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A Generalized Contraction Mapping Principle
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Abstract. We introduce a generalized contraction mapping principle in fuzzy metric spaces with
the help of two real functions. The methodology is different from other similar existing results.
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1. Introduction

In this paper we introduce a new contraction mapping in fuzzy metric spaces which
entails the spirit of generalization by Geraghty of the Banach’s contraction mapping prin-
ciple [7]. For this purpose we use two functions one of which has been recently considered
by Shen et al in [17] proving a contraction mapping theorem in fuzzy metric spaces and the
other by Geraghty [7]. We obtain our result in the fuzzy metric space defined by George
and Veeramani [6]. The fuzzy fixed point theory has developed largely based on this space.
One of the reasons for such successful development of fuzzy fixed point theory is that the
space has a Hausdorff topology, a feature which has been widely utilized in this domain
of study. Some recent references on the aforesaid topic are [4, 5, 9, 13, 14]. There are
also other definitions of fuzzy metric spaces as, for instance, Kaleva and Seikkala defined
a fuzzy metric with the help of fuzzy numbers [11]. A recent fixed point result on this
space is deduced in [18].

In the following we state some concepts essential for the discussion in the rest of the
paper.
Definition 1.1[10, 16] A binary operation ∗ : [0, 1]2 −→ [0, 1] is called a continuous
t-norm if the following properties are satisfied:

(i) ∗ is associative and commutative,

(ii) a ∗ 1 = a for all a ∈ [0, 1],

(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1]
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(iv) ∗ is continuous.

Some examples of continuous t-norm are a∗1b = min{a, b}, a∗2b =
ab

max{a,b,λ} for 0 < λ < 1,

a ∗3 b = ab and a ∗4 b = max{a+ b− 1, 0}.
George and Veeramani in their paper [6] introduced the following definition of fuzzy metric
space. We will be concerned only with this definition of fuzzy metric space.

Definition 1.2[6] The 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an arbitrary
non-empty set, ∗ is a continuous t-norm and M is a fuzzy set on X2 × (0,∞) satisfying
the following conditions for each x, y, z ∈ X and t, s > 0:

(i) M(x, y, t) > 0,

(ii) M(x, y, t) = 1 if and only if x = y,

(iii) M(x, y, t) =M(y, x, t),

(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) and

(v) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, 0 < r < 1, the open ball B(x, t, r) with
center x ∈ X is defined by

B(x, t, r) = {y ∈ X :M(x, y, t) > 1− r}.

A subset A ⊂ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, t, r) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is a
topology and is called the topology on X induced by the fuzzy metric M . This topology
is metrizable as we indicated above.

Example 1.3[6] Let X be the set of all real numbers and d be any metric on X. Let
a ∗ b = min{a, b} for all a, b ∈ [0, 1]. For each t > 0, x, y ∈ X, let

M(x, y, t) =
t

t+ d(x, y)
.

Then (X,M, ∗) is a fuzzy metric space.

Example 1.4 Let (X, d) be a metric space and ψ be an increasing and continuous function
of (0,∞) into (0, 1) such that lim

t→∞
ψ(t) = 1. Three typical examples of these functions are

ψ(t) =
t

t+ 1
, ψ(t) = sin(

πt

2t+ 1
) and ψ(t) = 1 − e−t. Let ∗ be any continuous t-norm.

For each t > 0, x, y ∈ X, let
M(x, y, t) = ψ(t)d(x,y).

Then (X,M, ∗) is a fuzzy metric space.

Definition 1.5[6] Let (X,M, ∗) be a fuzzy metric space.
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(i) A sequence {xn} inX is said to be convergent to a point x ∈ X if lim
n→∞

M(xn, x, t) = 1

for all t > 0.

(ii) A sequence {xn} in X is called a Cauchy sequence if for each 0 < ε < 1 and t > 0,
there exists a positive integer n0 such that M(xn, xm, t) > 1− ε for each n,m ≥ n0.

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be
complete.

The following lemma was proved by Grabiec [8] for fuzzy metric spaces defined by
Kramosil et al [12]. The proof is also applicable to the fuzzy metric space given in Defini-
tion 1.2.

Lemma 1.6[8] Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, .) is nondecreasing
for all x, y ∈ X.

Lemma 1.7[15] M is a continuous function on X2 × (0,∞).

Definition 1.8 [17] Let ψ : [0, 1] → [0, 1] be a function that satisfies the following condi-
tions:

(P1) ψ is strictly decreasing left continuous,
(P2) ψ(λ) = 0 if and only if λ = 1.

Obviously, we obtain that lim
λ→1

ψ(λ) = ψ(1) = 0.

Definition 1.9 [1, 2, 3, 7] Let S be the class of functions β : R+ → [0, 1) with
(i) R+ = {t ∈ R/t > 0},
(ii) β(tn) → 1 implies tn → 0. (1.1)

2. Main Result

Theorem 2.1 Let (X,M, ∗) be a complete fuzzy metric space. Let T : X → X be a
mapping, ψ : [0, 1] → [0, 1] is as in Definition 1.8 and β satisfies the Definition 1.9. If the
mapping T satisfies the condition

