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Abstract. In this paper, a class of small deviation theorems for the arbitrary bivariate function
are established by introducing the sample relative entropy rate as a measure of deviation between
the arbitrary random field and Markov chains field on the homogeneous tree. As corollaries, a
class of small deviation theorems for the frequencies of states ordered couples and harmonic mean
of transitional probability of Markov chains field on the homogeneous tree are obtained.
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1. Introduction

Let T be a homogeneous tree on which each vertex has N+1 neighboring vertices. We
first fix any vertex as the ”root” and label it by 0. Let σ, τ be vertices of a tree. Write
τ ≤ σ if τ is on the unique path connecting 0 to σ, |σ| for the number of edges on this
path. For any two vertices σ, τ , denote σ ∧ τ the vertex farthest from 0 satisfying

σ ∧ τ ≤ σ, and σ ∧ τ ≤ τ.

If σ 6= 0, then we let σ̄ stand for the vertex satisfying σ̄ ≤ σ and |σ̄| = |σ| − 1 (we refer
to σ as a son of σ̄). It is easy to see that the root has N + 1 sons and all other vertices
have N sons. The homogeneous tree T is also called Bethe tree TB,N . For example, we
give the following Fig 1 TB,2.

Definition 1(see[7]). Let T be a homogeneous tree, S = {s0, s1, s2 · · · , sM−1} be a
finite state space, {Xσ, σ ∈ T} be a collection of S−valued random variables defined on
the measurable space {Ω,F}. Let

q = {q(x), x ∈ S} (1)

be a distribution on S, and

Qn = (Qn(y|x)), x, y ∈ S (2)
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be a series of strictly positive stochastic matrices on S2. If for any vertices σ, τ ,

Q(Xσ = y|Xσ̄ = x, and Xτ for σ ∧ τ ≤ σ̄) (3)

= Q(Xσ = y|Xσ̄ = x) = Qn(y|x) ∀x, y ∈ S, n ≥ 1.

and
Q(X0 = x) = q(x), ∀x ∈ S. (4)

{Xσ, σ ∈ T} will be called S−valued Markov chains indexed by a homogeneous tree with
the initial distribution (1) and transition matrix (2).
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Fig 1. Bethe tree TB,2

Two special finite tree-indexed Markov chains are introduced in Kemeny et al.(1976[13]),
Spitzer (1975[6]), and there the finite transition matrix is assumed to be positive and re-
versible to its stationary distribution, and this tree-indexed Markov chains ensure that
the cylinder probabilities are independent of the direction we travel along a path. In this
paper, we have no such assumption.

If |σ| = n, it is said to be on the nth level on a tree T . We denote by T (n) the subtree
of T containing the vertices from level 0 (the root) to level n, and Ln the set of all vertices
on the level n. Let B be a subgraph of T . Denote XB = {Xσ, σ ∈ B}, and denote by |B|
the number of vertices of B. Let S(σ) be the set of all sons of vertices σ. It is easy to see
that |S(0)| = N + 1 and |S(σ)| = N , where σ 6= 0.

Let Ω = ST , ω = ω(·) ∈ Ω, where ω(·) is a function defined on T and taking values in
S, and F be the smallest Borel field containing all cylinder sets in Ω, µ be the probability
measure on (Ω,F) . Let X = {Xσ, σ ∈ T} be the coordinate stochastic process defined
on the measurable space (Ω,F); that is, for any ω = {ω(t), t ∈ T}, define

Xt(ω) = ω(t), t ∈ T (n)

XT (n) ∆
= {Xt, t ∈ T (n)}, µ(XT (n)

= xT
(n)

) = µ(xT
(n)

). i = 1, 2. (5)

Now we give a definition of Markov chain fields on the tree T by using the cylinder
distribution directly, which is a natural extension of the classical definition of Markov
chains (see[4]).
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Definition 2. Let Qn = Qn(j|i) and q = (q(s0), q(s1) · · · , q(sM−1)) be defined as
before, µQ be another probability measure on (Ω,F). If

µQ(x0) = q(x0) (6)

µQ(xT
(n)

) = q(x0)
n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

Qk+1(xτ |xσ), n ≥ 1. (7)

then µQ will be called a Markov chain field on the homogeneous tree T determined by the
stochastic matrix Q and the distribution q.

