Integral Representations of Functions From the Spaces $S_{p}^{l} W(G), S_{p, \theta}^{l} B(G)$ and $S_{p, \theta}^{l} F(G)$

N.R. Rustamova *, A.M. Gasymova

Abstract

In the paper we construct an integral representation of functions from $S_{p}^{l} W(G), S_{p, \theta}^{l} B(G)$ and $S_{p, \theta}^{l} F(G)$, defined in n-dimensional domains and satisfying the flexible φ-horn condition. Key Words and Phrases: integral representations, flexible φ-horn, the spaces type functions with dominant mixed derivatives.

2010 Mathematics Subject Classifications: 26E30, 26E35

1. Introduction

Integral representation of functions from the spaces with dominant mixed derivative Sobolev - $S_{p}^{l} W(G)$ Besov $-S_{p, \theta}^{l} B(G)$ Lizorkin-Triebel- $S_{p, \theta}^{l} F(G)$ in the case when the domain $G \subset R^{n}$ satisfies the conditions of rectangles, was first studied in the paper of A.J. Jabrailov [3], and then in the papers of R.A. Mashiev [5], M.K. Aliyev [1] and others, in the case when the domain $G \subset R^{n}$ satisfies the "flexible horn condition", in the papers of A.M. Najafov [5], [6], [7].

In this paper we construct an integral representation of functions from these spaces, defined in n-dimensional domains and satisfying the flexible φ-horn condition. Let vector functions $\varphi(t)=\left(\varphi_{1}\left(t_{1}\right), \ldots, \varphi_{n}\left(t_{n}\right)\right)$ be differentiable continuous on $\left[0, T_{j}\right]\left(0<T_{j}<\infty\right)$, $\varphi_{j}\left(t_{j}\right)>0\left(t_{j}>0\right), \lim _{t_{j} \rightarrow+0} \varphi_{j}\left(t_{j}\right)=0, \lim _{t_{j} \rightarrow+\infty} \varphi_{j}\left(t_{j}\right)=A_{j} \leq \infty(j=1,2, \ldots, n)$. Suppose that $e_{n}=\{1,2, \ldots, n\}, e \subseteq e_{n}$ and for each $x \in G$ consider the vector-function

$$
\rho(\varphi(t), x)=\left(\rho_{1}\left(\varphi_{1}\left(t_{1}\right), x\right), \ldots, \rho_{n}\left(\varphi_{n}\left(t_{n}\right), x\right)\right), \quad 0 \leq t_{j} \leq T_{j}, \quad j \in e_{n}
$$

where $\rho_{j}(0, x)=0$ for all $j \in e_{n}$, the functions $\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)$ are absolutely continuous on $\left[0, T_{j}\right]$ and $\left|\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)\right| \leq 1$ for almost all $t_{j} \in\left[0, T_{j}\right], \rho_{j}^{\prime}\left(u_{j}, x\right)=\frac{\partial}{\partial u_{j}} e_{j}\left(u_{j}, x\right)$, $j \in e_{n}$. Given $\theta[0,1]^{n}$, each of the sets $V(x, \theta)=\underset{0<t_{j} \leq T_{j}}{\cup}[\rho(\varphi(t), x)+\varphi(t) \theta I]$ and $x+V(x, \theta) \subset G$, where $I=[-1,1]^{n}, \varphi(t) \theta I=\left\{\left(\varphi_{1}\left(t_{1}\right) \theta_{1} y_{1}, \ldots, \varphi_{n}\left(t_{n}\right) \theta_{n} y_{n}\right): y \in I\right\}$, is called a flexible φ-horn and the point x is called the vertex of the flexible φ-horn $x+V(x, \theta)$. In the case $\varphi_{j}\left(t_{j}\right)=t_{j}$ the set $x+V(x, \theta)$ is called the flexible horn introduced in [6], [7].
*Corresponding author.

