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On the statistical type convergence and fundamentality

in metric spaces
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Abstract. The concept of F -fundamentality, generated by some filter F is introduced in metric
spaces. Its equivalence to the concept of F -convergence is proved in metric spaces. This conver-
gence generalizes many kinds of convergence, including the well-known statistical convergence.
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1. Introduction

The idea of statistical convergence (stat-convergence) was first proposed by A.Zigmund
[1] in his famous monograph where he talked about ”almost convergence”. The first
definition of it was given by H. Fast [2] and H. Steinhaus [3]. Later, this concept has been
generalized in many directions. It is impossible to list all the related papers. More details
on this matter and its applications can be found in [4-15, 24]. It should be noted that the
methods of non-convergent sequences have long been known and they include e.g. Cesaro
method, Abel method, etc. These methods are used in different areas of mathematics.
For the applicability of these methods it is very important that the considered space has
a linear structure. Therefore, the study of statistical convergence in metric spaces is of
special scientific interest. Different aspects of this problem have been studied in [16, 17].
Statistical convergence is currently actively used in many areas of mathematics such as
summation theory [7, 8, 19], number theory [11, 13], trigonometric series [1], probability
theory [8], measure theory [12], optimization [20], approximation theory [21, 22], fuzzy
theory [26], etc.

It should be noted that the concept of statistical fundamentality (stat-fundamentality)
was first introduced by J.A. Fridy [4] who proved its equivalence to stat-convergence with
respect to numerical sequences. This issue was raised in [10] concerning uniform space
(X;U). It was proved that if the sequence {xn}n∈N ⊂ X is stat-convergent, then it is
stat-fundamental. The problem of the validity of converse statement was also raised in
[10].
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Stat-convergence was generalized by many mathematicians (see [10, 15, 23, 24, 25]).
The concepts of I-convergence and I∗-convergence were introduced in [23]. These kinds of
convergences generalizes many previously known convergences, including the well-known
stat-convergence. In present paper we introduce the concepts of F -convergence and F -
fundamentality, generated by some filter F ⊂ 2N. Their equivalence is proved. F -
convergence generalizes many kinds of convergence, related to such concepts as statistical
density, logarithmic density, uniform density, etc. More details on these concepts can be
found in [23].

2. Needful information

We will use the standard notation. N will be a set of all positive integers; R will be a
set of real numbers; χM ( · ) is the characteristic function of M ; (X; ρ) is a metric space.
Oε (a) is an open ball centered at a with radius ε, i.e. Oε (a) ≡ {x ∈ X : ρ (x; a) < ε}.
2M will be a set of all subsets M ; M̄ will stand for the closure of M ; |A| = cardA is the
number of elements of A. MC = N\M . ∧ will be a quantifier which means “and”.

Let us recall the definition of asymptotic (statistical) density of A ⊂ N. Assume

δn (A) =
1

n

n
∑

k=1

χA (k) ,

and let δ∗ (A) = lim inf
n→∞

δn (A), δ
∗ (A) = lim sup

n→∞
δn (A). δ∗ (A) and δ∗ (A) are called lower

and upper asymptotic density of the set A, respectively. If δ∗ (A) = δ∗ (A) = δ (A),
then δ (A) is called asymptotic (or statistical) density of A. It should be noted that the
statistical convergence is determined by means of this concept, namely, the consequence
{xn}n∈N ⊂ X is called statistically convergent to x, if δ (Aε) = 0, for ∀ε > 0, where
Aε ≡ {n ∈ N : ρ (xn;x) ≥ ε}.

Let us also recall the definitions of the ideal and the filter.

A family of sets I ⊂ 2N is called an ideal if: α) ∅ ∈ I; β) A;B ∈ I ⇒ A ∪ B ∈ I ; γ)
(A ∈ I ∧ B ⊂ A) ⇒ B ∈ I.