There have been some works on limit theorems for tree-indexed stochastic processes.
Benjamini and Peres have given the notion of the tree-indexed homogeneous Markov chains
and studied the recurrence and ray-recurrence for them (see[1]). Berger and Ye have stud-
ied the existence of entropy rate for some stationary random fields on a homogeneous tree
(see[2]). Pemantle proved a mixing property and a weak law of large numbers for a PPG-
invariant and ergodic random field on a homogeneous tree (see[5]). Ye and Berger, by using
Pemantle’s result and a combinatorial approach, have studied the asymptotic equiparti-
tion property (AEP) in the sense of convergence in probability for a PPG-invariant and
ergodic random field on a homogeneous tree(see[9-10]). Peng and Yang have studied a class
of small deviation theorems for functionals of random field and asymptotic equipartition
property (AEP) for arbitrary random field on a homogeneous trees (see[8]). Recently, Yang
have studied some limit theorems for countable homogeneous Markov chains indexed by a
homogeneous tree and strong law of large numbers and the asymptotic equipartition prop-
erty (AEP) for finite homogeneous Markov chains indexed by a homogeneous tree (see[7]
and [11]). But their results only concern the case of strong limit theorems for Markov
chains field, they do not discuss the the case of strong deviation theorems ( the strong
limit theorems which are represented by the inequalities) for arbitrary random fields.

In this paper, our aim is to establish a class of small deviation theorems (also called
strong deviation theorems) for the arbitrary bivariate function by introducing the sample
relative entropy rate as a measure of deviation between the arbitrary random fields and
the Markov chains field on the homogeneous tree. We apply a new type of techniques to
study of the small deviation theorems for arbitrary random field on a homogeneous tree. As
corollaries, a class of small deviation theorems for the frequencies of states ordered couples
and harmonic mean of transitional probability of Markov chains field on the homogeneous
tree are obtained.

2. Main results and its proof

Lemma 1.(see[3]) Let µ1 and µ2 be two probability measure on (Ω,F), D ∈ F ,
{τn, n ≥ 0} be a positive-value stochastic sequence such that

lim inf
n

τn

|T (n)|
> 0. µ1 − a.s. D (8)
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then

lim sup
n→∞

1

τn
log

µ2(XT (n)
)

µ1(XT (n)
)
≤ 0. µ1 − a.s. D (9)

Particularly, let τn = |T (n)|, then

lim sup
n→∞

1

|T (n)|
log

µ2(XT (n)
)

µ1(XT (n)
)
≤ 0. µ1 − a.s. (10)

Proof. See reference [3].
Let

ϕ(µ|µQ) = lim sup
n→∞

1

|T (n)|
log

µ(XT (n)
)

µQ(XT (n)
)
. (11)

ϕ(µ|µQ) is called the sample relative entropy rate with respect to µ and µQ. ϕ(µ|µQ) is
also called asymptotic logarithmic likelihood ratio. By (10) and (11),

ϕ(µ|µQ) ≥ lim inf
n→∞

1

|T (n)|
log

µ(XT (n)
)

µQ(XT (n)
)
≥ 0. µ− a.s. (12)

Hence ϕ(µ|µQ) can be look on as a type of a measure of the deviation between the arbitrary
random field and the Markov chains field on the homogeneous tree.

Although ϕ(µ|µQ) is not a proper metric between two probability measures, we nev-
ertheless think of it as a measure of ”dissimilarity” between their joint distribution µ and
Markov distribution µQ. Obviously, ϕ(µ|µQ) = 0 if and only if µ = µQ. It has been shown
in (12) that ϕ(µ|µQ) ≥ 0, a.s. in any case. Hence, ϕ(µ|µQ) can be used as a random

measure of the deviation between the true joint distribution µ(xT
(n)

) and the Markov

distribution µQ(xT
(n)

). Roughly speaking, this deviation may be regarded as the one be-

tween coordinate stochastic process xT
(n)

and the Markov case. The smaller ϕ(µ|µQ) is,
the smaller the deviation is.

