intersects the characteristic line t+x = 2l at the point (l− t1/2, l+ t1/2) ∈ ∆0where u(x, t) = 0. Thus Eqs. (6) and (7) yield
µ(t1) = −

1

2

∫∫

D′
0(t1)

q(ξ, τ)u(ξ, τ) dξdτ, (29)
where D′

0(t1) = {(ξ, τ) | t1/2 6 τ 6 t1/2 + l, |τ − t1| 6 ξ 6 l − |l − τ |}.Consider an arbitrary point (x, t) ∈ Q2l \∆0. It follows from (6) and (7) that u(x, t) =
µ(t − x) + 1

2

∫∫
D0(x,t)

q(ξ, τ)u(ξ, τ) dξdτ , hence, by Eq. (29) with t1 = t − x, one obtainsthe relation
u(x, t) = −

1

2

∫∫

D′
0(t−x)\D0(x,t)

q(ξ, τ)u(ξ, τ) dξdτ ≡ [N0u](x, t); (30)
here the domain D′

0(t − x) \ D0(x, t) is the triangle {(ξ, τ) | (x + t)/2 6 τ 6 l + (t −
x)/2, x+ |t− τ | 6 ξ 6 l − |l − τ |}.Eq. (30) is the homogeneous Volterra-type equation of the second kind since the op-erator N0 in its right-hand side is bounded in L∞(Q2l \ ∆0) and satis�es the estimates∣∣[N k

0 χ](x, t)
∣∣ 6 (l‖q‖∞/2)

k (t−x)k/k! sup(x,t)∈Q2l\∆0
|χ(x, t)|. Thus Eq. (30) has only thetrivial solution, and it follows from Eq. (29) that µ(t1) = 0 for all t1 ∈ [0, 2l].



60 Kritskov L. V., Abdukarimov M. F.4. Main resultsFirst of all let us note a certain peculiarity of the boundary control problem III for thecritical value T = 2l. It follows from [3] that the function
0
u(x, t) =

1

2





ϕ(x+ t) + ϕ(x− t) +
x+t∫
x−t

ψ(ξ) dξ in ∆1,

ϕ(x+ t)+ϕ(0)+
x+t∫
0

ψ(ξ) dξ+ϕ1(t− x)−ϕ1(0)+
t−x∫
0

ψ1(ξ) dξ in ∆2,

ϕ(x− t) + ϕ(2l − x− t) +
l∫

x−t

ψ(ξ) dξ +
l∫

2l−x−t

ψ(ξ) dξ in ∆3,

ϕ(2l − x− t) + ϕ(0) +
l∫

2l−x−t

ψ(ξ) dξ +
l∫
0

ψ(ξ) dξ+

+ϕ1(t− x)− ϕ1(0) +
t−x∫
0

ψ1(ξ) dξ in ∆4,

ϕ(2l − x− t) + ϕ(0) +
l∫

2l−x−t

ψ(ξ) dξ +
l∫
0

ψ(ξ) dξ+

+ϕ1(2l + x− t)− ϕ1(0) +
l∫

2l+x−t

ψ1(ξ) dξ +
l∫
0

ψ1(ξ) dξ in ∆5,

ϕ1(x+ t− 2l) + ϕ1(t− x)−
l∫

x+t−2l

ψ1(ξ) dξ −
l∫

t−x

ψ1(ξ) dξ in ∆6,

ϕ1(x+ t− 2l) + ϕ1(x− t+ 2l)−
x−t+2l∫
x+t−2l

ψ1(ξ) dξ in ∆7 (31)is a unique solution to the boundary control problem III for the homogeneous wave equationif and only if its data satisfy the relation
A0 ≡ ϕ(0) +

l∫

0

ψ(ξ) dξ = ϕ1(0) −

l∫

0

ψ1(ξ) dξ ≡ B0. (32)Similarly, in the inhomogeneous case one can prove that the function§
u(x, t) =

0
u(x, t) +

1

2

t∫

0

x+t−τ∫

x−t+τ

f(ξ, τ) dξdτ (33)is the unique solution to the boundary control problem III for the forced oscillations (see(8)) if and only if the relation
A0 +

l∫

0

l∫

τ

f(ξ, τ) dξdτ = B0 +

2l∫

l

l∫

2l−τ

f(ξ, τ) dξdτ (34)
§The integrand in (33) is obtained by the extension of the right-hand side f(x, t) outside QT similar to (8).