Let $1^{e}=\left(\delta_{1}^{e}, \ldots, \delta_{n}^{e}\right)$, where $\delta_{j}^{e}=1$ for $j \in e$ and $\delta_{j}^{e}=0$ for $\mathrm{j} \in e_{n} \backslash e=e^{\prime}$. We suppose that $f \in L^{\text {loc }}(G)$ has all needed generalized derivatives on G. Introduce the average of f as follows:

$$
\begin{equation*}
f_{\varphi(t)}(x)=\prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-1} \int_{R^{n}} f(x+y) \Omega\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{\varphi(t)}\right) d y, \tag{1}
\end{equation*}
$$

where $\Omega(y, z)=\prod_{j \in e_{n}} \omega_{1}\left(y_{j}, z_{j}\right), \frac{y}{\varphi(t)}=\left(\frac{y_{1}}{\varphi_{1}\left(t_{1}\right)}, \ldots, \frac{y_{n}}{\varphi_{n}\left(t_{n}\right)}\right)$, in case $\varphi_{j}\left(t_{j}\right)=t^{\lambda_{j}}$ is the kernel introduced by O.V. Besov [2]. The average of (1) is constructed from the values of f at the points $x+y \in x+V(x, \theta) \subset G$. Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), 0<\varepsilon_{j}<T_{j}\left(j \in e_{n}\right)$. Then the following equality is valid:

$$
\begin{equation*}
f_{\varphi(\varepsilon)}(x)=\sum_{e \subseteq e_{n}}(-1)^{\left|1^{e}\right|} \int_{\varepsilon^{e n}}^{T^{e}} D_{t}^{1^{e}} f_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}(x) d t^{e}, \tag{2}
\end{equation*}
$$

where $t^{e}+T^{e^{\prime}}=t_{j} j=e ; t^{e}+T^{e^{\prime}}=T_{j}, j \in e^{i}$ and $\int_{a^{e}}^{b^{e}} f(x) d x^{e}=\left(\prod_{j \in e_{n}} \int_{a_{j}}^{b_{j}} d x_{j}\right) f(x)$ i.e., integration is carried out only with respect to the variables x_{j} whose indices belong to e.

Differentiating with respect to $t_{j}(j \in e)$, and using [2], we obtain

$$
\begin{gather*}
D^{1^{e}} f_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}(x)=\prod_{j \in e} \frac{\partial}{\partial t_{j}} f_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}=(-1)^{\left|1^{e}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \times \\
\times \int_{R^{n}} K_{e}^{\left(k^{e}+1^{e}\right)}\left(\frac{y}{\varphi\left(t^{e}+T^{\varepsilon^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \rho^{\prime}\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)\right) \times \\
\times=(-1)^{\left|1^{e}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \times\left(\varphi_{j}\left(t_{j}\right)\right)^{-1} \prod_{j \in e} \frac{1}{\varphi_{j}\left(t_{j}\right)} \prod_{j \in e} \frac{\partial}{\partial t_{j}} \varphi_{j}\left(t_{j}\right) d y, \tag{3}
\end{gather*}
$$

where $k=\left(k_{1}, \ldots, k_{n}\right), k_{j}$-number in the kernel Ω can be chosen arbitrarily large,

$$
K_{e}(x, y, z)=\prod_{j \in e^{\prime}} \omega_{j}\left(x_{j}, y_{j}\right) \prod_{j \in e} \rho_{j}\left(x_{j}, y, z_{j}\right) \in C_{0}^{\infty}\left(R^{n} \times R^{n} \times R^{n}\right),
$$

ρ_{j}-is defined in [7] and

$$
K_{e}^{(\alpha)}(x, y, z)=D_{x}^{(\alpha)} K_{e}(x, y, z), \int_{R^{n}} K_{e}^{(\alpha)}(x, y, z) d x=0 \text { for all } y, z,
$$

and α such that $|\alpha|>0$.

By (2) from (3) we derive

$$
\begin{gather*}
f_{\varphi(\varepsilon)}(x)=\sum_{e \subseteq e_{n} j \in e^{\prime}} \prod_{j}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \int_{\varepsilon^{e}}^{T_{R^{n}}^{e}} \int_{e} K_{e}^{\left(k^{e}+1^{e}\right)} \times \\
\times\left(\frac{y}{\varphi\left(t^{e}+T^{\varepsilon^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \rho^{\prime}\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)\right) \times \\
\times f(x+y) \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) d t^{e} d y \tag{4}
\end{gather*}
$$