Theorem 1. Let X = {Xσ, σ ∈ T} be an arbitrary random field on the homogeneous
tree T . ϕ(µ|µQ) is defined as (11). Let f(x, y) be an arbitrary real bivariate function
defined on S2, c > 0. Denote

D(c) = {ω : ϕ(µ|µQ) ≤ c}, (13)

then

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]} ≤ (2
√
c+c)

∑
i∈S

∑
j∈S
|f(i, j)|,

µ− a.s. ω ∈ D(c) (14)

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]} ≥ −2
√
c
∑
i∈S

∑
j∈S
|f(i, j)|.
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µ− a.s. ω ∈ D(c) (15)

Where EQ(·) represents the expectation with respect to the Markov measure µQ.

Proof. Consider the probability space (Ω,F , µ), let λ be an arbitrary real number,
δi(j) be Kronecker function. We construct the following product distribution:

µQ(xT
(n)

;λ) = λ

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(xσ)δj(xτ ) n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

[
1

1 + (λ− 1)Qk+1(j|i)
]δi(xσ)

·q(x0)
n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

Qk+1(xτ |xσ). (16)

By (16) we have∑
xLn∈S

µQ(xT
(n)

;λ)

=
∑
xLn∈S

q(x0)

n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

λδi(xσ)δj(xτ )[
1

1 + (λ− 1)Qk+1(j|i)
]δi(xσ) ·Qk+1(xτ |xσ)

= µQ(xT
(n−1)

;λ)
∑
xLn∈S

∏
σ∈Ln−1

∏
τ∈S(σ)

λδi(xσ)δj(xτ )[
1

1 + (λ− 1)Qn(j|i)
]δi(xσ)Qn(xτ |xσ)

= µQ(xT
(n−1)

;λ)
∏

σ∈Ln−1

∏
τ∈S(σ)

∑
xτ∈S

λδi(xσ)δj(xτ )[
1

1 + (λ− 1)Qn(j|i)
]δi(xσ)Qn(xτ |xσ)

µQ(xT
(n−1)

;λ)
∏

σ∈Ln−1

∏
τ∈S(σ)

λδi(xσ)Qn(j|xσ) + 1−Qn(j|xσ)

[1 + (λ− 1)Qn(j|i)]δi(xσ)
, (17)

when xσ = i, we obtain from (17) that ∑
xLn∈S

µQ(xT
(n)

;λ)

µQ(xT
(n−1)

;λ)
∏

σ∈Ln−1

∏
τ∈S(σ)

1 + (λ− 1)Qn(j|i)
1 + (λ− 1)Qn(j|i)

= µQ(xT
(n−1)

;λ), (18)

when xσ 6= i, we acquire from (17) that∑
xLn∈S

µQ(xT
(n)

;λ) =

= µQ(xT
(n−1)

;λ)
∏

σ∈Ln−1

∏
τ∈S(σ)

(Qn(j|xσ) + 1−Qn(j|xσ)) = µQ(xT
(n−1)

;λ). (19)
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Therefore µQ(xT
(n)

;λ), n = 1, 2, · · · are a family of consistent distribution functions

on ST
(n)

. Let

Un(λ, ω) =
µQ(XT (n)

;λ)

µ(XT (n)
)

. (20)

By (16) and (20), we have

Un(λ, ω) = λ

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)δj(Xτ ) n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

[
1

1 + (λ− 1)Qk+1(j|i)
]δi(Xσ)

·q(X0)
n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

Qk+1(Xτ |Xσ)

/
µ(XT (n)

). (21)

Since µ and µQ are two probability measures, we easily see that Un(λ, ω) is a nonneg-
ative sup-martingale from Doob’s martingale convergence theorem(see[12]) . Moreover,

lim
n→∞

Un(λ, ω) = U∞(λ, ω) <∞. µ− a.s. (22)

By (10) and (20) we have

lim sup
n→∞

1

|T (n)|
logUn(λ, ω) ≤ 0. µ− a.s. (23)

