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On Global Bifurcation from Zero and Infinity in Fourth
Order Nonlinear Eigenvalue Problems
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Abstract. In this paper we consider nonlinear eigenvalue problems for fourth order ordinary dif-
ferential equations. We study bifurcation problems from zero and infinity simultaneously for these
problems. We prove the existence of two pairs of unbounded continua of solutions corresponding to
the usual nodal properties and bifurcating from intervals of the line of trivial solutions and infinity.
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1. Introduction

We consider the following nonlinear eigenvalue problem

`y ≡ (py′′)′′ − (qy′)′ + r(x)y = λτy + h(x, y, y′, y′′, y′′′, λ), x ∈ (0, l), (1)

y′(0) cosα− (py′′)(0) sinα = 0,
y(0) cosβ + Ty(0) sinβ = 0,
y′(l) cos γ + (py′′)(l) sin γ = 0,
y(l) cos δ − Ty(l) sin δ = 0,

(2)

where λ ∈ R is a spectral parameter, Ty ≡ (py′′)′ − qy′, p is positive, twice continuously
differentiable function on [0, l], q is nonnegative, continuously differentiable function on
[0, l], r is real-valued continuous function on [0, l], τ is positive continuous function on [0, l]
and α, β, γ, δ ∈ [0, π2 ]. The nonlinear term h has the form h = f + g, where f and g are
real-valued continuous functions on [0, l]×R5 and there exit M > 0 and sufficiently large
c0 > 0 such that∣∣∣f(x,y,s,v,w,λ)y

∣∣∣ ≤M, x ∈ [0, l], y, s, v, w ∈ R, |y|+ |s|+ |v|+ |w| ≤ 1
c0
, λ ∈ R, (3)

or ∣∣∣f(x,y,s,v,w,λ)y

∣∣∣ ≤M, x ∈ [0, l], y, s, v, w ∈ R, |y|+ |s|+ |v|+ |w| ≥ c0, λ ∈ R. (4)
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Moreover, for any bounded interval Λ ⊂ R

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → 0, (5)

or

g(x, y, s, v, w, λ) = o(|y|+ |s|+ |v|+ |w|) as |y|+ |s|+ |v|+ |w| → ∞, (6)

uniformly for x ∈ [0, l] and λ ∈ Λ.

An important role in nonlinear analysis is played bifurcation theory of nonlinear eigen-
value problems. The bifurcation problem in nonlinear eigenvalue problems occurs in all
fields of natural science (see, for example, [4, 5, 9, 10]). Note that, recently have been ob-
tained fundamental results on local and global bifurcation in nonlinear eigenvalue problems
for ordinary differential equations (see for example, [1-5, 7-20] and their references).

Similar problems for Sturm-Liouville equation has been considered before by Stuart
[19], Toland [20], Rabinowitz [15, 16], Berestycki [7], Schmitt and Smith [18], Rynne
[17], Ma and Dai [13], Przybycin [14]. For bifurcation problem from zero in [7, 13-15,
17, 18] the authors prove the existence of two families of global continua of solutions in
R×C1, corresponding to the usual nodal properties and bifurcating from the eigenvalues
and intervals (in R × {0}, which we identify with R) surrounding the eigenvalues of the
corresponding linear problem. For bifurcation problem from infinity in [16, 17] show the
existence of two families of unbounded continua of solutions bifurcating from the points
and intervals in R × {∞} and having the usual nodal properties in the neighborhood of
these points and intervals.

The nonlinear eigenvalue problem (1)-(2) under the conditions (3) and (5) has been
considered by Aliyev [2] (see also [1]), under conditions (4) and (6) has been considered
in our recent paper [3]. In these papers for bifurcation problems from zero and infinity
we are able to obtain similar results as in the case of nonlinear Sturm-Liouville problems
from above.

The purpose of this paper is to study the global bifurcation of nontrivial solutions of
problem (1)-(2) in case when conditions (3), (5) and (4), (6) are satisfied simultaneously
for f and g, respectively.

2. Preliminary

Let E be the Banach space of all continuously three times differentiable functions
on [0, l] which satisfy the conditions (2) and is equipped with its usual norm ||u||3 =
||u||∞ + ||u′||∞ + ||u′′||∞ + ||u′′′||∞, where ||u||∞ = max

x∈[0,l]
|u(x)|.