Boundary control by the displacement for the telegraph equation with a variable coe�cient 61holds where A0, B0 are constants in the left-hand and in the right-hand sides of (32).The boundary control problem III for the telegraph equation (1) is also governed by asimilar condition which is necessary for the existence of its solution from Ŵ 1
2 (QT ).Theorem 1. Let T = 2l. Then, for the existence of the solution from Ŵ 1
2 (Q2l) to theboundary control problem III, it is necessary to observe the following conditions:1) ϕ(x), ϕ1(x) ∈W 1

2 [0, l], ψ(x), ψ1(x) ∈ L2[0, l],2) the initial and terminal data satisfy the relation
A0 +

l∫

0

2l−τ∫

τ

q̃ ∗
A (ξ, τ)A(ξ, τ) dξdτ = B0 +

2l∫

l

τ∫

2l−τ

q̃ ∗
B (ξ, τ)B(ξ, τ) dξdτ, (35)where A0, B0 are the constants in (32), the values A(ξ, τ), B(ξ, τ) are computed via theinitial and terminal data by the formulas

A(ξ, τ) =
1

2


ϕ(l − |ξ + τ − l|) + ϕ(l − |ξ − τ − l|) +

ξ+τ∫

ξ−τ

ψ(l − |ζ − l|) dζ


 , (36)

B(ξ, τ)=
1

2


ϕ1(l − |ξ + τ − 3l|)+ ϕ1(l − |ξ − τ + l|)−

ξ−τ+2l∫

ξ+τ−2l

ψ1(l − |ζ − l|) dζ


 (37)and the kernels q̃ ∗

A (ξ, τ) and q̃ ∗
B (ξ, τ) of the integral operators are connected with the coef-�cient q(ξ, τ) in (1) by the relations

q̃ ∗
A (ξ, τ) = q(l − |ξ − l|, τ)

∞∑
k=0

q̃
(k)
A (l, l; ξ, τ), q̃

(0)
A (x, t; ξ, τ) ≡ 1/2;

q̃
(k+1)
A (x, t; ξ, τ) = 1

2

t∫
τ

min(x+t−τ1,ξ−τ+τ1)∫
max(x−t+τ1,ξ+τ−τ1)

q(l − |ξ1 − l|, τ1)q̃
(k)
A (ξ1, τ1; ξ, τ) dξ1dτ1,

q̃ ∗
B (ξ, τ) = q(l − |ξ − l|, τ)

∞∑
k=0

q̃
(k)
B (l, l; ξ, τ), q̃

(0)
B (x, t; ξ, τ) ≡ 1/2;

q̃
(k+1)
B (x, t; ξ, τ) = 1

2

τ∫
t

min(x−t+τ1,ξ+τ−τ1)∫
max(x+t−τ1,ξ−τ+τ1)

q(l − |ξ1 − l|, τ1)q̃
(k)
B (ξ1, τ1; ξ, τ) dξ1dτ1.