Then, in view of the Remark on Lemma 5.2 of [2], we have the following: if $f \in L^{l o c}(G)$ and $1 \leq p<\infty$, then $f_{\varphi(\varepsilon)} \rightarrow f(x)$ as $\varepsilon_{j} \rightarrow 0\left(j \in e_{n}\right)$, moreover, for $p>1$ we have $f_{\varphi(\varepsilon)}(x) \rightarrow f(x)$ for almost all $x \in G$ by the Remark on Theorem 1.7 of [2]. Then it follows from (4) that

$$
\begin{gather*}
f(x)=\sum_{e \subseteq e_{n}} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \times \\
\times \int_{\varepsilon^{e}}^{T_{R^{n}}^{e}} \int_{e} K_{e}^{\left(k^{e}+1^{e}\right)}\left(\frac{y}{\varphi\left(t^{e}+T^{\varepsilon^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \rho^{\prime}\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)\right) \times \\
\times f(x+y) \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) d t^{e} d y \tag{5}
\end{gather*}
$$

Let $l=\left(l_{1}, \ldots, l_{n}\right), l_{j} \in N, l^{e}=\left(l_{1}^{e}, \ldots, l_{n}^{e}\right), l_{j}^{e}=l_{j}$ for $j \in e, l_{j}^{e}=0$ for $j \in e^{\prime}$, and let functions f having on G the generalized mixed derivatives $D^{l e} f \in L^{l o c}(G)$ and suppose that $l_{j} \leq k_{j}$ for $j \in e$

$$
\begin{gather*}
f_{\varphi(\varepsilon)}(x)=\sum_{e \subseteq e_{n}}(-1)^{\left|l^{e}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \times \\
\times \int_{\varepsilon^{e}}^{T_{R^{n}}^{e}} \int_{e} M_{e}\left(\frac{y}{\varphi\left(t^{e}+T^{\varepsilon^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \rho^{\prime}\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)\right) \times \\
\times D^{l^{e}} f(x+y) \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2+l_{j}} \varphi_{e}^{\prime}(t) d t^{e} d y \tag{6}
\end{gather*}
$$

where $\varphi_{e}^{\prime}(t)=\prod_{j \in e} \varepsilon \varphi_{j}^{\prime}\left(t_{j}\right), M_{e}(x, y, z)=D_{x}^{k^{e}}+1^{e}-l^{e} K_{e}(x, y, z)$. Suppose that we obtain

$$
f_{\varphi(\varepsilon)}^{(\nu)}(x)=\sum_{e \subseteq e_{n}}(-1)^{|\nu|+\left|\left|l^{e}\right|\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \times
$$

$$
\begin{gather*}
\times \int_{\varepsilon^{e}}^{T_{R^{n}}^{e}} \int_{e} M_{e}^{(\nu)}\left(\frac{y}{\varphi\left(t^{e}+T^{\varepsilon^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \rho^{\prime}\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)\right) D^{l^{e}} f(x+y) \times \\
\prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2+l_{j}-\nu_{j}} \varphi_{e}^{\prime}(t) d t^{e} d y \tag{7}
\end{gather*}
$$

Suppose that $\varphi_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)$ and $\rho_{j}^{\prime}\left(\varphi_{j}\left(t_{j}\right), x\right)$ as functions of $\left(\varphi_{j}\left(t_{j}\right), x\right)$ are locally summable on $\left(0, T_{j}\right] \times U(j=1, \ldots, n)$, where $U \subset G$ is an open set. Let $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right) \in N_{0}^{n}$; moreover, $l_{j} \leq \nu_{j}+k_{j}$ for $j \in e$, and $l_{j} \leq k_{j}$ for $j \in e^{\prime}$. Applying the differentiation D_{x}^{ν} to both sides of (4) (and moving the differentiation onto the kernel in the summands on the right-hand side), we obtain.

Show now that if

$$
\begin{equation*}
\mu_{j}=l_{j}-\nu_{j}>0, \quad j \in e_{n} \tag{8}
\end{equation*}
$$

then the generalized mixed derivative $D^{\nu} f \in L_{p}(G)$ exists on G. First, establish that

$$
\begin{equation*}
f_{\varphi(\varepsilon)}^{(\nu)}-f_{\varphi(\eta)}^{(\nu)} \rightarrow 0 \quad \text { as } \quad 0<\varepsilon_{j}<\eta_{j} \rightarrow 0, \quad j \in e_{n} \tag{9}
\end{equation*}
$$

in $L^{\text {loc }}(U)$. Let $F \subset U$ be a compact set. Then $F+h I \subset U$ for some $h>0$. Put

$$
M^{(\nu)}(x)=\max _{e \subseteq e_{n}} \max _{y_{1} z \in I}\left|M_{e}^{(\nu)}(x, y, z)\right| .
$$