Let S = S1∪S2, where S1 = {u ∈ E : u(i)(x) 6= 0, Tu(x) 6= 0, x ∈ [0, l], i = 0, 1, 2 } and

S2 = {u ∈ E : there exists i0 ∈ {0, 1, 2} andx0 ∈ (0, 1) such thatu(i0)(x0) = 0, orTu(x0) = 0
and if u(x0)u

′′(x0) = 0, thenu′(x)Tu(x) < 0 in a neighborhood of x0, and if u′(x0)Tu(x0) = 0,
thenu(x)u′′(x) < 0 in a neighborhood of x0}.
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Note that if u ∈ S then the Jacobian J = ρ3 cosψ sinψ of the Prüfer-type transforma-
tion 

y(x) = ρ(x) sinψ(x) cos θ(x),
y′(x) = ρ(x) cosψ(x) sinϕ(x),
(py′′)(x) = ρ(x) cosψ(x) cosϕ(x),
T y(x) = ρ(x) sinψ(x) sin θ(x),

(7)

does not vanish in (0, l) (see [1, 2, 5]).
For each u ∈ S we define ρ(u, x), θ(u, x), ϕ(y, x) and w(u, x) to be the continuous

functions on [0, l] satisfying

ρ(u, x) = u2(x) + u′2(x) + (p(x)u′′(x))2 + (Tu(x))2,

θ(u, x) = arctg
Tu(x)

u(x)
, θ(u, 0) = β − π/2 ,

ϕ(u, x) = arctg
u′(x)

(pu′′)(x)
, ϕ(u, 0) = α ,

w(u, x) = ctgψ(u, x) =
u′(x) cos θ(u, x)

u(x) sinϕ(u, x)
, w(u, 0) =

u′(0) sinβ

u(0) sinα
,

and ψ(u, x) ∈ (0, π/2), x ∈ (0, l), in the cases u(0)u′(0) > 0; u(0) = 0; u′(0) = 0
and u(0)u′′(0) > 0, ψ(u, x) ∈ (π/2, π), x ∈ (0, l), in the cases u(0)u′(0) < 0; u′(0) =
0 and u(0)u′′(0) < 0; u′(0) = u′′(0) = 0, β = π/2 in the case ψ(u, 0) = 0 and α = 0 in the
case ψ(u, 0) = π/2.

It is apparent that ρ, θ, ϕ, w : S × [0, 1]→ R are continuous.

Remark 1. By (7) for each u ∈ S the function w(u, x) can de determined by one of the
following relations

a) w(y, x) = ctgψ(y, x) =
(py′′)(x) cos θ(y, x)

y(x) cosϕ(y, x)
, w(y, 0) =

(py′′)(0) sinβ

y(0) cosα
,

b) w(y, x) = ctgψ(y, x) =
(py′′)(x) sin θ(y, x)

Ty(x) cosϕ(y, x)
, w(y, 0) = −(py′′)(0) cosβ

Ty(0) cosα
,

c) w(y, x) = ctgψ(y, x) =
y′(x) sin θ(y, x)

Ty(x) sinϕ(y, x)
, w(y, 0) = − y′(0) cosβ

Ty(0) sinα
.

For each k ∈ N and each ν ∈ {+ , −} let by Sνk denote the subset of y ∈ S such that
1) θ(y, l) = (2k − 1)π/2− δ, where δ = π/2 in the case ψ(y, l) = 0 ;
2) ϕ(y, l) = (k+1)π−γ or ϕ(u, l) = kπ−γ in the case ψ(y, 0) ∈ [0, π/2); ϕ(y, l) = π−γ

for k = 1, ϕ(y, l) = kπ−γ or ϕ(y, l) = (k−1)π−γ for k ≥ 2 in the case ψ(y, 0) ∈ [π/2, π),
where γ = 0 in the case ψ(y, l) = π/2 ;

3) for fixed y, as x increases from 0 to l, the function θ(y, x) (ϕ(y, x)) strictly increasing
takes values of mπ/2, m ∈ Z (sπ, s ∈ Z) ; as x decreases, the function θ(y, x) (ϕ(y, x)),
strictly decreasing takes values of mπ/2, m ∈ Z (sπ, s ∈ Z) ;
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4) the function νy(x) is positive in a deleted neighborhood of x = 0.

