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Some Results About Common Fixed Point Theorems for

Multi-Valued Mappings

H. Afshari

Abstract. V. Popa has proved common fixed point theorems for multi-valued mappings which
verify rational inequalities, which contain the Hausdorff metric in their expressions. Recently,
A. Petcu in [1, 2, 3] has proved other common fixed point theorems for two or more multi-valued
mappings without using the Hausdorff metric. In this paper by providing some different conditions
we shall study existence of common fixed points for multi-valued mappings.
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1. Introduction

Fixed point theory is one of the most powerful and fruitful tools in nonlinear analysis.
Its core subject is concerned with the conditions for the existence of one or more fixed
points of a mapping or multi-valued mapping T from a topological space X into itself,
that is, we can find x ∈ X such that Tx = x (for mapping) or x ∈ Tx (for multi-valued
mapping).
In [4] V. Popa has proved common fixed point theorems for multi-valued mappings which
verify rational inequalities, which contain the Hausdorff metric in their expressions.
In [1] A. Petcu has proved other common fixed point theorems for two or more multi-
valued mappings without using the Hausdorff metric.

In this paper by providing some different conditions we study existence of common
fixed points for multi-valued mappings.
Let X be a nonempty set, P (X) the set of all nonempty subsets of X, T a multifunction
of X into P (X), F (T ) the fixed points set of T , that is F (T ) = {x ∈ X : x ∈ Tx}.
Throughout the paper, for a topological space X we denote the set of all nonempty closed
subsets of X by Pcl(X) and the set of all nonempty closed and bounded subsets of X by
Pb,cl(X) when X is a metric space.
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Let (X, d) be a metric space, for x ∈ X and A,B ⊆ X, set D(x,A) = infy∈A d(x, y)
and

H(A,B) = max{sup
x∈A

D(x,B), sup
y∈B

D(y,A)}.

We also denote
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

It is known that, H is a metric on closed bounded subsets of X which is called the Haus-
dorff metric.

2. Main results

Let F be all multi-valued mappings of X in to Pb,cl(X).
Define the following equivalence relation for the elements of F :

F ∼ G if and only if fixF = fixG (F,G ∈ F).

Denote the equivalence class of F by F̃ and define it as follows:

F̃ =
F
∼ = {F̃ : F ∈ F}.

Also define d̃ on F̃ such that

d̃(F̃ , G̃) = H(fixF, fixG).

It is easy to see that (F̃ , d̃) is a metric space.

Lemma 1. Let (X, d) be a metric space and S, T : X → Pb,cl(X) be two multi-valued
mappings such that ∀x ∈ X,∀y ∈ Sx (or y ∈ Tx) there exists z ∈ Ty (respectively z ∈
Sy) with

d3m(x, y)− 3

4 3
√
4
c2d2m(y, z)d(x, y) − c3

8
d3m(y, z) ≥ 0, (2.1)

where m ≥ 1, c > 1 and F (S) 6= φ. Then F (T ) 6= φ and S̃ = T̃ .

Proof. Let u ∈ F (S), that is u ∈ Su. Then there exists z ∈ Tu and (2.1) becomes

d3(u, u) − 3

4 3
√
4
c2d2(u, z)d(u, u) − c3

8
d3(u, z) ≥ 0,

from where we get − c3

8
d3(u, z) ≥ 0, c > 1, that is d(u, z) = 0. Then z = u and therefore

u ∈ Tu which implies F (S) ⊂ F (T ).

Analogously we prove that F (T ) ⊂ F (S), therefore F (S) = F (T ) and hence S̃ = T̃ .
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Let V : X → Pb,cl(X) with (X, d) a metric space. The following property will be used
further:

for any convergent sequence (xn)n≥0 from X with lim
n→∞

xn = x,

x2n−1 ∈ V x2n−2(or x2n ∈ V x2n−1), it results x ∈ V x. (a)

Theorem 1. Let (X, d) be a complete metric space and S, T : X → pb,cl(X) be two multi-
valued mappings such that ∀x ∈ X,∀y ∈ Sx (or y ∈ Tx) there exists z ∈ Ty

(respectively z ∈ Sy) with inequality (2.1) holding, where m ≥ 1, c > 1.
If one of the multi-valued mappings S, T verifies condition (a), then S̃ = T̃ .

Proof. Let x0 ∈ X be arbitrarily fixed and x1 ∈ Sx0. Then there exists x2 ∈ Tx1 such
that

d3m(x0, x1)−
3

4 3
√
4
c2d2m(x1, x2)d(x0, x1)−

c3

8
d3m(x1, x2) ≥ 0.

Then there exists x3 ∈ Sx2 such that

d3md(x1, x2)−
3

4 3
√
4
c2d2m(x2, x3)d(x1, x2)−

c3

8
d3m(x2, x3) ≥ 0.

Continuing this reasoning we obtain a sequence
x0, x1, x3, . . . , xn−1, xn . . . with x2n−1 ∈ Sx2n−2, x2n ∈ Tx2n−1 which verifies the inequality

d3m(xn, xn−1)−
3c2

4 3
√
4
d2m(xn, xn+1)d(xn, xn−1)−

c3

8
d3m(xn, xn+1) ≥ 0, (2.2)

for all n ≥ 1. The first member in the inequality (2.2) is a third degree trinomial in the
variable dm(xn, xn−1) with the discriminant

∆ = 4(
−3

4 3
√
4
c2d2m(xn, xn+1))

3 + 27(
−c3

8
d3m(xn, xn+1))

2 = 0.

