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Abstract. An algorithm for calculating the concentration distribution of absorbing molecules
along the laser beam, when the absorbing layer is a medium with fractal geometry, is offered. The
algorithm is based on a loaded partial differential equation of the second order that changes its
type at a critical time moment, when the concentration of molecules in absorbing medium reaches
its maximum.
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Consider the system of the following three equations:

∂α0xu(ξ, t)+σ(t)v̄(t)u(x, t)=0, 0 < x < r, σ(t) > 0; (1)

k∂
β
τtv(x, η) = −

∂w1

∂x
, τ = const ≥ 0, k = const > 0; (2)

w1 = −
∂

∂x
(av + b)v, a = const ≥ 0, b = const > 0. (3)

Here 0 < α = const ≤ 1, 0 < β = const ≤ 1, and t denotes dimensionless time,

∂α0xu(ξ, t) = Dα−1

0x

∂u(ξ, t)

∂ξ
=

1

Γ(1− α)

x
∫

0

(x− ξ)−α∂u(ξ, t)

∂ξ
dξ;

∂
β
τtv(x, η) = sign(t− τ)Dβ−1

τt

∂v(x, η)

∂η
=

1

Γ(1− β)

t
∫

τ

|t− η|−β ∂v(x, η)

∂η
dη,

where Γ(z) is the Euler gamma-function;

v̄(t) =
1

r

r
∫

0

v(x, t)dx.
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For α = 1, equation (1) is a differential form of the Bouguer-Lambert-Beer law for
plane waves propagating in an absorbing medium along the ray x ≥ 0 when the attenuation
(absorption) coefficient ωα, the concentration of absorbing particles v = v(x, t) in the layer
0 ≤ x ≤ r and absorption cross-section σ(t) are related by

ωα = σ(t)v̄(t). (4)

Equation (3) expresses the second law of Fick when diffusion coefficient depends on
the concentration linearly.

Equation (2) may be interpreted as the continuity equation or as a fractal differential
form of the mass conservation law, and it realizes the relationship between the concen-
tration of absorbing particles with its density w1 = w1(x, t) [1, p.26]. The order β of the
time derivative with respect to t may depend on x.

By vitue of (4), equation (1) as may be written in the form follows:

∂α0xu(ξ, t) + ωαu(x, t) = 0, 0 < x < r, t ≥ 0. (5)

Equation (5) is a loaded partial differential equation with partial derivative of order
α ∈]0, 1] with respect to the spatial variable x.

The order α and the coefficient ωα may be functions of time t. This equation generalizes
the Bouguer-Lambert-Beer law for the intensity u(x, t) ≡ Iν(x, t) of the radiation with
given frequency ν at the point x and at time t when the absorber layer, 0 ≤ x ≤ r, is the
medium with fractal dimension that is less then or equal to α. It is the simplest case of an
equation that is referred in [2, p. 242] as the generalized fractional oscillation equation.

Any solution u = u(x, t) of (5) can be represented in the form

u(x, t) = u(0, t)Expα(−ωx), (6)

where

Expα(x) =

∞
∑

k=0

xαk

Γ(1 + αk)

is the generalized exponential function by terminology of V.A. Nakhusheva [3].
It follows from (6) that

u(r, t) = ϕ0(t)Expα(−ωr), (7)

where ϕ0(t) is the intensity of radiation at the beginning of the route x = 0, and ωr = τν
is the optical depth (thickness) of the fractal layer 0 ≤ x ≤ r.

From formula (7) with α = 1, we the known representation of Bouguer law

u(r, t) = ϕ0(t) exp(−ωr),

We assume that u(x, t) satisfies the local boundary value condition

u(0, t) = ϕ0(t), 0 ≤ t ≤ T, (8)

and the function v(x, t) satisfies non-local boundary condition (4).
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Using (8), the spectral absorption

Aα =
ϕ0(t)− u(r, t)

ϕ0(t)

can be calculated by the formula Aα = 1− Expα(−ωr).

Due (2) and (3), the function v(x, t) must be a solution of the equation.

k∂
β
τtv(x, η) =

∂2

∂x2
[(av + b)v]. (9)

We differentiate both sides of equation (9) with respect to the time variable t and,
taking into account the equality

∂

∂t
∂
β
τtv(x, η) =

∂

∂t
sign(t− τ)Dβ−1

τt

∂v(x, η)

∂η
= D

β
τt

∂v(x, η)

∂η
,

we obtain the equation

kD
β
τt

∂v(x, η)

∂η
=

∂2

∂x2

[

(2av + b)
∂v

∂t

]

. (10)

The boundary value condition (4) gives us some justification to approximate equation
(10) by the equation

kD
β
τt

∂v(x, η)

∂η
= (2av̄ + b)

∂3v(x, t)

∂x2∂t
. (11)

In equation (11) we introduce the new dependent variable

w(x, t) =
∂v(x, t)

∂t
. (12)

Then, for w = w(x, t), we obtain

D
β
τtw(x, η) = kα

∂2w(x, t)

∂x2
(13)

with coefficient

kα =
2av̄ + b

k
=

1

k

[

2aωα

σ(t)
+ b

]

. (14)

Equation (11) can be approximately replaced by the equation

D
β
τt

∂v(x, η)

∂η
= K(t)

∂2v(x, t)

∂x2
, (15)

where

K(t) =
2av̄′(t)

k
=

2a

k

d

dt

[

ω2

σ(t)

]

. (16)
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Let τ be a time moment when the average value of the concentration of molecules v̄(t)
in absorbing medium 0 ≤ x ≤ r reaches its maximum, and let the function (16) can be
represented in the form

K(t) = |t− τ |mχ(t)sign(τ − t), (17)

where m = const ≥ 0, χ(t) is a continuous positive function defined on time interval [0, T ]
with initial, t = 0, and estimated, t = T , time moments.

