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Approximations of holomorphic functions by generalized

Zygmund sums

Meremelia I., Savchuk V.

Abstract. We determine the asymptotic equality for the upper bounds of deviations of generalized
Zygmund sums Zn,ψ(f)(z) = f̂0 +

∑n−1

k=1
(1 − ψn/ψk)f̂kz

k on the functional classes Hψφ
p that

are convolution of unit ball of the Hardy space Hp with kernels
∑

∞

k=0
ψk+1φk+1z

k in case when
ψ = {ψk}

∞

k=1
are the moment sequence. We give necessary and sufficient conditions on the sequence

φ = {φk}
∞

k=1
under which the sums Zn,ψ(f) approximate the classHψφ

p with minimal possible error
|ψn|.

Key Words and Phrases: Zygmund sums, Hardy space, Kolmogorov-Nikol’skii problem, Func-
tions with positive real part.
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1. Introduction

Let H be a set of functions holomorphic in the disk D := {z ∈ C : |z| < 1}. The Hardy
space Hp, 1 ≤ p ≤ ∞, is a set of all functions f ∈ H for which ‖f‖p <∞, where

‖f‖p :=





sup
0≤%<1

(∫ 2π

0

∣∣f(%eit)
∣∣p dt

2π

)1/p

, 1 ≤ p <∞,

sup
z∈D

|f(z)|, p = ∞.

We will denote by UHp the unit ball of Hp.
Let ψ = {ψk}

∞
k=1 be a sequence of complex numbers such that |ψk| > 0. We define

generalized Zygmund sums for functions f ∈ H by

Zn,ψ(f)(z) := f̂0 +

n−1∑

k=1

(
1−

ψn
ψk

)
f̂kz

k, n ∈ N,

where f̂k := f (k)(0)/k!. (throughout this paper, we set empty sums equal to zero.)
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In the 2π–periodic case the generalized Zygmund sums was introduced for the first
time by Aljančić [1], [2]. They coincide with a classical Zygmund sums [15] in the case
when ψk = k−r, r > 0, and with the Fejér sums [4] when ψk = k−1.

Denote by Dψ the operator defined on H by the rule

Dψ(f)(z) :=

∞∑

k=1

f̂k
ψk
zk−1, z ∈ D.

If φ = {φk}
∞
k=1 be another sequence of complex numbers such that |φk| > 0, than

Dψφ(f)(z) := Dψ
(
zDφ(f)

)
(z) =

∞∑

k=1

f̂k
ψkφk

zk−1, z ∈ D.

We assume in what follows that both sequences ψ and φ is such that sums of power
series

∑∞
k=0 ψk+1z

k and
∑∞

k=0 φk+1z
k defines a functions from H.

By the class Hψφ
p we denote the set of functions f ∈ H, for which ‖Dψφ(f)‖p ≤ 1. In

particular, if φk = 1 for all k ∈ N, then

Hψ1
p = Hψ

p :=
{
f ∈ H : ‖Dψ(f)‖p ≤ 1

}
.

The aim of the present work is to solve Kolmogorov–Nikolskii problem (K–N problem)
for generalized Zygmund sums, that consists in finding the asymptotic formula for the
quantity

Zn,ψ

(
Hψφ
p ;Hp

)
:= sup{‖f − Zn,ψ(f)‖p : f ∈ Hψφ}.

More precisely, we find a pair (µ, ν) of functions of natural argument such that ν(n) =
o(µ(n)), n→ ∞, and

Zn,ψ

(
Hψφ
p ;Hp

)
= µ(n) +O(ν(n)), n→ ∞.

Generally speaking, the K–N problem with respect to component ν is not uniquely
solved. So finding the solution (µ, 0), that is computation of the exact value of

Zn,ψ

(
Hψφ
p ;Hp

)
, is the most desirable.

