Caspian Journal of Applied Mathematics, Ecology and Economics V. 2, No 1, 2014, July ISSN 1560-4055

A Generalized Contraction Mapping Principle

B. S. Choudhury, A. Kundu^{*}, P. Das

Abstract. We introduce a generalized contraction mapping principle in fuzzy metric spaces with the help of two real functions. The methodology is different from other similar existing results. **Key Words and Phrases**: Fixed point, complete fuzzy metric space, contraction mapping, Cauchy sequence.

1. Introduction

In this paper we introduce a new contraction mapping in fuzzy metric spaces which entails the spirit of generalization by Geraghty of the Banach's contraction mapping principle [7]. For this purpose we use two functions one of which has been recently considered by Shen et al in [17] proving a contraction mapping theorem in fuzzy metric spaces and the other by Geraghty [7]. We obtain our result in the fuzzy metric space defined by George and Veeramani [6]. The fuzzy fixed point theory has developed largely based on this space. One of the reasons for such successful development of fuzzy fixed point theory is that the space has a Hausdorff topology, a feature which has been widely utilized in this domain of study. Some recent references on the aforesaid topic are [4, 5, 9, 13, 14]. There are also other definitions of fuzzy metric spaces as, for instance, Kaleva and Seikkala defined a fuzzy metric with the help of fuzzy numbers [11]. A recent fixed point result on this space is deduced in [18].

In the following we state some concepts essential for the discussion in the rest of the paper.

Definition 1.1[10, 16] A binary operation $* : [0,1]^2 \longrightarrow [0,1]$ is called a continuous *t*-norm if the following properties are satisfied:

- (i) * is associative and commutative,
- (ii) a * 1 = a for all $a \in [0, 1]$,

(iii) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$

http://www.cjamee.org

© 2013 CJAMEE All rights reserved.

^{*}Corresponding author.

(iv) * is continuous.

Some examples of continuous t-norm are $a*_1b = \min\{a, b\}$, $a*_2b = \frac{ab}{\max\{a, b, \lambda\}}$ for $0 < \lambda < 1$, $a*_3b = ab$ and $a*_4b = \max\{a+b-1, 0\}$.

George and Veeramani in their paper [6] introduced the following definition of fuzzy metric space. We will be concerned only with this definition of fuzzy metric space.

Definition 1.2[6] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary non-empty set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and t, s > 0:

- (i) M(x, y, t) > 0,
- (ii) M(x, y, t) = 1 if and only if x = y,
- (iii) M(x, y, t) = M(y, x, t),
- (iv) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s)$ and
- (v) $M(x, y, .) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

Let (X, M, *) be a fuzzy metric space. For t > 0, 0 < r < 1, the open ball B(x, t, r) with center $x \in X$ is defined by

$$B(x,t,r) = \{ y \in X : M(x,y,t) > 1-r \}.$$

A subset $A \subset X$ is called open if for each $x \in A$, there exist t > 0 and 0 < r < 1such that $B(x,t,r) \subset A$. Let τ denote the family of all open subsets of X. Then τ is a topology and is called the topology on X induced by the fuzzy metric M. This topology is metrizable as we indicated above.

Example 1.3[6] Let X be the set of all real numbers and d be any metric on X. Let $a * b = \min\{a, b\}$ for all $a, b \in [0, 1]$. For each $t > 0, x, y \in X$, let

$$M(x, y, t) = \frac{t}{t + d(x, y)}.$$

Then (X, M, *) is a fuzzy metric space.

Example 1.4 Let (X, d) be a metric space and ψ be an increasing and continuous function of $(0, \infty)$ into (0, 1) such that $\lim_{t \to \infty} \psi(t) = 1$. Three typical examples of these functions are $\psi(t) = \frac{t}{t+1}$, $\psi(t) = \sin(\frac{\pi t}{2t+1})$ and $\psi(t) = 1 - e^{-t}$. Let * be any continuous t-norm. For each t > 0, $x, y \in X$, let

$$M(x, y, t) = \psi(t)^{d(x, y)}.$$

Then (X, M, *) is a fuzzy metric space.