(38)
Proof. Let the function u(x, t) be the solution from Ŵ 1

2 (Q2l) to the boundary controlproblem III. Then it is also the solution to the problem I in the triangles ∆1, ∆3 and thesolution to the problem II in the triangles ∆6, ∆7. Mimicking the proof of Assertion 2, weconstruct the integral relations for the function u(x, t) in the domains ∆1, ∆3, ∆6 and ∆7.Let (x, t) ∈ ∆1
⋃

∆3. Denoting by 0
u1(x, t) and 0

u3(x, t) the solutions (31) to the problemI for the homogeneous wave equation in ∆1 and ∆3 respectively, one obtains the equations
u(x, t) =

0
u1(x, t) +

1

2

∫∫

Ω1

q(ξ, τ)u(ξ, τ) dξdτ, (x, t) ∈ ∆1, (39)
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u(x, t) =

0
u3(x, t) +

1

2



∫∫

Ω′
3

+

∫∫

Ω′′
3


 q(ξ, τ)u(ξ, τ) dξdτ, (x, t) ∈ ∆3, (40)where Ω1(x, t) = D1(x, t), Ω′

3(x, t) = {(ξ, τ) | 0 6 τ 6 t, x− t+ τ 6 ξ 6 (l+x+ t− τ)/2−
|(τ − x− t+ l)/2|} and Ω′′

3(x, t) = {(ξ, τ) | 0 6 τ 6 x+ t− l, 2l − x− t+ τ 6 ξ 6 l}.Let the functions u(x, t), q(x, t) in (40) and the initial data ϕ(x), ψ(x) in 0
u3(x, t)be continued evenly over x = l to the domain Q′

2l = [l 6 x 6 2l] × [0 6 t 6 2l].Denote these new functions by ũ(x, t), q̃(x, t), ϕ̃(x), ψ̃(x) respectively. Thus 0
u3(x, t) =

1
2 [ϕ̃(x+ t) + ϕ̃(x− t) +

x+t∫
x−t

ψ̃(ξ)dξ] ≡
0
ũ1(x, t) and using this continuation one can rewriteEq. (40) in the following form

ũ(x, t) =
0

ũ1(x, t) +
1

2

∫∫

Ω1

q̃(ξ, τ)ũ(ξ, τ) dξdτ, (x, t) ∈ ∆3. (41)One can easily see that Eq. (41) transforms into Eq. (39) for (x, t) ∈ ∆1 and, bythe symmetry, keeps its form if the point (x, t) belongs to the triangle which is mirrorsymmetric to the triangle ∆1
⋃

∆3 with respect to x = l. Thus the continued solution
ũ(x, t) satis�es Eq. (41) for all (x, t) ∈ ∆̃1 = {(x, t) | 0 6 t 6 l, t 6 x 6 2l − t}.Similarly denoting by 0

u6(x, t) and 0
u7(x, t) the solutions (31) to the problem II for thehomogeneous wave equation in ∆6 and ∆7 respectively, one obtains from the equations

u(x, t) =
0
u7(x, t) +

1

2

∫∫

Ω7

q(ξ, τ)u(ξ, τ) dξdτ, (x, t) ∈ ∆7, (42)
u(x, t) =

0
u6(x, t) +

1

2



∫∫

Ω′
6

+

∫∫

Ω′′
6


 q(ξ, τ)u(ξ, τ) dξdτ, (x, t) ∈ ∆6, (43)where Ω7(x, t) = {(ξ, τ) | t 6 τ 6 2l, x + t − τ 6 ξ 6 x − t + τ}, Ω′

6(x, t) = {(ξ, τ) |
t 6 τ 6 2l, x + t − τ 6 ξ 6 (l + x − t + τ)/2 − |(τ + x − t − l)/2|}, Ω′′

6(x, t) = {(ξ, τ) |
l − x + t 6 τ 6 2l, 2l − x + t − τ 6 ξ 6 l}, that the evenly extended solution ũ(x, t) forall (x, t) ∈ ∆̃7 = {(x, t) | l 6 t 6 2l, 2l − t 6 x 6 t} satis�es the relation

ũ(x, t) =
0
ũ7(x, t) +

1

2

∫∫

Ω7

q̃(ξ, τ)ũ(ξ, τ) dξdτ. (44)Here 0

ũ7(x, t) =
1
2 [ϕ̃1(x+ t− 2l) + ϕ̃1(x − t+ 2l) −

x−t+2l∫
x+t−2l

ψ̃1(ξ)dξ] where ϕ̃1(x), ψ̃1(x)are the terminal data which are extended evenly over x = l.