For the classes of 2π-periodical real-valued functions the K–N problem for generalized
Zygmund sums was investigated in many works (see review in [14], and [12], [8]). With
respect to holomorphic functions such researches held much less. The first case of solving
a K–N problem for holomorphic functions should be considered the theorem 1 in [13], from
which in our notation for ψk = k−1, φk = k−s, s ∈ N, follows asymptotic equality

Zn,ψ(H
ψφ
∞ ;H∞) = n−1 +O(n−s−1), n→ ∞.

Actually, it was shown in [10], that the value O in this equation is equal to zero, i.e. the
following equality holds

Zn,ψ

(
Hψφ
p ;Hp

)
= n−1 ∀ n ∈ N, 1 ≤ p ≤ ∞.



72 Meremelia I., Savchuk V.

We generalize these two relations (Corollary 2) for the case when ψk = k−r, φk = k−s,
r, s ≥ 0 and r + s > 0, namely, show that

Zn,r

(
Hψφ
p ;Hp

)
=

{
n−r +O (n−r−s) , 0 ≤ s < 1,
n−r, s ≥ 1,

n ∈ N. (1)

The first ratio in (1) follows from Theorem 1 and Corollary 1 of this paper, which

are talking about pointwise approximation of individual functions Hψφ
p inside the disk D

and about the solution of K–N problem for a value Zn,ψ

(
Hψφ
p ;Hp

)
in some important

cases. The second ratio follows from the Theorem 3, which talks about the exact value of

Zn,ψ

(
Hψφ
p ;Hp

)
.

It is important to pay attention to the following fact. For any complex sequences ψ
and φ such that ψ1 = φ1 = 1 and |ψk| > 0, |φk| > 0, k = 2, 3, . . . , holds an inequality

Zn,ψ

(
Hψφ
p ;Hp

)
≥ ‖f∗ − Zn,ψ(f

∗)‖p = |ψn|, (2)

where f∗(z) = z. Moreover, as it follows from the main result in [2], the ratio ‖f −
Zn,ψ(f)‖p = o(|ψn|), n → ∞, can not be performed for any function f ∈ Hp other than
constant. Thus the order of O(|ψn|) is the maximum order of the smallness of value

Zn,ψ

(
Hψ
p ;Hp

)
. In connection with this naturally arise the question under what conditions

for the sequence ψ the order of smallness is achieved. We show (Theorem 2) that it is
sufficient to require for the ψ be a moment sequence in the sense of Hausdorff moment
problem and satisfies condition ψk = O(ψ2k), k ∈ N.

In Theorem 3 we give a description of all sequences φ such that for a given sequence
ψ holds an equality

Zn,ψ(H
ψφ
∞ ;H∞) = |ψn|, (3)

i.e. when generalized Zygmund sums Znψ approach the class Hψφ
∞ with minimum possible

error.

2. The main results

Theorem 1. Let 1 ≤ p ≤ ∞,

ψk =

∫ 1

0
ρk−1dλ(ρ), k = 1, 2, . . . , (4)

where λ be real-valued a bounded nondecreasing function on [0, 1] such that
∫ 1
0 dλ = 1,

and φ be a sequence of complex numbers, such that for all natural n beginning with some
number n0

Kn,φ(z) :=
1

2
+ Re

∞∑

k=1

φk+n
φn

zk ≥ 0 ∀ z ∈ D. (5)
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Then for every function f ∈ Hψφ
p the following equality holds for any natural n ≥ n0 :

f(z)− Zn,ψ(f)(z) = ψnzD
ψ(f)(z) + εn(z, f) ∀ z ∈ D, (6)

where
‖εn(ρ ·, f)‖p ≤ ρn|φn|

(
ψn + ψ[n+1

2
]

)
∀ n ≥ n0, ρ ∈ [0, 1],

and [·] is the integer part of number.
Corollary 1. Let the conditions of Theorem 1 be satisfied and let the condition (5)

hold for any n ∈ N, ψn = O(ψ2n), φ1 = 1 and φn = o(1). Then

Zn,ψ

(
Hψφ
p ;Hp

)
= ψn +O (|φn|ψn) , n→ ∞. (7)