It follows immediately from the definition of the sets S+
k , S

−
k and Sk = S+

k ∪S
−
k , k ∈ N,

that they are disjoint and open in E.
By [2, Theorem 1.2] the eigenvalues of the linear problem

`(y)(x) = λτ(x)y(x), x ∈ (0, l),
y ∈ B.C. , (8)

are real and simple and form an infinitely increasing sequence {λk}∞k=1, where by B.C. we
denote the set of boundary conditions (2). Moreover, for each k ∈ N the eigenfunction
yk(x) corresponding to the eigenvalue λk is lies in Sk (therefore yk(x) has k − 1 simple
nodal zeros in the interval (0, l)).

Lemma 1. [2, Lemma 2.2] If (λ, y) ∈ R × E is a solution of (1)-(2) and y ∈ ∂Sνk , k ∈
N, ν ∈ {+ , −}, then y ≡ 0.

Let C ⊂ R×E denote the set of solutions of problem (1)-(2). We say (λ,∞) is a bifur-
cation point (or asymptotic bifurcation point) for problem (1)-(2) if every neighborhood
of (λ,∞) contains solutions of this problem, i.e. there exists a sequence {(λn, un)}∞n=1 ⊂ C
such that λn → λ and ||un||3 → +∞ as n → ∞ (we add the points {(λ,∞) : λ ∈ R}
to space R × E). Next for any λ ∈ R, we say that a subset D ⊂ C meets (λ,∞) (re-
spectively, (λ, 0)) if there exists a sequence {(λn, un)}∞n=1 ⊂ D such that λn → λ and
||un||3 → +∞ (respectively, ||un||3 → 0) as n→∞. Furthermore, we will say that D ⊂ C
meets (λ,∞) (respectively, (λ, 0)) through R × Sνk , k ∈ N, ν ∈ {+ , −}, if the sequence
{(λn, un)}∞n=1 ⊂ D can be chosen so that un ∈ Sνk for all n ∈ N (in this case we also say
that (λ,∞) (respectively, (λ, 0)) is a bifurcation point of (1)-(2) with respect to the set
R× Sνk ). If I ∈ R is a bounded interval we say that D ⊂ C meets I × {∞} (respectively,
I × {0}) if D meets (λ,∞) (respectively, (λ, 0)) for some λ ∈ I; we define D ⊂ C meets
I × {∞} (respectively, I × {0}) through R× Sνk , k ∈ N, ν ∈ {+ , −}, similarly (see [16]).

When the functions f and g satisfies conditions (3) and (5) in [2] show that problem
(1)-(2) has a nonempty set of bifurcation points, and if (λ, 0) is a bifurcation point of
this problem with respect to the set R × Sνk , then λ ∈ Ik, where Ik = [λk − M

τ0
, λk + M

τ0
],

τ0 = min
x∈[0, l]

τ(x).

For k ∈ N and ν ∈ {+ , −} let C̃νk denote the union of the connected components Cνk, λ
of the solutions set of (1)-(2) under conditions (3) and (5) emanating from bifurcation
points (λ, 0) ∈ Ik × {0} with respect to R× Sνk . Let Cνk = C̃νk ∪ Ik × {0}.

Theorem 1. For each k ∈ N and each ν ∈ {+ , −} the connected component Cνk of C lies
in (R× Sνk ) ∪ (Ik × {0}) and is unbounded in R× E.

The proof of this theorem is similar to that of [2, Theorem 1.3] by using [2, Theorem
1.2].

In [3] it is prove that the set of asymptotic bifurcation points of problem (1)-(2) under
conditions (4) and (6) with respect to the set R× Sνk is nonempty. Moreover, if (λ,∞) is
an asymptotic bifurcation point for (1)-(2) with respect to the set R× Sνk , then λ ∈ Ik.
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For each k ∈ N and each ν ∈ {+ , −} we define the set Dνk ⊂ C to be the union of
all the components of C which meet Ik × {∞} through R × Sνk . The set Dνk may not be
connected in R× E, but the set Dνk ∪ (Ik × {∞}) is connected in R× E.