Boundary control by the displacement for the telegraph equation with a variable coe�cient 63Since the function u(x, t) (and therefore the function ũ(x, t)) is continuous in Q2l (asit belongs to Ŵ 1
2 (Q2l)) the value u(l, l) = ũ(l, l) should be the same no matter whether itis computed from (41) or from (44). Therefore

0

ũ1(l, l) +
1

2

∫∫

Ω1(l,l)

q̃(ξ, τ)ũ(ξ, τ) dξdτ =
0

ũ7(l, l) +
1

2

∫∫

Ω7(l,l)

q̃(ξ, τ)ũ(ξ, τ) dξdτ. (45)As 0

ũ1(l, l) =
0
u3(l, l) = ϕ(0)+

∫ l

0 ψ(ξ)dξ = A0,
0

ũ7(l, l) =
0
u6(l, l) = ϕ1(0)−

∫ l

0 ψ1(ξ)dξ =
B0 and moreover Ω1(l, l) = ∆′

1, Ω7(l, l) = ∆′
7, Eq. (45) yields the relation

A0 +
1

2

∫∫

∆′
1

q̃(ξ, τ)ũ(ξ, τ) dξdτ = B0 +
1

2

∫∫

∆′
7

q̃(ξ, τ)ũ(ξ, τ) dξdτ. (46)Following an approach introduced in [14], Eq. (46) can be transformed to its �nal form(35) by expressing ũ(x, t) via 0

ũ1(x, t) in (41) and 0

ũ7(x, t) in (44) using the correspondingNeumann series and substituting the obtained expressions in the left-hand and the right-hand sides of (46).Introducing the operators [Gj ũ](x, t) = (1/2)
∫∫

Ωj
q̃(ξ, τ)ũ(ξ, τ) dξdτ , j = 1, 7, oneobtains

ũ(x, t) =
0

ũ1(x, t) +

∞∑

k=1

[Gk
1

0

ũ1](x, t) for (x, t) ∈ ∆̃1 (47)and
ũ(x, t) =

0

ũ7(x, t) +
∞∑

k=1

[Gk
7

0

ũ7](x, t) for (x, t) ∈ ∆̃7. (48)The series in the right-hand sides of (47) and (48) are absolutely convergent since theoperators G1 and G7 satisfy the estimates:
∣∣∣[Gk

1χ](x, t)
∣∣∣ 6 (2‖q‖∞)k

t2k

(2k)!
sup

(x,t)∈∆̃1

|χ(x, t)|, (49)
∣∣∣[Gk

7χ](x, t)
∣∣∣ 6 (2l‖q‖∞)k

(2l − t)k

k!
sup

(x,t)∈∆̃7

|χ(x, t)|. (50)Applying (47) and (48) in (46), changing the order of integration and taking intoaccount that A(x, t) = 0

ũ1(x, t),B(x, t) =
0

ũ7(x, t), ϕ̃(x) = ϕ(l−|x−l|), ψ̃(x) = ψ(l−|x−l|),
ϕ̃1(x) = ϕ1(l−|x−l|), ψ̃1(x) = ψ1(l−|x−l|), q̃(x, t) = q(l−|x−l|, t), one obtains (35)�(38).Let us show that the necessary condition (35) in Theorem 1 is also su�cient for theexistence of the solution to the boundary control problem III.