Relation (7) is a solution of the K–N problem in these cases.
Theorem 2. Let 1 ≤ p ≤ ∞ and ψ be a sequence such as in the Theorem 1. Then

ψn ≤ Zn,ψ

(
Hψ
p ;Hp

)
≤ ψ[n+1

2
] ∀ n ∈ N. (8)

In the next statement we describe the set of all sequences φ such that

Zn,ψ(H
ψφ
∞ ;H∞) = |ψn|. (9)

Theorem 3. Suppose n ∈ N, ψ = {ψk}
∞
k=1 and φ = {φk}

∞
k=1 are sequences of complex

numbers such that ψ1 = φ1 = 1 and |ψk| > 0, |φk| > 0. Equality (9) holds true if and only
if

Mn,ψ,φ(z) :=
1

2
+ Re

(
n−1∑

k=1

φk+1z
k +

∞∑

k=n

ψk+1φk+1

ψn
zk

)
≥ 0 ∀ z ∈ D. (10)

If inequality (10) is true, then the following relation holds for all p ∈ [1,∞) :

Zn,ψ

(
Hψφ
p ;Hp

)
= |ψn|. (11)

Denote by Hr+s
p the class Hψφ

p when ψk = k−r and φk = k−s and let Zn,r := Zn,ψ.
Note that in such a case

Dψφ(f)(z) =

∞∑

k=0

(k + 1)r+sf̂k+1z
k.

Corollary 2. Let 1 ≤ p ≤ ∞, r, s ≥ 0 and r + s > 0. Then

Zn,r
(
Hr+s
p ;Hp

)
=

{
n−r +O

(
n−(r+s)

)
, 0 ≤ s < 1,

n−r, s ≥ 1,
n ∈ N.
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3. Appendix

In this section we will show that relations (6) and (7), generally speaking, can not be
the corollary of Theorem 3. Also we will formulate a simple condition under which the
relation (10) are holds.

Proposition 1. The sequence φ = 1 := {1}∞k=1 satisfies the condition (5) for all
n ∈ N, but doesn’t satisfy the condition (10) simultaneously for all n ∈ N whatever be the
sequence ψ except the case ψ = 1 = {1}∞k=1.

Proof. Indeed, for any n ∈ N

Kn,1(z) =Mn,1,1(z) =
1

2
+ Re

∞∑

k=1

zk =
1

2
Re

1 + z

1− z
=

1

2

1− |z|2

|1− z|2
≥ 0 ∀ z ∈ D. (12)

Suppose that the condition (10) holds for all natural n. Take an arbitrary function
g ∈ UH∞ and with fixing any n ∈ N construct the sequence of functions {gN}

∞
N=0 by the

rule

g0 = g, gN (z) =
1

π

∫ 2π

0
gN−1(e

it)Mn,ψ,1(ze
−it)dt, N = 1, 2, . . . .

Clear that as a result of (10) gN ∈ UH∞, N = 0, 1, 2, . . ..

On the other hand, by direct computation easily convinced that

gN (z) =

n−1∑

k=0

ĝkz
k +

∞∑

k=n

(
ψk+1

ψn

)N
ĝkz

k ∀ z ∈ D. (13)

In particular, putting g(z) = zm, m ≥ n, we obtain the inequality

∣∣∣∣
ψm+1

ψn

∣∣∣∣
N

= ‖gN‖∞ ≤ 1 ∀ N ∈ Z+ ∀ m ≥ n.

Because of the arbitrariness n this relation implies that

1 ≥

∣∣∣∣
ψn+1

ψn

∣∣∣∣ ≥
∣∣∣∣
ψn+2

ψn

∣∣∣∣ ≥ . . . ∀ n ∈ N.