For any set A ⊂ R×E we let PR(A) denote the natural projection of A onto R×{0}.

Theorem 2. For each k ∈ N and each ν ∈ {+ , −} for the set Dνk at least one of the
followings holds:

(i) Dνk meets Ik′ × {∞} through R× Sν′k′ for some (k′, ν ′) 6= (k, ν);

(ii) Dνk meets R for some λ ∈ R;

(iii) PR(Dνk) is unbounded.

In addition, if the union Dk = D+
k ∪ D

−
k does not satisfy (ii) or (iii) then it must

satisfy (i) with k′ 6= k.

3. Global bifurcation from zero and infinity of solutions of problem
(1)-(2)

If conditions (3), (5) and (4), (6) are satisfied simultaneously for f and g, respectively,
then we can improve Theorems 1 and 2 as follows.

Theorem 3. Let the conditions (3)-(6) both hold. Then for each k ∈ N and each ν ∈
{+ , −} we have Dνk ⊂ R×Sνk and alternative (i) of Theorem 2 cannot hold. Furthermore,
if Dνk meets (λ,∞) for some λ̃ ∈ R, then λ̃ ∈ Ik. Similarly, if Cνk meets (λ̃, 0) for some
λ̃ ∈ R, then λ̃ ∈ Ik.

Proof. It follows from Lemma 1 that if conditions (3)-(4) hold, then C∩(R×∂Sνk ) = ∅.
Hence the sets C ∩ (R × Sνk ) and C\(R × Sνk ) are mutually separated in R × E (see [21,
Definition 26.4]). Thus by [21, Corollary 26.6] it follows that any connected component
of the set C must be a subset of one or another of the sets C ∩ (R× Sνk ) and C\(R× Sνk ).
Since Dνk is a connected component of C which intersect R×Sνk , then Dνk must be a subset
of R× Sνk , i.e. Dνk ⊂ R× Sνk . But this shows that the alternative (i) of Theorem 2 cannot
hold.

Now let Cνk meets (λ̃,∞) for some λ̃ ∈ R. Then there exists a sequence {(λk, n, yk, n)}∞n=1

⊂ Cνk such that λk, n → λ̃ and ||yk, n||3 →∞ as n→∞ and

`yk, n = λk, nτ(x)yk, n + f(x, yk, n, y
′
k, n, λk, n) + g(x, yk, n, y

′
k, n, λk, n).

Let λ /∈ Ik and

δ̃ =
dist{λ̃, Ik}

2
.

Then there exists n0 ∈ N such that

dist {λk, n, Ik} > δ̃.
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Obviously, (λk, n, yk, n) ∈ Cνk solves the nonlinear problem{
`y + ϕk, n(x)y = λτ(x)y + g(x, y, y′, y′′, y′′′, λ),
y ∈ B.C., (9)

where

ϕk, n(x) =

{
− f (x, yk, n(x), y′n(x), y′′k, n(x), y

′′′
k, n(x), λk, n)

yk, n(x)
if yk, n(x) 6= 0,

0 if yk, n(x) = 0.

By virtue of (5) we have |ϕk, n(x)| ≤ M, n ∈ N, x ∈ [0, l]. Since yn(x), n ∈ N, has
k − 1 simple zeros on (0, l) and is bounded on the closed interval [0, l], it follows from [3,
Lemma 5.2 and Remark 5.1] that the k-th eigenvalue λ∗k,n of the linear problem{

`y + ϕk, n(x)y = λτ(x)y, x ∈ (0, l),
y ∈ B.C.

lies in Ik. By [11, Ch. 4, § 3, Theorem 3.1] for each n ∈ N the point (λ∗k,n,∞) is a unique
asymptotic bifurcation point of (9) which corresponds to a continuous branch of solutions
that meets this point through R × Sνk . Hence for each sufficiently large n > n0 we can
assign a small δn > 0 such that δn < δ̃ and |λk, n − λ∗k, n| < δn. Then it follows that

dist {λk, n, Ik} < δ̃, contradicting dist {λk, n, Ik} > δ̃. Thus Cνk can only meet (λ̃,∞) if
λ̃ = λk. Similarly is proved that Dνk can only meet (λ̃, 0) if λ̃ = λk. The proof of this
theorem is complete.