By Minkowski's inequality, for sufficiently small ε and $T \equiv \eta$ we have

$$
\left\|f_{\varphi(\varepsilon)}^{(\nu)}-f_{\varphi(\eta)}^{(\nu)}\right\|_{1, F+h I} \leq C \sum_{e \subseteq e_{n}} \prod_{j \in e}\left(\varphi_{j}\left(\eta_{j}\right)\right)^{\mu_{j}-\nu_{j}}\left\|D^{\lambda^{e}} f\right\|_{1, F+h I} .
$$

From here and (8) we obtain (9). Suppose that $D^{\nu} f$ exists on G, i.e.,

$$
f_{\varphi(t)}^{(\nu)}(x)=D^{\nu} f(x)
$$

for $x+C \varphi(t) I \subset G$ with some $C=\left(C_{1}, \ldots, C_{n}\right)>0$. Pass to the limit in (7) as $\varepsilon_{j} \rightarrow 0\left(j \in e_{n}\right)$, observing that the limit exists in the sense of $L^{l o c}(U)$ by (8) and almost everywhere on U by the relation $f_{\varphi(t)}^{(\nu)} \rightarrow f(x)$ as $\varphi_{j}\left(t_{j}\right) \rightarrow 0\left(j \in e_{n}\right)$ applied to $D^{\nu} f$. Then the equality

$$
\begin{gather*}
D^{\nu} f=\sum_{e \subseteq e_{n}}(-1)^{|\nu|+\left|l^{e}\right|} \prod_{j \in e}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \int_{o^{e} R^{n}}^{T_{e}^{e}} \int_{e} M_{e}^{(\nu)}(,,) D^{l^{e}} f(x+y) \times \\
\times \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2+l_{j}-\nu_{j}} \varphi_{e}^{\prime}(t) d t^{e} d y \tag{10}
\end{gather*}
$$

holds for almost all $x \in U$. Recall that the flexible φ - horn $x+V(x, \theta)$ is the support of the representation (10) for $x \in U$. We can assume that the kernels M_{e} and $M_{e}^{(\nu)}$ satisfy the following relations for all α and β

$$
\int D_{x}^{\alpha} M_{e}(x, y, z) d x=0, \quad \int D_{x}^{\beta} M_{e}(x, y, z) d x=0 .
$$

Now we construct an integral representation for studying the properties of functions from $S_{p, \theta}^{l} B(G \varphi)$ defined in n-dimensional domains and satisfying the flexible φ-horn condition. Introduce the average of f as follows:

$$
\begin{gather*}
\bar{f}_{\varphi(t)}(x)=\left(f_{\varphi(t)}\right)_{\varphi(t)}(x)=\prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2} \iint \Omega\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{2 \varphi(t)}\right) \times \\
\times \Omega\left(\frac{z}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{2 \varphi(t)}\right) f(x+y+z) d y d z \tag{11}
\end{gather*}
$$

Obviously, $\Omega\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{2 \varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) \neq 0$ is possible only for $\left|y_{j}-\frac{1}{2} \rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)\right|<$ $\sigma_{j}\left[1+m_{j}+\frac{1}{2} m_{j}\right] \varphi_{j}\left(t_{j}\right)$, here σ_{j}, m_{j} are integers in formula of ω_{j} determined in [2]. Hence, it follows that double averaging was constructed by contraction of f on $x+$ $\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)+m \varphi\left(\sigma\left(t^{e}+T^{e^{\prime}}\right)\right) I$ and was defined for $0<\sigma<\frac{\eta}{m_{0}}, m_{0}=$ $\max \left(2+3 m_{j}\right)$. Let

$$
\begin{align*}
\bar{f}_{\varphi(t)}^{(\nu)}(x)= & (-1)^{|\nu|} \prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2-\nu_{j}} \int_{R^{n} R^{n}} \int \Omega\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{2 \varphi(t)}\right) \times \\
& \times \Omega^{(\nu)}\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{2 \varphi(t)}\right) f(x+y+z) d y d z . \tag{12}
\end{align*}
$$