For a given n equate to the number 1 can be achieved only in a finite number of the first
row correspondences, or at all at once. We need to consider only the first of this two cases.
Therefore without losing generality we consider that

1 ≥ |ψ2| = . . . = |ψn| > |ψn+1| > . . . . (14)

Based on the expansion (13) and inequalities (14) we obtain the ratio

∣∣∣∣∣

n−1∑

k=0

ĝkz
k

∣∣∣∣∣ ≤ |gN (z)|+

∣∣∣∣∣

∞∑

k=n

(
ψk+1

ψn

)N
ĝkz

k

∣∣∣∣∣ ≤ 1 +

∣∣∣∣
ψn+1

ψn

∣∣∣∣
N |z|n

1− |z|
∀ z ∈ D.
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Hence when N → ∞ it follows that

Gn := sup

{∣∣∣∣∣

n−1∑

k=0

ĝk

∣∣∣∣∣ : g ∈ UH∞

}
≤ 1.

But as it was shown by E. Landau (see, for example, [7, p. 442]),

Gn = 1 +

n−1∑

k=1

(
(2k − 1)!!

(2k)!!

)2

> 1, n ≥ 2.

We have the contradiction. Hence, our assumption is incorrect, which proves the proposi-
tion 1.

J

Proposition 2. Let n ∈ N, ψ = {ψk}
∞
k=1 be any sequence of positive numbers de-

creasing to zero as k → ∞ and φ = {φk}
∞
k=1 be a sequence of complex numbers such that

|φk| > 0. Then for the condition (10) is sufficient to require that

Pn,φ(z) :=
1

2
+ Re

n−1∑

k=1

φk+1z
k ≥ 0 ∀ z ∈ ∂D ∀ n ∈ N. (15)

Proof. Applying to the second sum in (10) the Abel transformation for series (this is

correctly because of ψn

∣∣∣
∑n

j=0 φj+1z
j
∣∣∣→ 0, n → ∞ ∀ z ∈ D), we get

∞∑

k=n

ψk+1φk+1

ψn
zk = −

ψn+1

ψn

n−1∑

k=0

φk+1z
k +

1

ψn

∞∑

k=n

(ψk+1 − ψk+2)

k∑

j=0

φj+1z
j .

Substituting this formula into expression of the function Mn,ψ,φ and taking into account
that according to the maximum modulus principle Pn,φ(z) ≥ 0 ∀ z ∈ D, we obtain

Mn,ψ,φ(z) = −
1

2
+

1

ψn
Re




∞∑

k=n−1

(ψk+1 − ψk+2)

k∑

j=0

φj+1z
j


 =

= −
1

2
+

1

ψn

∞∑

k=n−1

(ψk+1 − ψk+2)

(
Pn,φ(z) +

1

2

)
≥

≥ −
1

2
+

1

2ψn

∞∑

k=n−1

(ψk+1 − ψk+2) = 0 ∀ z ∈ D.

J
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Let us note that in the case when all numbers φk are real the condition (15) is equivalent
to the following

Pn,φ(e
it) =

1

2
+

n−1∑

k=1

φk+1 cos kt ≥ 0 ∀ t ∈ [0, π] ∀ n ∈ N.

Detailed review of nonnegative trigonometric polynomials can be found in [7, ch. 4].
Currently the most general sufficient conditions for a real-valued sequence φ, for which
Pn,φ(e

it) ≥ 0, are given in [3].

4. Proof of the results

Proofs of the Theorems 1 and 2 based on the following statement.
Lemma. Suppose 1 ≤ p ≤ ∞ and ψ are sequences of complex numbers defined by

formula (4), where λ are a complex-valued function of bounded variation on [0, 1] such

that
∫ 1
0 dλ = 1 . Then for any function f ∈ Hψφ

p in every point z ∈ D and almost every
point z ∈ T

f(z)− Zn,ψ(f)(z) =

= φnz
n

∫ 1

0

∫ 2π

0
Dψφ(f)(ρeit)ρn−1e−i(n−1)tKn,φ(ρe

itz)
dt

π
dλ(ρ2)+ (16)

+ψn

n−1∑

k=1

(
1− |z|2(n−k)

φ2n−k
φk

e2i arg φn

)
f̂k
ψk
zk ∀ n ∈ N.