By (7), (21) and (23) we have

lim sup
n→∞

{ 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)δj(Xτ ) log λ

− 1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ) log[1 + (λ− 1)Qk+1(j|i)] +
1

|T (n)|
log

µQ(XT (n)
)

µ(XT (n)
)
}

≤ 0. µ− a.s. (24)

Letting λ = 0 in (24), we have

ϕ(µ|µQ) ≥ lim inf
n→∞

1

|T (n)|
log

µ(XT (n)
)

µQ(XT (n)
)
≥ 0. µ− a.s. (25)

By (13) and (24) we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ){δj(Xτ ) log λ− log[1 + (λ− 1)Qk+1(j|i)]} ≤

ϕ(µ|µQ) ≤ c. µ− a.s. ω ∈ D(c) (26)
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In the case λ > 1, dividing two sides of (26) by log λ, we obtain

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ){δj(Xτ )− log[1 + (λ− 1)Qk+1(j|i)]
log λ

} ≤ c

log λ
.

µ− a.s. ω ∈ D(c) (27)

By (27), the inequalities 1− 1/x ≤ lnx ≤ x− 1,0 ≤ δi(Xσ) ≤ 1 and the properties of
superior limit

lim sup
n→∞

(an − bn) ≤ d⇒ lim sup
n→∞

(an − cn) ≤ lim sup
n→∞

(bn − cn) + d,

we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{δi(Xσ)δj(Xτ )− δi(Xσ)Qk+1(j|i)}

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ){ log[1 + (λ− 1)Qk+1(j|i)]
log λ

−Qk+1(j|i)}+
c

log λ

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ){(λ− 1)Qk+1(j|i)
log λ

−Qk+1(j|i)}+
c

log λ

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

(λ− 1)Qk+1(j|i) +
c

λ− 1
+ c

≤ lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

(λ− 1) +
c

λ− 1
+ c

= (λ− 1) +
c

λ− 1
+ c.

µ− a.s. ω ∈ D(c) (28)

It is easy to show that in the case c > 0 , the function f(λ) = (λ − 1) + c + c
λ−1(λ > 1)

attains its smallest value f(1 +
√
c) = 2

√
c + c at λ = 1 +

√
c. Hence letting λ = 1 +

√
c

in (28), we have

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{δi(Xσ)δj(Xτ )− δi(Xσ)Qk+1(j|i)} ≤ 2
√
c+ c.

µ− a.s. ω ∈ D(c) (29)

In the case c = 0, (29) also follows from (28) by choosing λi → 1 + (i→∞).
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In the case 0 < λ < 1, dividing two sides of (26) by log λ, we obtain

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{δi(Xσ)δj(Xτ )− δi(Xσ)Qk+1(j|i)}

≥ lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)(
λ− 1

1− 1/λ
− 1)Qk+1(j|i) +

c

λ− 1

≥ lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)(λ− 1) +
c

λ− 1

= (λ− 1) +
c

λ− 1
.

µ− a.s. ω ∈ D(c) (30)

It is obvious to show that in the case c > 0, the function h(λ) = (λ− 1) + c
λ−1(0 < λ < 1)

attains its largest value h(1 −
√
c) = −2

√
c at λ = 1 −

√
c . Hence letting λ = 1 −

√
c in

(30), we obtain

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ){δj(Xτ )−Qk+1(j|i)} ≥ −2
√
c.

µ− a.s. ω ∈ D(c) (31)

In the case c = 0, (31) also follows from (30) by choosing λi → 1− (i→∞).
It follows from (31) and (29) that for any f(i, j),

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)} ≤ (2
√
c+ c)|f(i, j)|,

µ− a.s. ω ∈ D(c) (32)

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)} ≥ −2
√
c|f(i, j)|.