64 Kritskov L. V., Abdukarimov M. F.Theorem 2. Let T = 2l and the condition 1 in Theorem 1 be satis�ed. Then therelation (35) is su�cient for the existence of the unique solution from Ŵ 1
2 (Q2l) to theboundary control problem III.Proof. Let us de�ne the function u(x, t) in the triangles∆1 and∆3 as the solution to Eq.(41) constructed in the proof of Theorem 1 and in the triangles ∆6 and ∆7 � as the solutionto Eq. (44). Due to the estimates (49) and (50) these equations have bounded solutionswhich are given by the series (47) and (48). As the right-hand sides of (41) and (44) arecontinuous these solutions are also continuous in ∆1

⋃
∆3 and ∆6

⋃
∆7. If the relation(35) holds true then, as it follows from the proof of Theorem 1, the relation (45) is satis�edand thus the function u(x, t) is continuous in the union of domains ∆1
⋃
∆3

⋃
∆6

⋃
∆7.Let uj(x, t) stand for the obtained solution u(x, t) in ∆j for j = 1, 3, 6, 7 respectivelyand consider the remaining parts of the rectangle Q2l.For (x, t) ∈ ∆4 the following relation holds:

u(x, t) =
0
u4(x, t)+

+
1

2




∫∫

Ω′
41

+

∫∫

Ω′′
41

+

∫∫

Ω′
43

+

∫∫

Ω′′
43

−

∫∫

Ω′
46

−

∫∫

Ω′′
46

−

∫∫

Ω47

−

∫∫

Ω4


 q(ξ, τ)u(ξ, τ) dξdτ (51)where 0

u4(x, t) is the solution to the boundary control problem III for the homogeneouswave equation which is de�ned by (31) in the triangle ∆4, and the integration domains aregiven by the inequalities: Ω′
41(x, t) = {(ξ, τ)

∣∣ 0 6 τ 6 l/2, τ 6 ξ 6 l − τ}, Ω′′
41(x, t) =

{(ξ, τ) | 0 6 τ 6 (t + x − l)/2, 2l − x − t + τ 6 ξ 6 l − τ}, Ω′
43(x, t) = {(ξ, τ) |

0 6 τ 6 (x + t)/2, l/2 + |τ − l/2| 6 ξ 6 (l + x + t − τ)/2 − |(l − x − t + τ)/2|},
Ω′′
43(x, t) = {(ξ, τ) | 0 6 τ 6 x + t − l, (3l − x − t)/2 + |τ − (x + t − l)/2| 6 ξ 6 l},

Ω′
46(x, t) = {(ξ, τ) | l 6 τ 6 l−x+t, (2l+x−t)/2+|τ−(2l−x+t)/2| 6 ξ 6 l}, Ω′′

46(x, t) =
{(ξ, τ) | l 6 τ 6 (3l−x+t)/2, l/2+|τ−(3l)/2| 6 ξ 6 (3l−x+t−τ)/2−|(τ−l+x−t)/2|},
Ω47(x, t) = {(ξ, τ) | (3l)/2 6 τ 6 2l, 2l − τ 6 ξ 6 (l − x + t)/2 − |τ − (3l − x + t)/2|},
Ω4(x, t) = {(ξ, τ) | (x+ t)/2 6 τ 6 (2l − x+ t)/2, x+ |τ − t| 6 ξ 6 l − |τ − l|}.Since Ω′

41 ∪ Ω′′
41 ⊂ ∆1, Ω′

43 ∪ Ω′′
43 ⊂ ∆3, Ω′

46 ∪ Ω′′
46 ⊂ ∆6, Ω47 ⊂ ∆7, Ω4 ⊂ ∆4, all theintegral terms in the right-hand side of (51), except the last one, are known and thereforethe relation (1) can be treated as the integral equation for u(x, t) in the domain ∆4:

u(x, t) = F4(x, t)− [G4u](x, t) (52)where [G4χ](x, t) = (1/2)
∫∫

Ω4
q(ξ, τ)χ(ξ, τ) dξdτ while the function F4(x, t) is alreadyknown. The operator G4 is bounded in L∞(∆4) and satis�es the estimate

∣∣∣[Gk
4χ](x, t)

∣∣∣ 6 (l‖q‖∞/2)
k (t− x)k

k!
sup

(x,t)∈∆4

|χ(x, t)|. (53)This estimate yields that Eq. (52) has a bounded in ∆4 solution. Let us denote it by
u4(x, t). It follows from Eq. (51) that the function u4(x, t) is continuous in ∆4.