Proof. Consider the inner integral in (16). Denote for convenience g(z) := Dψφ(f)(ρz),
ck = ρkφk+n/φn and using the well-known identity (see [6, p. 515]), for any z ∈ D and
ρ ∈ [0, 1) we obtain

1

π

∫ 2π

0
Dψφ(f)(ρeit)e−i(n−1)tKn,φ(ρe

itz)dt =

=
1

2π

∫ 2π

0
g(eit)e−i(n−1)t

(
1 + 2Re

∞∑

k=1

ckz
ke−ikt

)
dt =

=

n−2∑

k=0

ĝkcn−k−1z
n−k−1 +

∞∑

k=n−1

ĝkck−n+1z
k−n+1 =

=

n−2∑

k=0

f̂k+1ρ
k

ψk+1φk+1

φ2n−k−1ρ
n−k−1

φn
zn−k−1 +

∞∑

k=n−1

f̂k+1ρ
k

ψk+1φk+1

φk+1

φn
ρk−n+1zk−n+1 =

=
1

(ρz)n−1φn

(
n−2∑

k=0

f̂k+1

ψk+1

φ2n−k−1

φk+1
ρ2(n−1)|z|2(n−k−1)zk +

∞∑

k=n−1

f̂k+1

ψk+1
ρ2kzk

)
.
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By integrating the last equality with respect to the measure dλ(ρ2), and then reordering
the change of integration and summation, we obtain

φnz
n

π

∫ 1

0

∫ 2π

0
Dψφ(f)(ρeit)ρn−1e−i(n−1)tKn,φ(ρe

itz)dt dλ(ρ2) =

= z

(
n−2∑

k=0

ψn
ψk+1

f̂k+1
φ2n−k−1

φk+1
|z|2(n−k−1)zk +

∞∑

k=n−1

f̂k+1z
k

)
=

= f(z)− Zn,ψ(f)(z)−

n−1∑

k=1

ψn
ψk
f̂kz

k +

n−1∑

k=1

ψn
ψk
f̂k
φ2n−k
φk

|z|2(n−k)zk,

which proves the equality (16).

J

Proof of Theorem 1. Set g(z) = zDψ(f)(z),

Un,φ(g)(z) :=

n−1∑

k=0

(
1− |z|2(n−k)

φ2n−k
φk

e2i argφn

)
ĝkz

k,

and denote by In,ψ,φ(f)(z) the integral in (16). Then the formula (16) can be rewritten
in the following form:

f(z)− Zn,ψ(f)(z) = ψng(z) + φnz
nIn,ψ,φ(f)(z) + ψn (Un,φ(g)(z) − g(z)) (17)

Evaluate the second and third summands in a righthand side of (17). According to
the condition (5)

∫ 2π
0 Kn,φ(ρe

itz)dt = π, by Holder inequality we have

|In,ψ,φ(f)(z)|
p ≤

∫ 1

0

∫ 2π

0

∣∣∣Dψ(f)(ρeit)
∣∣∣
p
ρn−1Kn,φ(ρe

itz)
dt

π
dλ(ρ2)×

×

(∫ 1

0

∫ 2π

0
ρn−1Kn,φ(ρe

itz)
dt

π
dλ(ρ2)

)p/q
=

= ψ
p/q

[n−1

2
]

∫ 1

0

∫ 2π

0

∣∣∣Dψ(f)(ρeit)
∣∣∣
p
ρn−1Kn,φ(ρe

itz)
dt

π
dλ(ρ2),

1

p
+

1

q
= 1.