µ− a.s. ω ∈ D(c) (33)

Noticing that

f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]

=
∑
i∈S

∑
j∈S

δi(Xσ)δj(Xτ )f(i, j)−
∑
j∈S

f(Xσ, j)Qk+1(j|Xσ)

=
∑
i∈S

∑
j∈S

δi(Xσ)δj(Xτ )f(i, j)−
∑
i∈S

∑
j∈S

δi(Xσ)f(i, j)Qk+1(j|i)
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i∈S

∑
j∈S

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)}. µ− a.s. ω ∈ D(c). (34)

By virtue of the properties of superior limit and inferior limit, combing (32)-(34), we
obtain

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]}

≤
∑
i∈S

∑
j∈S

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)}

≤ (2
√
c+ c)

∑
i∈S

∑
j∈S
|f(i, j)|. (35)

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]}

= lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
i∈S

∑
j∈S

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)}

≥
∑
i∈S

∑
j∈S

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)f(i, j){δj(Xτ )−Qk+1(j|i)}

≥ −2
√
c
∑
i∈S

∑
j∈S
|f(i, j)|. (36)

(14), (15) follow from (35) and (36), respectively. The proof is finished.

Corollary 1. Let X = {Xσ, σ ∈ T} be the Markov chains field determined by the
measure µQ on the homogeneous tree with the initial distribution (6) and joint distribution
(7). f(x, y) is defined as above. Then

lim
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]} = 0. µQ−a.s. (37)

Proof. In this case, µ ≡ µQ. It is obvious that ϕ(µ|µQ) ≡ 0. Hence letting c = 0 in
Theorem 1, we obtain D(0) = Ω, (37) follows from (14) and (15) immediately.

Corollary 2. Let X = {Xσ, σ ∈ T} be an arbitrary random field on the homogeneous
tree T . ϕ(µ|µQ) is defined as (11). Denote c > 0. Let i, j ∈ S, Sn(i, j) be the number of
couple (i, j) in the couples of random variables

(Xσ, Xτ ), 0 ≤ k ≤ n− 1, σ ∈ Lk, τ ∈ S(σ), n ≥ 1.
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That is

Sn(i, j) =

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)δj(Xτ ).

Then

lim sup
n→∞

1

|T (n)|
{Sn(i, j)−

n−1∑
k=0

∑
σ∈Lk

Nδi(Xσ)Qk+1(j|i)} ≤ 2
√
c+ c, µ− a.s. ω ∈ D(c)

(38)

lim inf
n→∞

1

|T (n)|
{Sn(i, j)−

n−1∑
k=0

∑
σ∈Lk

Nδi(Xσ)Qk+1(j|i)} ≥ −2
√
c. µ−a.s. ω ∈ D(c) (39)

Proof. Letting f(x, y) = δi(x)δj(y) in Theorem 1, we have

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]}

=
1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{δi(Xσ)δj(Xτ )− EQ[δi(Xσ)δj(Xτ )|Xσ]}

=
1

|T (n)|
{Sn(i, j)−

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δi(Xσ)Qk+1(j|Xσ)}

=
1

|T (n)|
{Sn(i, j)−

n−1∑
k=0

∑
σ∈Lk

Nδi(Xσ)Qk+1(j|i)} (40)

and∑
u∈S

∑
v∈S
|f(u, v)| =

∑
u∈S

∑
v∈S

δi(u)δj(v) =
∑
u∈S

δi(u) = 1. (41)

Therefore, (38) and (39) follows from (14), (15), (40) and (41).
Corollary 3. Let X = {Xσ, σ ∈ T} be an arbitrary random field on the homogeneous

tree T . ϕ(µ|µQ) is defined as (11). Denote c > 0. Let Sn(j) be the number of j in the set

of random variables XT (n)
= {Xσ, σ ∈ T (n)}. That is

Sn(j) =

n∑
k=0

∑
σ∈Lk

δj(Xσ) = δj(X0) +

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

δj(Xτ ).