Definition 1.5[6] Let (X, M, *) be a fuzzy metric space.

68

- (i) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n, x, t) = 1$ for all t > 0.
- (ii) A sequence $\{x_n\}$ in X is called a Cauchy sequence if for each $0 < \varepsilon < 1$ and t > 0, there exists a positive integer n_0 such that $M(x_n, x_m, t) > 1 - \varepsilon$ for each $n, m \ge n_0$.
- (iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

The following lemma was proved by Grabiec [8] for fuzzy metric spaces defined by Kramosil et al [12]. The proof is also applicable to the fuzzy metric space given in Definition 1.2.

Lemma 1.6[8] Let (X, M, *) be a fuzzy metric space. Then M(x, y, .) is nondecreasing for all $x, y \in X$.

Lemma 1.7[15] *M* is a continuous function on $X^2 \times (0, \infty)$.

Definition 1.8 [17] Let $\psi : [0,1] \to [0,1]$ be a function that satisfies the following conditions:

 $\begin{array}{l} (P1) \ \psi \ \text{is strictly decreasing left continuous,} \\ (P2) \ \psi(\lambda) = 0 \ \text{if and only if } \lambda = 1. \\ \text{Obviously, we obtain that } \lim_{\lambda \to 1} \psi(\lambda) = \psi(1) = 0. \end{array}$

Definition 1.9 [1, 2, 3, 7] Let *S* be the class of functions $\beta : R^+ \to [0, 1)$ with (*i*) $R^+ = \{t \in R/t > 0\},$ (*ii*) $\beta(t_n) \to 1$ implies $t_n \to 0.$ (1.1)

2. Main Result

Theorem 2.1 Let (X, M, *) be a complete fuzzy metric space. Let $T : X \to X$ be a mapping, $\psi : [0,1] \to [0,1]$ is as in Definition 1.8 and β satisfies the Definition 1.9. If the mapping T satisfies the condition

$$\psi(M(Tx, Ty, t)) \le \beta(\psi((M(x, y, t)))) \cdot \psi((M(x, y, t))), \tag{2.1}$$

for all $x, y \in X$, t > 0 and $x \neq y$, then T has a unique fixed point in X. **Proof.** Starting with x_0 in X, we define the sequence $\{x_n\}$ in X as follows:

$$x_{n+1} = Tx_n.$$
Let for all $t > 0, n \ge 0,$

$$(2.2)$$

$$\delta_n(t) = M(x_n, x_{n+1}, t).$$
Now from (2.1), for every $t > 0$, we have
$$(2.3)$$

 $\psi(\delta_n(t)) = \psi(M(x_n, x_{n+1}, t))$

B. S. Choudhury, A. Kundu, P. Das

$$= \psi(M(Tx_{n-1}, Tx_n, t)) \leq \beta(\psi((M(x_{n-1}, x_n, t))).\psi(M(x_{n-1}, x_n, t))) = \beta(\psi((M(x_{n-1}, x_n, t))).\psi(\delta_{n-1}(t)) < \psi(\delta_{n-1}(t)) \psi(\delta_n(t)) < \psi(\delta_{n-1}(t)).$$
(2.4)

Since $\{\psi(\delta_n(t))\}$ is strictly decreasing for every t, there exists $\delta(t) \ge 0$ such that $\lim_{n \to \infty} \psi(\delta_n(t)) = \delta(t)$.

Let
$$\delta(t) > 0$$
 for some t. (2.5)

From (2.4), we have

$$\frac{\psi(\delta_n(t))}{\psi(\delta_{n-1}(t))} \le \beta(\psi((M(x_{n-1}, x_n, t))) < 1.$$

Taking $n \to \infty$ in the above inequality and using (2.5), we have

 $\lim_{n \to \infty} \beta(\psi((M(x_{n-1}, x_n, t))) = 1.$ Using the property of (1.1), we have $\delta(t) = \lim_{n \to \infty} \psi(\delta_n(t)) = \lim_{n \to \infty} \psi((M(x_{n-1}, x_n, t)) = 0.$

So we arrive at a contradiction.