Note that if there exists $D^{\nu} f \in L^{l o c}(G)$, then by $G(2)[2] \bar{f}_{\varphi(t)}^{(\nu)}(x)=\left(D^{\nu} f\right)_{\varphi(t)}^{(x)}$ for $x \in U, 0<t_{j} \leq T_{j}\left(j \in e_{n}\right)$. Applying the equality

$$
g\left(z_{j}\right)=\int_{-\infty}^{\infty} \omega_{j}\left(\frac{y}{\varphi_{j}\left(t_{j}\right)}, \frac{\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)}{2 \varphi_{j}\left(t_{j}\right)}\right) f(x+y+z) d y_{j}
$$

we have

$$
\begin{aligned}
& D_{t}^{1^{e}} \bar{f}_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}(x)=(-1)^{\left|1^{e}\right|} \prod_{j \in e_{n}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \prod_{j \in e} A_{j}^{-1} \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-3} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) \times \\
& \times \int_{R^{n}-\infty}^{\infty} \int_{e}^{\infty} \psi_{e}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) \times
\end{aligned}
$$

$$
\begin{align*}
\times \prod_{j \in e} S_{j}\left(\frac{u_{j}}{\varphi_{j}\left(t_{j}\right)}-\right. & \left.\frac{\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)}{2 \varphi_{j}\left(t_{j}\right)}, \frac{1}{2} \rho_{j}^{\prime}\left(\varphi_{j}\left(t_{j}\right), x\right)\right) \Delta^{m^{e}}(\varphi(\delta u)) f\left(x+y+u^{e}\right) d u^{e} d y= \\
= & (-1)^{\left|1^{e}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1} \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-3} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) \times \\
& \times \int_{R^{n}-\infty}^{\infty} \psi_{e}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) \times \\
\times & S_{e}\left(\frac{u}{\varphi(t)}-\frac{\rho(\varphi(t), x)}{2 \varphi(t)}\right) \Delta^{m^{e}}(\varphi(\delta u)) f\left(x+y+u^{e}\right) d y d u^{e} \tag{13}
\end{align*}
$$

where $\Delta^{m^{e}}(t) f=\prod_{j \in e} \Delta_{j}^{m_{j}}\left(t_{j}\right) f$,

$$
\begin{gathered}
\psi_{e}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}\right)= \\
=2^{\left|1^{e}\right|} \prod_{j \in e^{\prime}} A_{j}^{-1} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-1}\left\{\int \prod_{j \in e^{\prime}} \omega_{j}\left(\frac{y_{j}}{\varphi_{j}\left(T_{j}\right)}, \frac{\rho_{j}\left(\varphi_{j}\left(T_{j}\right), x\right)}{2 \varphi_{j}\left(T_{j}\right)}\right) \times\right. \\
\left.\times \omega_{j}\left(\frac{z}{\varphi_{j}\left(T_{j}\right)}, \frac{\rho_{j}\left(\varphi_{j}\left(T_{j}\right), x\right)}{2 \varphi_{j}\left(T_{j}\right)}\right) d z^{e^{\prime}}\right\} \times \\
\times \prod_{j \in e} \omega_{j}\left(\frac{y_{j}}{\varphi_{j}\left(t_{j}\right)}, \frac{\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)}{2 \varphi_{j}\left(t_{j}\right)}\right) \frac{\partial}{\partial y_{j}} \omega_{j}\left(\frac{z_{j}}{\varphi_{j}\left(t_{j}\right)}, \frac{\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)}{2 \varphi_{j}\left(t_{j}\right)}\right)
\end{gathered}
$$

S_{j}, A_{j} are defined in [7, p. 88].
The equality (13) is valid in some vicinity of $x^{(0)} \in U$ also for the vector function $\rho\left(\varphi(t), x^{(0)}\right)$ instead of $\rho(\varphi(t), x)$. In this case, differentiating it with respect to x in the vicinity of the point $x^{(0)}$, taking into account possibility of carrying over the differentiation operation on the kernel, we have

$$
\begin{align*}
& D_{t}^{1^{e} \bar{f}_{\varphi\left(t^{e}+T\right)}^{(\nu)}(x)=(-1)^{|\nu|+\left|1^{e}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-3-\nu_{j}} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) \times} \\
& \times \int_{R^{n}-\infty}^{\infty} \int_{e}^{\infty} \psi_{e}^{(\nu)}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) \times \\
& \times S_{e}\left(\frac{u}{\varphi(t)}-\frac{\rho(\varphi(t), x)}{2 \varphi(t)}, \frac{1}{2} \rho^{\prime}(\varphi(t), x)\right) \Delta^{m^{e}}(\varphi(\delta u)) f\left(x+y+u^{e}\right) d y d u^{e} . \tag{14}
\end{align*}
$$