A family F ⊂ 2N is called a filter on X, if :

i) ∅ /∈ F ;

ii) from A;B ∈ F ⇒ A ∩B ∈ F ;

iii) from A ∈ F ∧ (A ⊂ B) ⇒ B ∈ F .

Filter, satisfying the condition

iv) if A1 ⊃ A2 ⊃ ... ∧ An ∈ F , ∀n ∈ N ⇒ ∃{nm}m∈N ⊂ N; n1 < n2 < ... :
∪∞
m=1 ((nm, nm+1] ∩Am) ∈ F is called a monotone closed filter.

Filter F satisfying the following condition is called a right filter:

v) FC ∈ F , for any finite subset F ⊂ N.

An ideal I is called non-trivial if I 6= ∅ ∧ I 6= X. I ⊂ 2N is a non-trivial ideal if and
only if F = F (I) = {X\A : A ∈ I} is a filter on X. A non-trivial ideal I ⊂ 2N is called
admissible if and only if I ⊃ {{x} : x ∈ X}.
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In the sequel, we assume that (X; ρ) is a metric space with metric ρ, and I ⊂ 2N is
some non-trivial ideal.

Definition 1 [23]. The sequence {xn}n∈N ⊂ X is called I-convergent to x ∈ X
(I- lim

n→∞
xn = x), if Aε ∈ I , ∀ε > 0, where Aε = {n ∈ N : ρ (xn;x) ≥ ε}.

Let Id ≡ {A ⊂ N : d (A) = 0}. Id is an ideal on N. Id-convergence means the statistical
convergence.

It should be noted that if I is an admissible ideal, then the usual convergence in X
implies I-convergence in X.

Definition 2. The sequence {xn}n∈N ⊂ X is called I∗-convergent to x ∈ X, if
∃M ∈ F (I) (i.e. N\M ∈ I), M = {m1 < m2 < ... < mk < ...} : lim

k→∞
ρ (xmk

;x) = 0.

In the following discussion we will need the following interesting results of [23].
Theorem 1 [23]. Let I be an admissible ideal. If I∗- lim

n→∞
xn = x ⇒ I- lim

n→∞
xn = x.

The converse is not always true, it depends on the structure of space (X; ρ), namely,
we have

Theorem 2 [23]. Let (X; ρ) be a metric space. (i) If X has no accumulation point,
then I-convergence and I∗-convergence coincide for each admissible ideal I ⊂ 2N; (ii) If X
has an accumulation point ξ, then there exists an admissible ideal I ⊂ 2N and a sequence
{yn}n∈N ⊂ X: I- lim

n→∞
yn = ξ, but I∗- lim

n→∞
yn does not exist.

3. Main results

Let (X; ρ) be some complete metric space and F ⊂ 2N be some filter. Accept the
following

Definition 3. Let F ⊂ 2N be some filter. The sequence {xn}n∈N ⊂ X is called
F -convergent to x ∈ X (F - lim

n→∞
xn = x), if Aε ∈ F , ∀ε > 0, where Aε ≡ {n ∈ N :

xn ∈ Oε (x)}.
Let us introduce the concept of F -fundamentality.
Definition 4. The sequence {xn}n∈N ⊂ X is called F -fundamental, if ∀ε > 0,∃nε ∈

N : ∆nε ∈ F , where ∆nε ≡ {n ∈ N : xn ∈ Oε (xnε)}.
Assume that ∃F - lim

n→∞
xn = x. Let ε > 0 be an arbitrary number. Consequently,

Aε/2 ∈ F . From the condition i) in the definition of filter above it follows that Aε/2 6= ∅.
Take ∀nε ∈ Aε/2 : ρ (xnε ;x) <

ε
2 . From the relation

ρ (xn;xnε) ≤ ρ (xn;x) + ρ (x;xnε) <
ε

2
+ ρ (xn;x) ,

it directly follows that
{

n ∈ N : ρ (xn;x) <
ε

2

}

⊂ {n ∈ N : ρ (xn;xnε) < ε} .