Inequality (2.2) holds if

dm(xn, xn−1) ≥ −2
3

√

c3

8
d3m(xn, xn+1) = cdm(xn, xn+1).

We denote km = 1

c
. Then we have k < 1 and

0 ≤ dm(xn, xn+1) < kmdm(xn, xn−1),

that is
d(xn, xn+1) ≤ kd(xn−1, xn), ∀n ≥ 1,

from where we deduce

d(xn, xn+1) ≤ knd(x0, x1), ∀n ≥ 1.
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A routine calculation leads to

d(xn, xn+p) ≤
kn

1− k
d(x0, x1), n, p ∈ N,

which shows that (xn)n≥0 is a Cauchy sequence and since the space X is complete it results
that (xn)n≥0 is convergent. Let u = limn→∞ xn, u ∈ X. We have
x2n−1 ∈ Sx2n−2 and assuming that S verifies (a) it results that u ∈ Su. With lemma (1)
we deduce that u ∈ Tu and F (S) = F (T ) and so S̃ = T̃ .

Lemma 2. [5] If A,B ∈ B(X) and k ∈ R, k > 1, then for any a ∈ A there exists b ∈ B

such that d(a, b) ≤ kH(A,B).

According to the above lemma the following lemma is true.

Lemma 3. Let k > 1 and the multi-valued mappings S, T : X → Pcl,b(X) be given. Then
for any y ∈ Sx(or y ∈ Tx) there exists z ∈ Ty (respectively z ∈ Sy) such that

d(y, z) ≤ kH(Sx, Ty).

Theorem 2. Let (X, d) be a complete metric space and T1, T2 : X → Pb,cl(X) be two
multi-valued mappings such that

Hm(T1x, T2y) ≤
8d3m(x, T1x)

c2δ2m(y, T2y) + 6cδm(y, T2y)δm(x, T1x) + 8δ2m(x, T1x)
, (2.3)

and for any x, y from X

c2δ2m(y, T2y) + 6cδm(y, T2y)δ
m(x, T1x) + 8δ2m(x, T1x) 6= 0,

where m ≥ 1, c > 1.Then T̃1 = T̃2.

Proof. Eliminating the denominator, (2.3) becomes

Hm(T1x, T2y)(c
2δ2m(y, T2y) + 6cδm(y, T2y)δ

m(x, T1x) + 8δ2m(x, T1x)) (2.4)

≤ 8d3m(x, T1x).

Inequality (2.4) is valid for any x, y from X and in particular for y ∈ T1x.
Let 1 < c < km. For x ∈ X, y ∈ T1x with lemma (3) it results that there exists z ∈ T2y

such that d(y, z) ≤ kH(T1x, T2y), and from here we have

cdm(y, z)(c2d2m(y, z) +
6c
3
√
4
dm(y, z)dm(x, y) ≤ 8d3m(x, y).

Consequently, ∀x ∈ X,∀y ∈ T1x, there exists z ∈ T2y such that

d3m(x, y)− 3

4 3
√
4
cdm(y, z)dm(x, y)− c3

8
d3m(y, z) ≥ 0,
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where m ≥ 1, 1 < c < km, condition which has the form of inequality (2.1). We prove
now that T1 verifies condition (a). Let (xn)n≥0 be a convergent sequence from X with
limn→∞ xn = x ∈ X and x2n−1 ∈ T1x2n−2, x2n ∈ T2x2n−1.
We have

d(T1x, x2n) ≤ H(T1x, T2x2n−1),

from where with (2.4) we obtain

cdm(T1x, x2n)(c
2d2m(x2n−1, x2n) + 6cdm(x2n−1, x2n)d

m(x2n, T1x) + 8d(x2n, T1x))

≤ 8d3m(x2n, T1x),

from where, for n → ∞, it results

d(x, T1x) ≤
1

c
d(x, T1x),

that is d(T1x, x) = 0. Because T1x is a closed set we deduce x ∈ T1x and by previous
theorem and lemma we obtain F (T1) = F (T2), therefore T̃1 = T̃2.
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Fizicǎ, Vol.LVII(2), pp. 1-7, 2005.

[3] A. Petcu, Common Fixed Points for d-contractive Multifunctins in metric spaces,
Bultinul of Petroleum Gas University of Ploiesti, Mathematics, Informatics, Physics
Series, LX(2), PP. 1-4, 2008.

[4] V. Popa, Common fixed points for multifunctions satisfying a rational inequality,
Kobe Jornal of Mathematics, 2 (1, pp. 23-28,1985).

[5] I. A. Rus, Fixed points Theorems for Multi-valued Mappings in Complete Metric
spaces, Mathematica Japonicae, 20, pp. 21-24, 1975.

Hojjat Afshari
Department of Mathematics, University of Bonab, Bonab 55517-61167, Iran

E-mail: hojat.afshari@yahoo.com

Received 24 October 2013
Accepted 03 June 2014


	Introduction
	Main results