Hence we get

$$
\begin{gather*}
D^{\nu} f(x)=\sum_{e \subseteq e_{n}}(-1)^{|\nu|} \int_{0^{e}}^{T^{e}} D_{t}^{1 e} \bar{f}_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}^{(\nu)}(x) d t^{e}= \\
=\sum_{e \subseteq e_{n}}(-1)^{|\nu|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \times \\
\times \int_{0^{e}} \int_{R^{n}-\infty^{e}}^{T_{e}^{e}} \psi_{e}^{(\nu)}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) \times \\
\times S_{e}\left(\frac{u}{\varphi(t)}-\frac{\rho(\varphi(t), x)}{2 \varphi(t)}, \frac{1}{2} \rho^{\prime}(\varphi(t), x)\right) \Delta^{m^{e}}(\varphi(\delta u)) f\left(x+y+u^{e}\right) \times \\
\times \prod_{j \in e}\left(\varphi_{j}\left(T_{j}\right)\right)^{-3-\nu_{j}} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) d t^{e} d y d u^{e} . \tag{15}
\end{gather*}
$$

Note that $\psi_{e}(y, z) \in C^{\infty}\left(R^{n} \times R^{n}\right)$, i.e. is infinitely differentiable with respect to all variables, and $\psi_{e}(\cdot, z)$ is uniformly finite with respect to z from the arbitrary compact. The equality (15) is valid almost everywhere on V, the set $x+V(x, \theta)$ is a support of this representation.

Show that if the function f satisfies the conditions

$$
\left(\int_{0^{e}}^{\infty^{e}} \prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-1-\theta_{e} l_{j}}\left\|\Delta^{m^{e}}(\varphi(t), E) f\right\|_{p}^{\theta_{\varepsilon}} d t^{e}\right)^{\frac{1}{\theta_{e}}} \leq A_{e}(E), \quad e \subseteq e_{n}
$$

where $A_{e}(E)$ are the constants independent of E and the vector $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right), \nu_{j} \geq 0$ are entire $\left(j \in e_{n}\right)$ satisfy the conditions $\varepsilon_{j}=l_{j}-\nu_{j}>0\left(j \in e_{n}\right)$, then there exists the derivative $D^{\nu} f \in L_{p}^{\text {loc }}(G)$ and identity (15) is valid.

Let $\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)=0,0 \leq t_{j} \leq T_{j}\left(j \in e_{n}\right)$ and the compact $F \subset G$. Then for all rather small $h=\left(h_{1}, \ldots, h_{n}\right), h_{j}>0\left(j \in e_{n}\right) F+h I$ is contained in some compact $E \subset G$. Based on (15), Minskovsky-Young and Holder generalized inequalities, we successively get

$$
\begin{gathered}
\left\|\bar{f}_{\varphi(\varepsilon)}^{(\nu)}-\bar{f}_{\varphi(T)}^{(\nu)}\right\|_{p, F} \leq \\
\leq \sum_{e \subseteq e_{n}} C_{e}\left\|\psi_{e}^{(\nu)}\right\|_{1}\left\|S_{e}\right\|_{\theta_{e}} A_{e}(E) \prod_{j \in e}\left(\varphi_{j}\left(T_{j}\right)\right)^{l_{j}-\nu_{j}}
\end{gathered}
$$

hence it follows that $\left\|\bar{f}_{\varphi(\varepsilon)}^{(\nu)}-\bar{f}_{\varphi(T)}^{(\nu)}\right\|_{p, F} \rightarrow 0$ for $0<\varepsilon_{j}<T_{j} \rightarrow 0, j \in e_{n}$. Then

$$
\bar{f}_{\varphi(\varepsilon)}(x) \rightarrow f(x)
$$

as $\varepsilon_{j} \rightarrow 0\left(j \in e_{n}\right)$ in the sense of convergence $L^{l o c}(G)$. Based on lemma 6.2 [2] we deduce that there exists $D^{\nu} f \in L_{p}(G)$.