Hence ∆nε ∈ F , i.e. the sequence {xn}n∈N is F -fundamental in X.
Now, vice versa, let {xn}n∈N ⊂ X be F -fundamental. From F - fundamentality it

follows that ∃nj ∈ N : Kj ∈ F , where Kj ≡ {n ∈ N : ρ
(

xn;xnj

)

≤ 21−j}, j = 1, 2.



87

By the definition of filter we obtain K1 ∩K2 ∈ F . Put M1 ≡ O1 (xn1
) ∩ O2−1 (xn2

). It
is obvious that xn ∈ M1 , ∀n ∈ (K1 ∩K2) ≡ K(1). Thus, ∃n3 ∈ N : K3 ∈ F , where
K3 ≡

{

n : ρ (xn;xn3
) ≤ 2−2

}

. Let K(2) = K(1) ∩K3. It is clear that K(2) ∈ F . Now let

M2 ≡ M1 ∩O2−2 (xn3
). Denote by dρ (M) the diameter of the set M , i.e.

dρ (M) = sup
x,y∈M

ρ (x; y) .

Continuing in the same way, we obtain the nested sequence of closed sets {Mn}n∈N ⊂ X:
M1 ⊃ M2 ⊃ ...; whose diameters tend to zero: i.e. dρ (Mn) ≤ 2−n+1 → 0 , n → ∞.
Moreover, K(n) ∈ F , where K(n) ≡ {n ∈ N : xn ∈ Mn}. Take ∀x̃n ∈ Mn, ∀n ∈ N. We
have

ρ (x̃n; x̃n+p) ≤ dρ (Mn) → 0, n → ∞, ∀p ∈ N.

Hence, the sequence {x̃n}n∈N is fundamental in X. Let lim
n→∞

x̃n = x. It is absolutely clear

that x ∈ ∩nMn, i.e. ∩nMn is non-empty. From dρ (Mn) → 0 , n → ∞, it directly follows
that ∩nMn ≡ {x}, i.e. ∩nMn consists of one element. Let us show that F - lim

n→∞
xn = x.

Take ∀ε > 0. Take nε ∈ N : dρ (Mnε) < ε. Let y ∈ Mnε be an arbitrary element. So

ρ (y, x) ≤ dρ (Mnε) < ε.

Consequently, Mnε ⊂ Oε (x). We have K(nε) ∈ F , where K(nε) = {n ∈ N : xn ∈ Mnε}.
So, K(nε) ⊂ {n ∈ N : xn ∈ Oε (x)}, it is clear that {n ∈ N : xn ∈ Oε (x)} ∈ F ⇒F -
lim
n→∞

xn = x. Thus, we have proved the following theorem.

Theorem 3. Let (X; ρ) be complete metric space and F ⊂ 2N be some filter. The
sequence {xn}n∈N ⊂ X is F -convergent in X if and only if it is F -fundamental in X.

It is easy to see that F - lim
n→∞

xn is unique if it exists. In fact, let F - lim
n→∞

xn has two

values y1 6= y2. Take ∀ε ∈
(

0, 1
2ρ (y1; y2)

)

. Let Ak ≡ {n ∈ N : ρ (xn; yk) < ε}, k = 1, 2.
It is clear that Ak ∈ F , k = 1, 2 ⇒ A1 ∩ A2 ∈ F . As A1 ∩ A2 = ∅ /∈ F , the obtained
contradiction proves that y1 = y2.

Let us consider the sequence
{

K(n)

}

n∈N
, constructed in the proof of Theorem 1. We

have K(1) ⊃ K(2) ⊃ ... ∧K(n) ∈ F , ∀n ∈ N. Then from the condition iv) in the definition
of filter we have

∃ {nm : n1 < n2 < ... } : ∪∞
m=1

(

(nm, nm+1] ∩K(m)

)

∈ F .