Boundary control by the displacement for the telegraph equation with a variable coe�cient 65On the common boarder of ∆3 and ∆4, i.e. for x = t, l/2 6 t 6 l, Eq. (51) transformsinto the relation
u4(t, t) =

0
u4(t, t) +

1

2

2∑

k=1




∫∫

Ω′
4,2k−1(t,t)

+

∫∫

Ω′′
4,2k−1(t,t)


 q(ξ, τ)u2k−1(ξ, τ) dξdτ. (54)Since 0

u4(t, t) =
0
u3(t, t), Ω′

41(t, t) = Ω′
3(t, t)

⋂
∆1 = ∆1, Ω′′

41(t, t) = Ω′′
3(t, t)

⋂
∆1,

Ω′
43(t, t) = Ω′

3(t, t)
⋂

∆3, Ω′′
43(t, t) = Ω′′

3(t, t)
⋂

∆3, Eqs. (40) and (54) yield u4(t, t) =
u3(t, t).On the common boarder of ∆4 and ∆6, i.e. for x = 2l − t, l 6 t 6 (3l)/2, Eq. (51)transforms into the relation

u4(2l − t, t) =
0
u4(2l − t, t) +

∫∫

∆1

q(ξ, τ)u1(ξ, τ) dξdτ +

∫∫

∆3

q(ξ, τ)u3(ξ, τ) dξdτ−

−
1

2




∫∫

Ω′
46(2l−t,t)

+

∫∫

Ω′′
46(2l−t,t)


 q(ξ, τ)u6(ξ, τ) dξdτ −

1

2

∫∫

Ω47(2l−t,t)

q(ξ, τ)u7(ξ, τ) dξdτ. (55)As 0
u4(2l − t, t) =

0
u6(2l − t, t) +A0 −B0, Eq. (46) (which is equivalent to (35)) holds,and due to the relation (43), one comes to the equality u4(2l − t, t) = u6(2l − t, t).Similarly, for (x, t) ∈ ∆2 one obtains the equation

u(x, t) =
0
u2(x, t) +

1

2




∫∫

Ω21

−

∫∫

Ω24

−

∫∫

Ω′
26

−

∫∫

Ω′′
26

−

∫∫

Ω27

−

∫∫

Ω2


 q(ξ, τ)u(ξ, τ) dξdτ (56)where 0

u2(x, t) is the solution to the boundary control problem III for the homogeneouswave equation in the triangle ∆2 (see (31)), and the integration domains are given by theinequalities Ω21(x, t) = {(ξ, τ)
∣∣ 0 6 τ 6 (t+x)/2, τ 6 ξ 6 x+ t− τ}, Ω24(x, t) = {(ξ, τ) |

l/2 6 τ 6 (2l − x+ t)/2, (l + x− t)/2 + |τ − (l − x+ t)/2| 6 ξ 6 l − |l − τ |}, Ω′
26(x, t) =

{(ξ, τ) | l 6 τ 6 (3l−x+t)/2, l/2+|τ−(3l)/2| 6 ξ 6 (3l−x+t−τ)/2−|(l−x+t−τ)/2|},
Ω′′
26(x, t) = {(ξ, τ) | l 6 τ 6 l − x + t, (2l + x − t)/2 + |τ − (2l − x + t)/2| 6 ξ 6 l},

Ω27(x, t) = {(ξ, τ) | (3l)/2 6 τ 6 2l, 2l − τ 6 ξ 6 (l − x + t)/2 − |τ − (3l − x + t)/2|},
Ω2(x, t) = {(ξ, τ) | (x+ t)/2 6 τ 6 (l − x+ t)/2, x+ |τ − t| 6 ξ 6 l/2− |(τ − l/2|}.Since Ω21 ⊂ ∆1, Ω24 ⊂ ∆4, Ω′