The naturally question arises whether or not Cνk intersects Dνk . The following examples
show that, both cases are possible.

Example 1. Now we consider the boundary problem{
y(4)(x) = λy(x) + 2y(x) + λg̃(x, y(x), y′(x), y′′(x), y′′′(x)) y(x), 0 < x < l,
y(0) = y′′(0) = y(l) = y′′(l) = 0,

(10)

It is obvious that in this case f(x, y, s, v, w, λ) = 2y and g(x, y, s, v, w, λ) = λg̃(x, y, s, v, w) y.
We assume that the function g̃ is satisfied the following conditions:
(i) there exist positive constants K, d and θ such that

|g̃(x, u, s, v, w)| ≤ K(|u|+ |s|+ |v|+ |w|)−θ

for all (x, u, s, v, w) ∈ [0, l]× R4 with |u|+ |s|+ |v|+ |w| ≥ d;
(ii) g̃ is continuous in [0, l]× R4 and f(x, 0, 0, 0, 0) = 0 for x ∈ [0, l].
These two conditions ensures that for the function g(x, u, s, v, w, λ) = λg̃(x, u, s, v, w)

conditions (4) and (6) both hold.
Then it follows from [3, Example 4.1] that if g̃(x, u, s, v, w) ≥ 0 for (x, u, s, v, w) ∈

[0, l]× R4, then Cν1 ∩ Dν1 6= ∅, and if g̃(x, u, s, v, w) ≤ 0 for (x, u, s, v, w) ∈ [0, l]× R4, then
Cν1 ∩ Dν1 = ∅.
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[6] D.O. Banks, G.J. Kurowski, A Prüfer transformation for the equation of a vibrating
beam subject to axial forces, J. Differential Equations, 24, 1977, 57-74.

[7] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations,
26, 1977, 375-390.

[8] S.N. Chow, J.K. Hale, Methods of bifurcation theory, New York, Springer, 1982.

[9] R.W. Dickey, Bifurcation problems in nonlinear elasticity, Florstadt, Pitman Publ.,
1976.

[10] J.B. Keller, S. Antman, Bifurcation theory and nonlinear eigenvalue problems, (edi-
tors), Benjamin, New York, 1969,

[11] M.A. Krasnoselski, Topological methods in the theory of nonlinear integral equations,
Macmillan, New York, 1965.

[12] J. Lopez-Gomez, Spectral theory and nonlinear functional analysis, Boca Raton,
Chapman and Hall/CRC, 2001.

[13] R. Ma, G. Dai, Global bifurcation and nodal solutions for a Sturm-Liouville problem
with a nonsmooth nonlinearity, J. Functional Analysis, 265(8), 2013, 1443-1459.

[14] J. Przybycin, Bifurcation from infinity for the special class of nonlinear differential
equations, J. Differential Equations, 65(2), 1986, 235-239.

[15] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct.
Anal., 7, 1971, 487-513.

[16] P.H. Rabinowitz, On bifurcation from infinity, J. Differential Equations, 14, 1973,
462-475.



110 N.A. Mustafayeva

[17] B.P. Rynne, Bifurcation from zero or infinity in Sturm-Liouville problems which are
not linearizable, J. Math.Anal. Appl., 228, 1998, 141-156.

[18] K. Schmitt, H.L. Smith, On eigenvalue problems for nondifferentiable mappings, J.
Differential Equations, 33(3), 1979, 294-319.

[19] C.A. Stuart, Solutions of large norm for non-linear Sturm-Liouville problems, Quart.
J. of Math. (Oxford), 24(2), 1973, 129-139.

[20] J.F. Toland, Asymptotic linearity and non-linear eigenvalue problems, Quart. J. Math.
(Oxford), 24(2), 1973, 241-250.

[21] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.

Natavan A. Mustafayeva
Ganja State University, AZ2000, Ganja, Azerbaijan
E-mail: natavan1984@gmail.com

Received 27 April 2018
Accepted 02 June 2018