Assume
N0 ≡

{

k ∈ N : k ∈ (nm, nm+1] ∩KC
(m), m ∈ N

}

∪ [1, n1] ,

where MC ≡ N\M . Define

yk =

{

x , k ∈ N0 ;
xk, otherwise,

where F - lim
n→∞

xn = x. Take ∀ε > 0. If k ∈ N0, then ρ (yk;x) = ρ (x;x) < ε. If k /∈ N0,

then ∃m : nm < k ≤ nm+1 ∧ k /∈ Kc
(m) ⇒ k ∈ K(m) ⇒ xk ∈ Mm (M1 ⊃ M2 ⊃ ...
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is a sequence from Theorem 1) ⇒ ρ (xk;x) ≤ dρ (Mm) < ε for sufficiently great values
of m (as x ∈ Mm , ∀m ∈ N). Hence, we have lim

k→∞
yk = x. Let us show that K̃ ≡

{k ∈ N : xk = yk} ∈ F . In fact, it is clear that

∪∞
m=1

(

(nm, nm+1] ∩K(m)

)

⊂ K̃,

holds. Then from the condition iii) in the definition of filter we get K̃ ∈ F . Thus, if
F - lim

n→∞
xn = x, then ∃K̃ ∈ F : lim

n→∞
yn = x and xn = yn , ∀n ∈ K̃.

Conversely, let lim
n→∞

yn = x and K̃ ≡ {n : xn = yn} ∈ F . Take ∀ε > 0. Then

∃nε ∈ N : ρ (yn;x) < ε , ∀n ≥ nε. We have {n ∈ N : n ≥ nε}∩K̃ ⊂ {n ∈ N : ρ (xn;x) < ε}.

It is clear that
(

{n ∈ N : n ≥ nε} ∩ K̃
)

∈ F . Then from the condition iii) in the definition

of filter it follows {n ∈ N : ρ (xn;x) < ε} ∈ F . Thus, the following theorem is true.
Theorem 4. Let (X; ρ) be a metric space and F ⊂ 2N be some filter. Then: 1)

if F is a monotone close and F - lim
n→∞

xn = x, then ∃ {yn}n∈N ⊂ X : lim
n→∞

yn =

x∧{n ∈ N : xn = yn} ∈ F ; 2) if F is a right filter and lim
n→∞

yn = x∧ ({n ∈ N : xn = yn} ∈ F ),

then F - lim
n→∞

xn = x.

The Theorems 1;2 imply the following
Corollary 1. Let (X; ρ) be a complete metric space, F ⊂ 2N be some monotone close

and right filter. Then the following statements are equivalent to each other:
α) ∃F - lim

n→∞
xn = x; β) {xn}n∈N is F -fundamental; γ) ∃ lim

n→∞
yn = x∧ ({n ∈ N : xn = yn} ∈

F ).
The Theorem 2 immediately implies the following
Corollary 2. Let (X; ρ) be a metric space and F ⊂ 2N be a right filter. If ∃F -

lim
n→∞

xn = x, then ∃ {nk : n1 < n2 < ...} ∈ F : lim
k→∞

xnk
= x.

4. Filters

I. An ordinary convergence. F ≡ {M ⊂ N : MC ≡ N\M is a finite set}.
F -convergence, generated by this filter, coincides with the ordinary convergence.

II. Statistical convergence. Assume Fδ ≡ {M ⊂ N : δ (M) = 1}. Fδ is a filter. It
is easy to see that Fδ is a right filter. Let us show that Fδ is a monotone close filter. Let
K1 ⊃ K2 ⊃ ... ∧ (δ (Kn) = 1 , ∀n ∈ N). It is clear that δ (Kc

n) = 0 , ∀n ∈ N. Therefore
∃ {nk}k∈N ⊂ N; n1 < n2 < ... :

1

n
|In ∩Kc

m| <
1

m
, ∀n ≥ nm.