26 ∪Ω′′
26 ⊂ ∆6, Ω27 ⊂ ∆7, Ω2 ⊂ ∆2, all the integral termson the right-hand side of (56), except the last one, are already known and therefore Eq.(56) is the integral equation of the form

u(x, t) = F2(x, t)− [G2u](x, t) (57)



66 Kritskov L. V., Abdukarimov M. F.for �nding u(x, t) in the domain∆2. Here the operator [G2χ](x, t) = (1/2)
∫∫

Ω2
q(ξ, τ)χ(ξ, τ)

dξdτ is bounded in L∞(∆2) and satis�es the estimate
∣∣∣[Gk

2χ](x, t)
∣∣∣ 6 (l‖q‖∞/2)

k (t− x)k

k!
sup

(x,t)∈∆2

|χ(x, t)|. (58)Thus Eq. (57) has a bounded and continuous in ∆2 solution u(x, t) = u2(x, t).Eqs. (39), (51), (56) yield that on the boarder between ∆1, ∆2: u2(t, t) = u1(t, t) andon the boarder between ∆2, ∆4: u2(l − t, t) = u4(l − t, t).Finally, for (x, t) ∈ ∆5 the following relation holds:
u(x, t) =

0
u5(x, t)+

+
1

2




∫∫

Ω′
51

+

∫∫

Ω′′
51

+

∫∫

Ω′
53

+

∫∫

Ω′′
53

−

∫∫

Ω54

−2

∫∫

Ω56

−

∫∫

Ω′
57

−

∫∫

Ω′′
57

−

∫∫

Ω5


 q(ξ, τ)u(ξ, τ) dξdτ (59)where 0

u5(x, t) is the solution to the boundary control problem III for the homogeneouswave equation in the triangle ∆5 (see (31)), and the integration domains are given by theinequalities: Ω′
51(x, t) = {(ξ, τ)

∣∣ 0 6 τ 6 (x + t − l)/2, 2l − x − t + τ 6 ξ 6 l − τ},
Ω′′
51(x, t) = {(ξ, τ) | 0 6 τ 6 l/2, τ 6 ξ 6 l − τ}, Ω′

53(x, t) = {(ξ, τ) | 0 6 τ 6

(x+ t)/2, l/2 + |τ − l/2| 6 ξ 6 (l+ x+ t− τ)/2− |(l− x− t+ τ)/2|}, Ω′′
53(x, t) = {(ξ, τ) |

0 6 τ 6 x+t− l, (3l−x−t)/2+ |τ−(x+t− l)/2| 6 ξ 6 l}, Ω54(x, t) = {(ξ, τ) | (x+t)/2 6

τ 6 (3l)/2, (x+ t− l)/2+ |τ − (x+ t+ l)/2| 6 ξ 6 l−|τ − l|}, Ω56(x, t) = {(ξ, τ) | l 6 τ 6

2l, l/2 + |τ − (3l)/2| 6 ξ 6 l}, Ω′
57(x, t) = {(ξ, τ) | (3l)/2 6 τ 6 2l, 2l − τ 6 ξ 6 τ − l},

Ω′′
57(x, t) = {(ξ, τ) | (3l)/2 6 τ 6 2l, (2l + x − t)/2 + |τ − (2l − x + t)/2| 6 ξ 6 τ − l},

Ω5(x, t) = {(ξ, τ) | (t+ x+ l)/2 6 τ 6 (2l−x+ t)/2, x+ |τ − t| 6 ξ 6 l/2− |τ − (3l)/2|}.Since Ω′
51∪Ω′′

51 ⊂ ∆1, Ω′
53∪Ω′′

53 ⊂ ∆3, Ω54 ⊂ ∆4, Ω56 ⊂ ∆6, Ω′
57∪Ω′′

57 ⊂ ∆7, Ω5 ⊂ ∆5,all the integral terms on the right-hand side of (59), except the last one, are already knownand therefore Eq. (59) is the integral equation of the form
u(x, t) = F5(x, t)− [G5u](x, t), (60)for �nding u(x, t) in the domain∆5. The operator [G5χ](x, t) = (1/2)