Therefore
$$\delta(t) > 0$$
 for all t , and we have

$$\lim_{n \to \infty} M(x_{n-1}, x_n, t) = 1.$$
(2.6)

We now prove that the sequence $\{x_n\}$ is a Cauchy sequence. If not, then there exist $0 < \epsilon < 1$ and two sequences $\{m(k)\}$ and $\{n(k)\}$, where m(k) > n(k) > k for every $n \ge 0$ and t > 0, such that

$$M(x_{m(k)}, x_{n(k)}, t) \le 1 - \epsilon.$$

and $M(x_{m(k)-1}, x_{n(k)}, t) > 1 - \epsilon.$ (2.7)

Then,
$$M(x_{m(k)-1}, x_{n(k-1)}, t) \ge M(x_{m(k)-1}, x_{n(k)}, \frac{t}{2}) * M(x_{n(k)}, x_{n(k)-1}, \frac{t}{2})$$

 $\ge (1-\epsilon) * M(x_{n(k)}, x_{n(k)-1}, \frac{t}{2}).$
(2.8)

Since M is continuous we can find $\eta > 0$ such that

$$1 - \epsilon \ge M(x_{m(k)}, x_{n(k)}, t) \ge$$

$$M(x_{m(k)-1}, x_{n(k)}, \frac{\eta}{2}) * M(x_{m(k)-1}, x_{n(k)-1}, t - \eta) * M(x_{n(k)-1}, x_{n(k)}, \frac{\eta}{2}).$$
(2.9)

Taking $k \to \infty$ in the above two inequalities (2.8) and (2.9), using (2.7) and the fact that * is continuous, we have

 $\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t) \ge (1 - \epsilon) \ge \lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t - \eta).$ Since *M* is continuous and η is arbitrary, we have

$$\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t) = 1 - \epsilon.$$
(2.10)

Now by (2.1), we have

$$\begin{split} \psi(1-\epsilon) &\leq \psi(M(x_{m(k)}, x_{n(k)}, t)) \leq \beta(\psi(M(x_{m(k)-1}, x_{n(k)-1}, t))).\psi(M(x_{m(k)-1}, x_{n(k)-1}, t)).\\ \text{Taking } k \to \infty, \text{ we have} \\ \psi(1-\epsilon) &\leq \lim_{k \to \infty} \beta(\psi(M(x_{m(k)-1}, x_{n(k)-1}, t))).\psi(1-\epsilon). \end{split}$$

70

Using definition 1.7, the last inequality implies $\lim_{k \to \infty} \beta(\psi(M(x_{m(k)-1}, x_{n(k)-1}, t))) = 1.$ Since $\beta \in S$, we have $\lim_{k \to \infty} \psi(M(x_{m(k)-1}, x_{n(k)-1}, t)) = 0$, which implies $\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}, t) = 1$. This fact and (2.10) give us $\epsilon = 0$, which is a contradiction. Hence the sequence $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists $x \in X$ such that $\lim_{n \to \infty} x_n = x$. $\psi(M(x_{n+1}, Tx, t)) = \psi(M(Tx_n, Tx, t))$

$$M(x_{n+1}, 1x, t)) = \psi(M(1x_n, 1x, t)) \\ \leq \beta(\psi(M(x_n, x, t))) \cdot \psi(M(x_n, x, t))) \\ < \psi(M(x_n, x, t)).$$

Taking $n \to \infty$ on the both sides of the above inequality, we have

$$\psi(M(x,Tx,t)) \leq \psi(M(x,x,t)),$$

= $\psi(1),$
= 0.