Now, for studying the space $S_{p, \theta}^{l} F(G)$ we construct integral representation of functions being some modification of the representation (15). Introduce the following averaging that differ from previous ones:

$$
\begin{gather*}
\widetilde{f}_{\varphi(t)}(x)=\left(\left(f_{\varphi(t)}^{(x)}\right)_{\varphi(t)}\right)_{\varphi(t)}(x)= \\
=\prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-1} \int_{R^{n}} \Omega\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{3 \varphi(t)}\right) f(x+y) d y \tag{16}
\end{gather*}
$$

and assume that $m \varphi(\sigma t) I \subset(m \varphi(\eta t) I)_{\varphi(\eta t)} \subset(\varphi(\eta t) I)_{\varphi(\sigma t)} \sigma_{j}, m_{j}$ are the numbers contained in the formula of ω_{j} that were determined in [2]. In other words, $\widetilde{f}_{\varphi(t)}(x)$ was constructed by contraction of f on $G_{\varphi(\sigma t)}$. Differentiating the equality (16) with respect to x in the neighborhood of the point $x^{(0)}$ taking into account possibility to transfer the differential operation on the kernel, we get

$$
\begin{equation*}
\widetilde{f}_{\varphi(t)}^{(\nu)}(x)=(-1)^{|\nu|} \prod_{j \in e_{n}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-1-\nu_{j}} \int_{R^{n}} \Omega^{(\nu)}\left(\frac{y}{\varphi(t)}, \frac{\rho(\varphi(t), x)}{3 \varphi(t)}\right) f(x+y) d y \tag{17}
\end{equation*}
$$

Differentiating with respect to t_{j} and under the condition $0<\varepsilon_{j}<T_{j}, j \in e_{n}$ from (17) we get

$$
\begin{gather*}
\widetilde{f}_{\varphi(\varepsilon)}^{(\nu)}(x)=\sum_{e \subseteq e_{n}}(-1)^{\left|1^{\varepsilon}\right|} \int_{\varepsilon^{e}}^{T^{\varepsilon}} D_{t}^{1^{e}} f_{\varphi\left(t^{e}+T^{e^{\prime}}\right)}(x) d t^{e}= \\
=\sum_{e \subseteq e_{n}}(-1)^{|\nu|+\left|1^{\varepsilon}\right|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \times \\
\times \int_{\varepsilon^{e}} \int_{R^{n}} M_{e}^{(\nu)}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{3 \varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) f_{e}(x+y, t) \times \\
\times \prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2-\nu_{j}} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) d t^{e} d y \tag{18}
\end{gather*}
$$

where $M_{e}^{(\nu)}(y, a)=D_{y}^{(\nu)} M_{e}(y, a) ; y, a \in R^{n}$,

$$
\begin{aligned}
M_{e}^{(\nu)}(y, a)=3 \prod_{j \in e} A_{j}^{-1}\{ & \left.\prod_{j \in e^{\prime}} \omega_{j}\left(y_{j}-z_{j}-u_{j}, \frac{a_{j}}{3}\right) \omega_{j}\left(z_{j}, \frac{a_{j}}{3}\right) \omega_{j}, \frac{a_{j}}{3}\right\} \times \\
& \times \prod_{j \in e} \frac{\partial}{\partial y_{j}} \omega_{j}\left(y_{j}, \frac{a_{j}}{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& f_{e}(x, t)=\prod_{j \in e}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2} \iint \prod_{j \in e} \omega_{j}\left(\frac{z_{j}}{\varphi_{j}\left(t_{j}\right)}, \frac{\rho\left(\varphi\left(t^{e}\right), x\right)}{3 \varphi_{j}\left(t_{j}\right)}\right) \times \\
& \times \rho_{j}\left(\frac{u_{j}}{\varphi_{j}\left(t_{j}\right)}-\frac{\rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)}{3 \varphi_{j}\left(t_{j}\right)}, \frac{1}{3} \rho_{j}\left(\varphi_{j}\left(t_{j}\right), x\right)\right) \times \\
& \times \Delta^{m^{e}}\left(\varphi(\delta u), G_{\varphi(\eta t)}\right) f\left(x+z^{e}+u^{e}\right) d u^{e} d z^{e},
\end{aligned}
$$

furthermore, we can show that

$$
\left|f_{e}(x, t)\right| \leq C \int_{-1^{e}}^{1^{e}} \delta^{m^{e}}(\varphi(\delta t)) f(x+v \varphi(t)) d v^{e} .
$$