Therefore
‖In,ψ,φ(f)(ρ·)‖p ≤ ψ

1/p

[n−1

2
]
ψ
1/q

[n−1

2
]
= ψ[n+1

2
]. (18)

Since g ∈ Hφ
p and φ satisfies the condition (5), then by result from [11, theorem 2],

‖Un,φ(g)(ρ·) − g(ρ·)‖p ≤ ρn|φn|‖g(ρ·)‖p ≤ ρn|φn|. (19)

Combining (18), (19) and equality (17) the result follows.
J
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Proof of Corollary 1. By Cauchy formula we have the equality

Dψ(f)(z) =
1

π

∫ 2π

0
Dψφ(f)(eiθ)K1,φ(ze

iθ)dθ ∀ z ∈ D,

where Dψφ(f)(eiθ) means nontangential boundary values of function Dψφ on the circle
T := {z : |z| = 1}, due to the fact that Dψφ ∈ Hp.

Hence by Minkowski’s inequality we have

‖Dψ(f)‖p ≤ ‖Dψφ(f)‖p ≤ 1 ∀ f ∈ Hψφ
p .

Thus, from the relation (6) and the last inequality follows an upper bound

Zn,ψ

(
Hψφ
p ;Hp

)
≤ ψn +O(|φn|ψn),

which together with a lower bound (2) proved the Corollary 1.
J

Proof of Theorem 2. Put in (16) φk = 1, k = 1, 2, . . . . By Proposition 1 the condition
(5) is satisfied. Thus estimate (18) takes place.

Therefore, according to (18)

‖fρ − Zn,ψ(fρ)‖Lp
≤ ρn‖In,ψ,φ(fρ)‖p + ψn

n−1∑

k=1

(
1− ρ2(n−k)

) |f̂k|

ψk
ρk ≤

≤ ψ[n+1

2
] + ψn‖D

ψ(f)‖p

n−1∑

k=1

(
1− ρ2(n−k)

)
ρk.

Taken in these correspondences the limit when ρ → 1− and taking into account that for
any function f ∈ Hp ‖f‖p = limρ→1− ‖fρ‖Lp

(see, for example, [5, p. 55]), we obtain

‖f − Zn,ψ(f)‖p ≤ ψ[n+1

2
],

that together with (2) proves Theorem 2.
J

Proof theorem 3. Let Dψφ(f)(eit), as before, denote the nontangential boundary value
in a point eit of function Dψφ(f).

Applying the Cauchy formula, easy to show that for any function f ∈ Hψφ
p , 1 ≤ p ≤ ∞,

f(z)− Zn,ψ(f)(z) =
zψn
π

∫ 2π

0
Dψφ(f)(ei(θ+t))Mn,ψ,φ(ρe

it)dt ∀ z ∈ D, z = ρeiθ. (20)

Based on this formula, taking into account correspondence (2), it is easy to verify that
the condition (10) is sufficient. Also provided (10) applying to the evaluation of integral
in the right part the Minkowski’s inequality, we obtain the equality (11).
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To prove the necessity of conditions (10), we proceed as follows.

From the formula (20) considering the invariance of class Hψφ
∞ with respect to rotation

of argument (f ∈ Hψφ ⇒ f(eiθ·) ∈ Hψφ
∞ ∀ θ ∈ [0, 2π]), and also by the principle of

maximum modulus, for any z ∈ D we obtain an inequality

|ψn||z|Mn(|z|) = sup
{
|f(z)− Zn,ψ(f)(z)| : f ∈ Hψφ

∞

}
≤ |ψn|,

where

Mn(ρ) := sup

{∣∣∣∣
1

π

∫ 2π

0
F (eit)Mn,ψ,φ(ρe

it)dt

∣∣∣∣ : F ∈ UH∞

}
.

So Mn(ρ) ≤ 1/ρ ∀ ρ ∈ [0, 1).

On the other hand, according to the relations of duality for holomorphic functions (see,
for example, [5, p. 129]) holds the equality

Mn(ρ) = min{‖2Mn,ψ,φ(ρ·)− gn(ρ, ·)‖1 : gn(ρ, ·) ∈ H0
1}, ρ ∈ [0, 1), (21)

where minimum is achieved for a unique function w 7→ g∗n(ρ,w), w ∈ D, from the space
H0

1 := {f ∈ H1 : f(0) = 0}.