∫∫
Ω5
q(ξ, τ)χ(ξ, τ) dξdτis bounded in L∞(∆5), and as it satis�es the estimate

∣∣∣[Gk
5χ](x, t)

∣∣∣ 6 (l‖q‖∞/2)
k (2l − t− x)k

k!
sup

(x,t)∈∆5

|χ(x, t)|, (61)Eq. (60) has the bounded and continuous in ∆5 solution u(x, t) = u5(x, t).Applying Eqs. (42), (51) and (59) one can easily approve that on the boarder between
∆5 and ∆4: u5(t− l, t) = u4(t − l, t), and, by virtue of Eq. (35), on the boarder between
∆5 and ∆7: u5(2l − t, t) = u7(2l − t, t).



Boundary control by the displacement for the telegraph equation with a variable coe�cient 67Thus the solutions to the integral equations (39), (40), (42), (43), (51), (56) and (59)de�ne the continuous in Q2l function u(x, t) for which u(x, t) = uj(x, t) if (x, t) ∈ ∆j ,
j = 1, 7.Di�erentiating both parts of these integral equations with respect to x and t, onecan easily show that the function u(x, t) belongs to Ŵ 1

2 (Q2l) and ux(l, t) = 0 for all
t ∈ [0, 2l]. The direct substitution of the integral equations for u(x, t) in the identity (5)and smoothness arguments similar to those in the proof of Assertion 2, show that u(x, t)is the acquired generalized solution to the boundary control problem III.Remark 1. Estimates (49), (50), (53), (58), (61) and formulas that de�ne the solutions
uj(x, t), j = 1, 7, to the corresponding integral equations in the form of the Neumann series(see, e.g., Eqs. (47), (48) for j = 1 and j = 7), yield the a priori estimate for the solutionto the boundary control problem III

‖u(x, t)‖W 1
2 (Q2l)

6 C
(
‖ϕ‖W 1

2 [0,l]
+ ‖ϕ1‖W 1

2 [0,l]
+ ‖ψ‖L2[0,l] + ‖ψ1‖L2[0,l]

)
;it claims that this solution is stable with respect to perturbations of initial and terminaldata.Remark 2. If Eq. (35) holds true then, generally speaking, the function 0

u(x, t)de�ned in (31) is not a solution from Ŵ 1
2 (Q2l) to the boundary control problem III for thehomogeneous wave equation. Let us de�ne the constant C̃0 = C̃0(q) by the formula

C̃0 = −2




l∫

0

2l−τ∫

τ

q̃ ∗
A (ξ, τ)A(ξ, τ) dξdτ + 2

2l∫

l

τ∫

2l−τ

q̃ ∗
B (ξ, τ)B(ξ, τ) dξdτ


 . (62)If one adds this constant C̃0 to the expressions that de�ne the function 0
u(x, t) in thedomains ∆6 and ∆7, the new function 0

u∗(x, t) becomes the generalized solution to theconsidered problem for the homogeneous wave equation but with a modi�ed �rst terminalcondition 0
u∗(x, 2l) = ϕ1(x) + C̃0.Applying Eqs. (36)�(38), one can easily show that if ‖q‖∞ → 0 then the constant C̃0,de�ned in (62), vanishes while the function 0

u∗(x, t) transforms into 0
u(x, t).Moreover, the estimates (49), (50), (53), (58), (61) and integral representations forpartial derivatives of the solution u(x, t) show that if ‖q‖∞ → 0 then ‖u−

0
u‖W 1

2 (Q2l)
→ 0and respectively ‖µ −

0
µ‖W 1

2 [0,2l]
→ 0 where 0

µ(t) =
0
u(0, t). In other words, the solutionto the boundary control problem III is regular with respect the additive perturbation

q(x, t)u(x, t) of the wave operator in (1) with a bounded and measurable coe�cient q(x, t).Authors are grateful to the Academician V. A. Il'in for his kind attention to the resultsof this paper.
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