ψ(M(Tx, Ty, t)) ≤ β(ψ((M(x, y, t))).ψ((M(x, y, t)), (2.1)

for all x, y ∈ X, t > 0 and x 6= y, then T has a unique fixed point in X.
Proof. Starting with x0 in X, we define the sequence {xn} in X as follows:

xn+1 = Txn. (2.2)
Let for all t > 0, n ≥ 0,

δn(t) =M(xn, xn+1, t). (2.3)
Now from (2.1), for every t > 0, we have

ψ(δn(t)) = ψ(M(xn, xn+1, t))
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= ψ(M(Txn−1, Txn, t))
≤ β(ψ((M(xn−1, xn, t))).ψ(M(xn−1, xn, t))
= β(ψ((M(xn−1, xn, t))).ψ(δn−1(t)) (2.4)
< ψ(δn−1(t))

ψ(δn(t)) < ψ(δn−1(t)).
Since {ψ(δn(t))} is strictly decreasing for every t, there exists δ(t) ≥ 0 such that lim

n→∞
ψ(δn(t))

= δ(t).
Let δ(t) > 0 for some t. (2.5)

From (2.4), we have
ψ(δn(t))
ψ(δn−1(t))

≤ β(ψ((M(xn−1, xn, t))) < 1.

Taking n→ ∞ in the above inequality and using (2.5), we have
lim
n→∞

β(ψ((M(xn−1, xn, t))) = 1.

Using the property of (1.1), we have
δ(t) = lim

n→∞
ψ(δn(t)) = lim

n→∞
ψ((M(xn−1, xn, t)) = 0.

So we arrive at a contradiction.
Therefore δ(t) > 0 for all t, and we have

lim
n→∞

M(xn−1, xn, t) = 1. (2.6)

We now prove that the sequence {xn} is a Cauchy sequence. If not, then there exist
0 < ǫ < 1 and two sequences {m(k)} and {n(k)}, where m(k) > n(k) > k for every n ≥ 0
and t > 0, such that

M(xm(k), xn(k), t) ≤ 1− ǫ.
and M(xm(k)−1, xn(k), t) > 1− ǫ. (2.7)

Then, M(xm(k)−1, xn(k−1), t) ≥M(xm(k)−1, xn(k),
t
2) ∗M(xn(k), xn(k)−1,

t
2)

≥ (1− ǫ) ∗M(xn(k), xn(k)−1,
t
2). (2.8)

Since M is continuous we can find η > 0 such that

1− ǫ ≥M(xm(k), xn(k), t) ≥

M(xm(k)−1, xn(k),
η

2
) ∗M(xm(k)−1, xn(k)−1, t− η) ∗M(xn(k)−1, xn(k),

η

2
).

(2.9)
Taking k → ∞ in the above two inequalities (2.8) and (2.9), using (2.7) and the fact that
∗ is continuous, we have

lim
k→∞

M(xm(k)−1, xn(k)−1, t) ≥ (1− ǫ) ≥ lim
k→∞

M(xm(k)−1, xn(k)−1, t− η).

Since M is continuous and η is arbitrary, we have
lim
k→∞

M(xm(k)−1, xn(k)−1, t) = 1− ǫ. (2.10)

Now by (2.1), we have
ψ(1−ǫ) ≤ ψ(M(xm(k), xn(k), t)) ≤ β(ψ(M(xm(k)−1, xn(k)−1, t))).ψ(M(xm(k)−1 , xn(k)−1, t)).

Taking k → ∞, we have
ψ(1− ǫ) ≤ lim

k→∞
β(ψ(M(xm(k)−1, xn(k)−1, t))).ψ(1 − ǫ).
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Using definition 1.7, the last inequality implies lim
k→∞

β(ψ(M(xm(k)−1, xn(k)−1, t))) = 1.

Since β ∈ S, we have lim
k→∞

ψ(M(xm(k)−1, xn(k)−1, t)) = 0,

which implies lim
k→∞

M(xm(k)−1, xn(k)−1, t) = 1.

This fact and (2.10) give us ǫ = 0, which is a contradiction.
Hence the sequence {xn} is a Cauchy sequence. Since X is complete, there exists x ∈ X
such that lim

n→∞
xn = x.

ψ(M(xn+1, Tx, t)) = ψ(M(Txn, Tx, t))
≤ β(ψ(M(xn, x, t)).ψ(M(xn, x, t))
< ψ(M(xn, x, t)).

Taking n→ ∞ on the both sides of the above inequality, we have
ψ(M(x, Tx, t)) ≤ ψ(M(x, x, t)),

= ψ(1),
= 0.

Since ψ(M(x, Tx, , t)) = 0, by the property of (P2), we have M(x, Tx, t) = 1,
that is, x = Tx,
that is, x is a fixed point of T .
To show uniqueness, let y 6= x be another fixed point of T .
ψ(M(x, y, t)) = ψ(M(Tx, Ty, t)) ≤ β(ψ(M(x, y, t))).ψ(M(x, y, t)) < ψ(M(x, y, t)),
which is a contradiction.
The proof is completed.

Particularly, taking β(t) = k, 0 < k < 1 we obtain the following corollary.

Corollary 2.2 Let (X,M, ∗) be a complete fuzzy metric space. Let T : X → X be a
mapping, ψ : [0, 1] → [0, 1] is as in Definition 1.7 and β satisfies the Definition 1.8. If the
mapping T satisfies the condition

ψ(M(Tx, Ty, t)) ≤ k.ψ((M(x, y, t)),

for all x, y ∈ X, t > 0 and x 6= y, then T has a unique fixed point in X.

Conclusion: The corollary can be viewed as a version of the contraction mapping prin-
ciple in fuzzy metric spaces. With this consideration, Theorem 2.1 is an extension of the
fuzzy contractions mapping principle.
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