Thus

1 =
1

2π

∫ 2π

0
2Mn,ψ,φ(ρe

it)dt =
1

2π

∫ 2π

0

(
2Mn,ψ,φ(ρe

it)− g∗n(ρ, e
it)
)
dt ≤ Mn(ρ).

Therefore,

1 ≤ Mn(ρ) ≤
1

ρ
∀ ρ ∈ (0, 1). (22)

Now show that the function ρ 7→ Mn(ρ) is not decreasing on [0, 1).

Let 0 ≤ ρ1 < ρ2 < 1. By the Poisson’s formula applying to the function z 7→
2Mn,ψ,φ(ρ2z)− g∗n(ρ2, z), we obtain

2Mn,ψ,φ(ρ1e
it)− g∗n

(
ρ2,

ρ1
ρ2
eit
)

=

=
1

2π

∫ 2π

0

(
2Mn,ψ,φ(ρ2e

iθ)− g∗n(ρ2, e
iθ)
) ρ22 − ρ21
|ρ2 − ρ1ei(t−θ)|2

dt.

Hence

Mn(ρ1) ≤

∥∥∥∥2Mn,ψ,φ(ρ1·)− g∗n

(
ρ2,

ρ1
ρ2

·

)∥∥∥∥
1

≤ Mn(ρ2).

Therefore, Mn(ρ) ↗. Combining this fact with the equation limρ→1−Mn(ρ) = 1,
which follows from (22), we see that Mn(ρ) = 1 for any ρ ∈ [0, 1). It follows that the value
in a righthand side of equality (21) also equals to 1. According to the theorem 2 in [9] it
is possible if and only if the condition (10).
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Proof of Corollary 2. Suffices to show that sequences ψ = {k−r}∞k=1 and φ = {k−s}∞k=1

satisfy conditions of Corollary 1 and Theorem 3 under the proper conditions on the pa-
rameter s.

Indeed, since

ψk = k−r =
1

Γ(r)

∫ 1

0
ρk−1

(
ln

1

ρ

)r−1

dρ,

and moreover ψk = 2rψ2k, then ψ satisfies the conditions of Corollary 1.
For the sequence φ we have

Kn,φ(z) =
1

2
+ Re

∞∑

k=1

ns

(k + n)s
zk = ns

(
a0(z)

2
+

∞∑

k=1

ak(z) cos kx

)
, (23)

where ak(z) = |z|k(k + n)−s, x = arg z.
Since for each z ∈ D the sequence {ak(z)}

∞
k=1 is convex, and clearly, ak(z) ↓ 0, according

to the well-known statement (see, for example, [16, p. 183]) a sum of series in righthand
side of (23) is a nonnegative.

So Kn,φ satisfies the condition (5) for all s ≥ 0. Hence holds true (7) for all r ≥ 0 and
s ≥ 0.

If s ≥ 1, then

Pn,φ(z) =
b0(z)

2
+

n−1∑

k=1

bk(z) cos kx

k + 1
,

where bk(z) = |z|k(k + 1)1−s and x = arg z.
Since for each z ∈ D coefficients bk(z), k = 1, 2, . . . , are nonnegative and not increasing,

then by the theorem of Rogosinskii–Szego (see, for example, [7, p. 330]), Pn,φ satisfies the
condition (15) for all n ∈ N and z ∈ D. Therefore, according to Proposition 2 the condition
(10) is satisfied. Hence the condition (11) is also satisfied.
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1900.

[5] John B. Garnett. Bounded Analytic Functions. Springer, 2007.



Approximations of holomorphic functions by generalized Zygmund sums 81

[6] G. M. Goluzin. Geometric theory of functions of a complex variable. Translations of
Mathematical Monographs, Vol. 26 AMS, Providence, R.I. 1969.
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