Note that under the condition $l_{j}-\nu_{j}>0(j \in n)$ there exists a generalized derivative $D^{\nu} f \in L^{l o c}(G)$. Then $\tilde{f}_{\varphi(\varepsilon)}^{(\nu)}(x)=\left(D^{\nu} \widetilde{f}\right)_{\varphi(\varepsilon)}(x)$ and as $\varepsilon_{j} \rightarrow 0(j \in n) \widetilde{f}_{\varphi(\varepsilon)} \rightarrow D^{\nu} f$ almost everywhere on G and b in the sense of $L^{l o c}(G)$. Passing to the limit $\varepsilon_{j} \rightarrow 0, j \in e_{n}$ for $f \in S_{p, \theta}^{l} F(G)$

$$
\begin{gather*}
D^{\nu} f(x)=\sum_{e \subseteq e_{n}}(-1)^{|\nu|} \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(T_{j}\right)\right)^{-1-\nu_{j}} \times \\
\times \int_{0^{e} R^{n}}^{T^{e}} \int_{e} M_{e}^{(\nu)}\left(\frac{y}{\varphi\left(t^{e}+T^{e^{\prime}}\right)}, \frac{\rho\left(\varphi\left(t^{e}+T^{e^{\prime}}\right), x\right)}{3 \varphi\left(t^{e}+T^{e^{\prime}}\right)}\right) f_{e}(x+y, t) \times \\
\times \prod_{j \in e^{\prime}}\left(\varphi_{j}\left(t_{j}\right)\right)^{-2-\nu_{j}} \prod_{j \in e} \varphi_{j}^{\prime}\left(t_{j}\right) d t^{e} d y, \tag{19}
\end{gather*}
$$

where the equality is fulfilled almost everywhere on G in the sense $L^{l o c}(G)$ and the set $X+\underset{0<t_{j} \leq T_{j}}{\cup}[\rho(\varphi(t), x)+m \varphi(\sigma t) I]$ is the support of the representation (19). It should be noted that $M_{e} \in C_{0}^{\infty}\left(R^{n} x R^{n}\right)$ and $\int M_{e}^{(\nu)}(y, a)=0 ; t y, a \in R^{n}, \nu \in N_{0}^{n}$.

References

[1] M.K. Aliyev, Estimations of the norms of functions reduced to polynomials determined in n-dimensional domains, Phd thesis, Baku, 1996, 140 p.
[2] O.V. Besov, V.P. Il'in, S.M. Nikolsky, Integral representation of functions and imbedding theorems, Nauka, Moscow, 1996, 480 p.
[3] A.D. Jabrailov, Studying differential properties of functions determined on n dimensional domain, Doctor's dissertation, Moscow, 1971, 355 p.
[4] R.A. Matiyev, On an integral representation of functions and imbedding theorems of some functional spaces, Phd dissertation, Baku, 1988, 135 p.
[5] A.M. Najafov, Embedding theorems in the Sobolev-Morrey type spaces $S_{p, a, \varkappa, \tau}^{l} W(G)$ with domain mixed derivatives, Sib. M. Jour., 47(3), 2006, 505-516.
[6] A.M. Najafov, On integral representation of functions from the spaces with domainant mixed derivative, Vestnik BSU, ser. Phys. Math. Sec., 3, 2005, 31-39.
[7] A.M. Najafov, A.T. Orujova, Integral representation of functions from the space $\bigcap_{i=0}^{n} L_{p^{2}, \theta}^{\left\langle l^{i}\right\rangle}(G)$ in the domain satisfying the flexible horn condition, Vestmnik ChGU ser. Mathem. Physics, 2013, 25-29.

Nilufer R. Rustamova
Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
E-mail: niluferustamova@gmail.com
Azizgul M. Gasymova
Baku State University, Baku, Azerbaikjan
E-mail: ezizgul.qasimova@mail.ru
Received 25 April 2018
Accepted 29 May 2018