Since $\psi(M(x,Tx,t)) = 0$, by the property of (P2), we have M(x,Tx,t) = 1, that is, x = Tx, that is, x is a fixed point of T. To show uniqueness, let $y \neq x$ be another fixed point of T. $\psi(M(x, y, t)) = \psi(M(Tx, Ty, t)) \le \beta(\psi(M(x, y, t))) \cdot \psi(M(x, y, t)) < \psi(M(x, y, t)),$ which is a contradiction.

The proof is completed.

Particularly, taking $\beta(t) = k$, 0 < k < 1 we obtain the following corollary.

Corollary 2.2 Let (X, M, *) be a complete fuzzy metric space. Let $T: X \to X$ be a mapping, $\psi : [0,1] \to [0,1]$ is as in Definition 1.7 and β satisfies the Definition 1.8. If the mapping T satisfies the condition

$$\psi(M(Tx, Ty, t)) \le k \cdot \psi((M(x, y, t))),$$

for all $x, y \in X$, t > 0 and $x \neq y$, then T has a unique fixed point in X.

Conclusion: The corollary can be viewed as a version of the contraction mapping principle in fuzzy metric spaces. With this consideration, Theorem 2.1 is an extension of the fuzzy contractions mapping principle.

References

[1] J. Caballero, J. Harjani and K. Sadarangani, Contractive-like map ping principles in ordered metric spaces and application to ordinary differential equations, Fixed Point Theory and Appl., 2010, Article ID 916064, 14 pages, doi:10.1155/2010/916064.

- [2] B.S. Choudhury and A.Kundu, On coupled generalized Banach and Kannan type contractions, J. Nonlinear Sci. Appl., 5 (2012), 259-270.
- [3] B.S. Choudhury and A.Kundu, A Kannan-like contraction in partially ordered spaces, Demonstratio Mathematica, 46 (2013), 327-334.
- [4] B.S. Choudhury, K. Das, P. Das. Coupled coincidence point results for compatible mappings in partially ordered fuzzy metric spaces, Fuzzy Sets and Systems, 222 (2013), 84-97.
- [5] L. Cirić, Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces, Chaos, Solitons and Fractals, 42 (2009), 146-154.
- [6] A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and Systems, 64 (1994), 395-399.
- [7] M. A. Geraghty, On contractive mappings, Pro c. Amer. Math. So c ., 40 (1973), 604-608.
- [8] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.
- [9] V. Gregori, S. Romaguera, Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, 115 (2000), 485-489.
- [10] O. Hadžić, E. Pap, Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht, 2001.
- [11] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984), 215-229.
- [12] I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica., 11 (1975), 326-334.
- [13] D. Mihet, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets and Systems, 158 (2007), 915-921.
- [14] A. Razani, A contraction theorem in fuzzy metric space, Fixed Point Theory Appl., 2005 (2005), 257-265.
- [15] J. Rodríguez López, S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2004), 273-283.
- [16] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier, North-Holland, (1983).
- [17] Y. Shen, D. Qiu, W. Chen, Fixed point theorems in fuzzy metric spaces, Appl. Math. Lett., 25 (2012), 138-141.

[18] J. Z. Xiao, X. Zhu, X. Jin, Fixed point theorems for nonlinear contractions in Kaleva-Seikkalas type fuzzy metric spaces, Fuzzy Sets and Systems, 200 (2012), 65-83.

B. S. Choudhury

Department of Mathematics, Indian institute of Engineering Science and Technology, Shibpur B. Garden, Shibpur, Howrah-711103, West Bengal, India E-mail:binayak12@yahoo.co.in

Amresh Kundu Department of Mathematics, Siliguri Institute of Technology, Sukna, Darjeeling -734009, West Bengal, India E-mail:kunduamerash@yahoo.com

Pradyut Das
Department of Mathematics, Bengal Engineering and
Science University, Shibpur,
B. Garden, Shibpur, Howrah - 711103, West Bengal, India
E-mail: pradyutdas747@gmail.com

Received 27 June 2013 Accepted 16 May 2014