Let N0 = Ñ0 ∪ In, where Ñ0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Kc
m)}. It is obvious that

δ (N0) = δ
(

Ñ0

)

. Take ∀n ∈ N. Then ∃m ∈ N : nm < n ≤ nm+1. Without loss of

generality, we may suppose that n > n1. Let us show that
(

In ∩ Ñ0

)

⊂ (In ∩Kc
m) . (1)
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Let k ∈
(

In ∩ Ñ0

)

⇒ ∃m0 ≤ m : nm0
< k ≤ nm0+1 ∧

(

k ∈ Kc
m0

)

⇒ k ∈ Kc
m. So, the

inclusion (1) is true. Consequently

1

n

∣

∣

∣
In ∩ Ñ0

∣

∣

∣
≤

1

n
|In ∩Kc

m| <
1

m
. (2)

From (2) it directly follows that δ
(

Ñ0

)

= 0. As a result, δ (N0) = 0 ⇒ δ (Nc
0) = 1 ⇒

N
c
0 ∈ Fδ . In the sequel, it should be pointed out that N

c
0 ≡ {k ∈ N : nm < k ≤

nm+1 ∧ (k ∈ Km)}. Thus, Fδ is a monotone close filter. Fulfilment of condition v) by
Fδ is obvious. Then, the statement of Corollary 1 is true with respect to Fδ-convergence.
So,we get the validity of

Statement 1. Filter Fδ, generated by statistical density, is a monotone close and
right filter.

III. Logarithmic convergence. Let M ⊂ N. Assume

ln (M) =
1

sn

n
∑

k=1

χM (k)

k
,

where sn =
∑n

k=1
1
k . If ∃ lim

n→∞
ln (M) = l (M), then l (M) is called a logarithmic density

of the set M . Let Fl ≡ {M ⊂ N : l (M) = 1}. The following lemma is true.

Lemma 1. If l (Mk) = 1, k = 1, 2 ⇒ l (M1 ∩M2) = 1.

Proof. We have

M1 ∩M2 = (M1 ∪M2) \ [(M2\M1) ∪ (M1\M2)] .

Consequently

M1 ∩M2 ∩ In = [(M1 ∪M2) ∩ In] \ [((M2\M1) ∪ (M1\M2)) ∩ In] . (3)

From

((M2\M1) ∩ In) ⊂ (M c
1 ∩ In) ,

we get

1

sn

n
∑

k=1

1

k
χM2\M1

(k) ≤
1

sn

n
∑

k=1

1

k
χMc

1
(k) . (4)

It is absolutely clear that, if l (M) = 1, then l (M c) = 0. Then from (4) we obtain
l (M2\M1) = 0. Similarly, we have l (M1\M2) = 0. So

((M2\M1) ∪ (M1\M2)) ∩ In = ((M2\M1) ∩ In) ∪ ((M1\M2) ∩ In) .

It is clear that

l ((M2\M1) ∪ (M1\M2)) = 0. (5)
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It is easy to see that l (M1 ∪M2) = 1. From (3) we have

1

sn

n
∑

k=1

1

k
χM1∩M2

(k) =
1

sn

n
∑

k=1

1

k
χM1∪M2

(k)−
1

sn

n
∑

k=1

1

k
χ(M2\M1)∪(M1\M2) (k) .

Taking into account (5) we get l (M1 ∩M2) = 1. Lemma is proved.

This lemma implies that Fl is a filter. If M ⊂ N is a finite set, then it is clear that
MC ∈ Fl, i.e. Fl satisfies the condition v). Then it is absolutely clear that l (M) = 0. Let
us show that Fl is a monotone close filter. Let K1 ⊃ K2 ⊃ ... ∧ (l (Kn) = 1, ∀n ∈ N) ⇒
l (Kc

n) = 0 , ∀n ∈ N. Therefore

∃ {nk}k∈N ⊂ N, n1 < n2 < ... :
1

sn

n
∑

k=1

χKc
m
(k)

k
<

1

m
, ∀n ≥ nm.

Similarly to the previous example, let N0 = Ñ0 ∪ In, where

Ñ0 ≡ {k ∈ N : nm ≤ k ≤ nm+1 ∧ (k ∈ Kc
m)} .