Condition (17) means that equation (15 ) for β = 1 is a partial differential equation of
mixed type. At the model case, when χ(t) ≡ 1, equation (15) takes the following form:

D
β
τt

∂v(x, η)

∂η
= sign(τ − t)|t− τ |m

∂2v(x, t)

∂x2
. (18)

Equation (18) with β = 1 andm = 1 coincides with the Tricomi equation of hypersonic
flow

(t− τ)
∂2v(x, t)

∂x2
+
∂2v(x, t)

∂t2
= 0, (19)

which is well known from the theory of gas dynamics, and, coincides with the Lavrent’ev-
Bitsadze equation

sign(t− τ)
∂2v(x, t)

∂x2
+
∂2v(x, t)

∂t2
= 0, (20)

when β = 1 and m = 0.
Using (12), we have

w̄(t) = v̄′(t) =
d

dt

[

ωα

σ(t)

]

. (21)

Equation (13) may be approximated by the equation

kα
∂2w(x, t)

∂x2
= D

β
τtw̄(η), (22)

where the coefficient kα is uniquely defined by (14). Hence, we find

kα[wx(x, t)− wx(0, t)] = xD
β
τtw̄(η),

kα[w(x, t) − w(r, t) − (x− r)wx(0, t)] =
1

2
(x2 − r2)Dβ

τtw̄(η), (23)

kα

[

w̄(t)− w(r, t) +
1

2
rwx(0, t)

]

=
1

3
r2D

β
τtw̄(η), (24)

where

wx(x, t) =
∂w(x, t)

∂x
.

Consequently, the solution w = w(x, t) of (22) may be determined uniquely, if we add to
the nonlocal condition the local conditions on the edge of absorption layer 0 ≤ x ≤ r

wx(0, t) = ψ1(t), w(r, t) = ψ0(t), 0 ≤ t ≤ T, (25)
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where ψ1(t) and ψ0(t) are the given functions continuous on [0, T ].

It follows from (21), (23), (24) and (25) that

kα[w(x, t) − ψ0(t)− (x− r)ψ1(t)] =
1

2
(x2 − r2)Dβ

τt

d

dη

[

ωα

σ(η)

]

,

kα

{

d

dt

[

ωα

σ(t)

]

− ψ0(t) +
r

2
ψ1(t)

}

=
1

3
r2D

β
τt

d

dη

[

ωα

σ(η)

]

. (26)

The algorithm of calculation must involve the checkup of condition (26) for the input
data (22).

Equation (18) can be approximated by the following equations:

D
β
τt

∂v̄(η)

∂η
= sign(τ − t)|t− τ |m

∂2v(x, t)

∂x2
, (27)

D
β
τt

∂

∂η

1

hi
det

∥

∥

∥

∥

υ(xi, η) xi − x

υ(xi+1, η) xi+1 − x

∥

∥

∥

∥

+

+sign(t− τ)|t− τ |m
∂2υ(x, t)

∂x2
= 0, (28)

where xi < x < xi+1, i = 0, 1, ..., n.

We use the method of reducing the Samarskii problem to the local boundary value
problem, which is posed in the paper [4]. We introduce the new dependent variable in
equation (27),

U(x, t) =

x
∫

0

v(ξ, t)dξ. (29)

Function (29) is a solution of partial differential equations of the first order

∂U

∂x
= v(x, t), 0 ≤ x ≤ r, (30)

and satisfies the local boundary value conditions

U(0, t) = 0, U(r, t) = rv̄(t), 0 ≤ t ≤ T. (31)

Therefore, equation (27) takes the following form:

D
β
τt

∂U(r, η)

∂η
= r sign(τ − t)|t− τ |m

∂3U

∂x3
. (32)

We add to condition (4) the boundary condition

v(0, t) = ψ0(t), 0 ≤ t ≤ T, (33)
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where ψ0(t) is a given function continuous on [0, T ]. Because of (30), from this condition
it follows that

∂U

∂x

∣

∣

∣

x=0
= ψ0(t), 0 ≤ t ≤ T. (34)

So, the problem is reduced to the following: find a solution U = U(x, t) of (32) at any
point x of the absorbing layer and at any time t from the initial t = 0 to the estimated
t = T time moments, which satisfies the boundary value conditions (31) and (34).

In the case of (28), the function v = v(x, t) must satisfy the conditions (4) and (33).
Due to the fact that equations (15), (19) and (20) are loaded ones of mixed type, we

can interpret the absorbing medium as a fractal input-output mixed system [5].
To study the boundary value problems for the equation (13), one can successfully use

the Green function that is constructed in [6].

In conclusion, it should be mentioned that the work is based on the report that was
made on in the International conference ”Physics of Extreme States of Matter” [7].

The work was supported by the Russian Foundation for Basic Research (grant No 11-
01-00142-a) and by the Programme of the Department of Mathematical Sciences of RAS
”Modern computing and information technology for solution of large problems” (project
”Loaded equations of mixed type and their application to fractal dynamical systems with
distributed parameters”).
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