Then

lim sup
n→∞

1

|T (n)|
{Sn(j)−

n−1∑
k=0

∑
σ∈Lk

NQk+1(j|Xσ)} ≤ (2
√
c+ c)M, µ−a.s. ω ∈ D(c) (42)
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lim inf
n→∞

1

|T (n)|
{Sn(j)−

n−1∑
k=0

∑
σ∈Lk

NQk+1(j|Xσ)} ≥ −2
√
cM. µ− a.s. ω ∈ D(c) (43)

Proof. Letting f(x, y) = δj(y) in Theorem 1, we have by the definition of Sn(j) that

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]}

=
1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{δj(Xτ )− EQ[δj(Xτ )|Xσ]}

=
1

|T (n)|
{Sn(j)− δj(X0)−

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

∑
xτ∈S

δj(xτ )Qk+1(xτ |Xσ)}

=
1

|T (n)|
{Sn(j)− δj(X0)−

n−1∑
k=0

∑
σ∈Lk

NQk+1(j|Xσ)} (44)

and ∑
u∈S

∑
v∈S
|f(u, v)| =

∑
u∈S

∑
v∈S

δj(v) = M. (45)

Therefore, (42) and (43) follows from (14), (15), (44) and (45).

3. Strong deviation theorem for harmonic mean of the transitional
probability of the homogeneous Markov chain field on a

homogeneous tree

In the definition 2, if for all n ≥ 1,

Qn = Q = (Q(y|x)), ∀x, y ∈ S.

X = {Xσ, σ ∈ T} will be also called S-valued homogeneous Markov chain indexed by a
homogeneous tree. At the moment, we have

µQ(x0) = q(x0)

µQ(xT
(n)

) = q(x0)
n−1∏
k=0

∏
σ∈Lk

∏
τ∈S(σ)

Q(xτ |xσ), n ≥ 1. (46)

We present a small deviation theorem for harmonic mean of the transitional probability
of Markov chain indexed by a homogeneous tree as follows:
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Theorem 2. Let X = {Xσ, σ ∈ T} be an arbitrary random field on the homogeneous
tree. D(c) is defined as (13). c > 0. Then

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Q(Xτ |Xσ)−1 ≤M + (2
√
c+ c)

∑
i∈S

∑
j∈S

Q(j|i)−1,

µ− a.s. ω ∈ D(c) (47)

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Q(Xτ |Xσ)−1 ≥M − 2
√
c
∑
i∈S

∑
j∈S

Q(j|i)−1.

µ− a.s. ω ∈ D(c) (48)

Proof. Letting f(x, y) = Q(y|x)−1 in Theorem 1, by (14) we can write

lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{f(Xσ, Xτ )− EQ[f(Xσ, Xτ )|Xσ]}

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{Q(Xτ |Xσ)−1 − EQ(Q(Xτ |Xσ)−1|Xσ)}

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

{Q(Xτ |Xσ)−1 −
∑
xτ∈S

Q(xτ |Xσ)−1Q(xτ |Xσ)}

= lim sup
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Q(Xτ |Xσ)−1 −M

≤ (2
√
c+ c)

∑
i∈S

∑
j∈S

Q(j|i)−1. µ− a.s. ω ∈ D(c). (49)

Analogously, from (15) we can get

lim inf
n→∞

1

|T (n)|

n−1∑
k=0

∑
σ∈Lk

∑
τ∈S(σ)

Q(Xτ |Xσ)−1 −M ≥ −2
√
c
∑
i∈S

∑
j∈S

Q(j|i)−1. (50)

(47), (48) follow from (49) and (50), respectively.

4. Conclusion

In this paper, we mainly investigate a kind of small deviation theorems for the arbi-
trary bivariate function indexed by a homogeneous tree by introducing the sample relative
entropy rate. ϕ(µ|µQ) is regarded as a measure of ”dissimilarity” between their joint
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distribution µ and Markov distribution µQ. When the difference between the joint dis-
tribution µ and Markov distribution µQ is controlled in a certain range, the difference
between the functions f(Xσ, Xτ ) and the conditional expectation of f(Xσ, Xτ ) under the
Markov measure µQ can also be controlled in a certain range determined by the bound of
ϕ(µ|µQ). The smaller the bound c of ϕ(µ|µQ) is, the smaller the deviation of f(Xσ, Xτ )
relative to EQ[f(Xσ, Xτ )|Xσ] is. As corollaries, a class of small deviation theorems for
the frequencies of states ordered couples and harmonic mean of transitional probability of
Markov chains field on the homogeneous tree are obtained.
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