It is clear that l (N0) = l
(

Ñ0

)

. Let n ∈ N ⇒ ∃m ∈ N : nm < n ≤ nm+1. As before, we

assume that n > n1. It is clear that (1) is true, i.e. .

(

In ∩ Ñ0

)

⊂ (In ∩Kc
m) .

Hence
1

sn

n
∑

k=1

χÑ0
(k)

k
≤

1

sn

n
∑

k=1

χKc
m
(k)

k
<

1

m
, ∀n ≥ nm.

Consequently, l
(

Ñ0

)

= 0 ⇒ l (N0) = 0 ⇒ l (Nc
0) = 1 ⇒ N

c
0 ∈ Fl. It is obvious that

N
c
0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Km)} .

It directly follows that Fl is a right filter. Thus, we have proved

Statement 2. Filter Fl, generated by logarithmic density, is a monotone close and
right filter.

Note that, if ∃δ (M) ⇒ ∃l (M) ∧ l (M) = δ (M). The converse is not generally true.

IV. Uniform convergence. Let M ⊂ N ∧ (t ∈ Z+; s ∈ N). Assume

M (t+ 1; t+ s) = |n ∈ M : t+ 1 ≤ n ≤ t+ s| .

Put

βs (M) = lim inf
t→∞

M (t+ 1; t+ s) ,

βs (M) = lim sup
t→∞

M (t+ 1; t+ s) .
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If lim
s→∞

βs(M)
s = lim

s→∞

βs(M)
s = β (M), then the quantity β (M) is called the uniform density

of the set M . Let Fβ ≡ {M ⊂ N : β (M) = 1}. Let us show that Fβ is a filter. It is clear
that

M (t+ 1; t+ s) +M c (t+ 1; t+ s) = | [t+ 1, t+ s] | = s.

Hence it directly follows that β (M) = 1 ⇔ β (M c) = 0. Iβ ≡ {M ⊂ N : β (M) = 0} is a
non-trivial ideal [23]. Therefore, Fβ is a filter. It is clear that Fβ satisfies the condition v).
Let us show that Fβ is a monotone close filter. Let K1 ⊃ K2 ⊃ ... ∧ (β (Kn) = 1, ∀n ∈ N)
⇒ β (Kc

n) = 0, ∀n ∈ N ⇒ ∃{nk}k∈N ⊂ N, n1 < n2 < ... :

βs (Kc
m)

s
<

1

m
, ∀s ≥ nm.

As before, we set N0 = Ñ0 ∪ In1
, where Ñ0 ≡ {k ∈ N : nm ≤ k ≤ nm+1 ∧ (k ∈ Kc

m)}. It

is clear that β (N0) = β
(

Ñ0

)

. Let n > n1 be an arbitrary integer. Then ∃m ∈ N : nm <

n ≤ nm+1. It is obvious that the inclusion

(

In ∩ Ñ0

)

⊂ (In ∩Kc
m) ,

is true in this case, too. From the arbitrariness of n we have

(

Ñ0 ∩ [t+ 1; t+ s]
)

⊂ (Kc
m ∩ [t+ 1; t+ s]) .

Consequently
Ñ0 (t+ 1; t+ s) ≤ Kc

m (t+ 1; t+ s) ,

and as a result
βs

(

Ñ0

)

≤ βs (Kc
m) .

Thus
βs

(

Ñ0

)

s
≤

βs (Kc
m)

s
<

1

m
, ∀s ≥ nm.

From this relation it directly follows

β
(

Ñ0

)

= 0 ⇒ β (N0) = 0 ⇒ β (Nc
0) = 1 ⇒ N

c
0 ∈ Fβ,

where
N
c
0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Km)} ,

i.e. Fβ is a monotone close filter. As a result, we obtain the validity of the following
Statement 3. Filter Fβ, generated by the uniform convergence, is a monotone close

and right filter.
Following [23], number of such examples can be extended.
Remark 1. Similar results can be obtained with respect to concepts of I-convergence

and I∗-convergence.
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