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On the Parametric Resonance Cases of the System Con-
sisting of the Circular Cylinder and Surrounding Elastic
Medium Under Action in the Interior of the Cylinder
Time-Harmonic Oscillating Moving Load

M.A. Mehdiyev

Abstract. The paper studies the parametric resonance cases which appear under the action of
the oscillating moving ring load on the interior of the hollow cylinder surrounded by an elastic
medium. The axisymmetric stress-strain state is considered and it is assumed that the perfect
contact conditions satisfy on the interface between the cylinder and surrounding elastic medium
and the equations of motion for the cylinder and surrounding elastic medium are written separately
and these equations are exact the so-called 3D equations of the elastodynamics. Numerical results
on the interface stresses are presented and according to the analyses of these results, it is established
the existence of the parametric resonance in certain values of the moving velocity of the oscillating
load.

1. Introduction

The detailed review of the related investigations are given in the papers [1-4] and in
the monograph [5] therefore we do not consider here this review again. Nevertheless, we
note here some particularities of the recent results which have been obtained with the
participation of the author of the present paper. We begin this notation with the paper
[1] in which it was shown that under the forced vibration of the system consisting of the
hollow cylinder and of the surrounding elastic medium under the action time-harmonic
axisymmetric ring forces on the interior of the cylinder the resonance phenomenon does
not appear.

In this case, the dependence between the frequency and amplitudes of the quantities
characterizing the stress-strain state in the aforementioned system appearing as a result
of the time-harmonic ring load has non-monotonic character. In other words, there exists
such value of the frequency of the external forces under which the absolute values of the
mentioned quantities have their maximum. In other words, there exists such value of the
frequency of the external forces under which the absolute values of the mentioned quan-
tities have their maximum. However, in the paper [2] it was established that in the case
where on the interior of the cylinder act corresponding non-axisymmetric forces, according
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to which it was solved the relating three-dimensional problem the noted above dependen-
cies have more complicated character and nevertheless the resonance phenomenon does
not observe in the 3D case also. At the same time, the paper [3] establishes that if on
the interior of the cylinder the axisymmetric moving constant ring load acts then under
certain values moving velocity of this load the resonance type phenomenon takes place
and the velocity regarding this case is called the critical velocity.

The question ”what kind of the response of the foregoing system to the time-harmonic
ring forces acting on the interior of the cylinder appears in the case where these forces
move with the constant velocity and this velocity is less than the corresponding critical
velocity”, is the subject of the investigation of the present paper. As a result of this
investigation, it is established that there exist such value of the velocity of the moving
load under which the resonance cases appear as a result of the oscillation of the external
forces.

2. Formulation of the problem

Consider the aforementioned ”hollowcylinder + surrounded elastic medium” system
the sketch of which is illustrated in Fig. 1 and assume the thickness of the wall of the
cylinder is h and the external radius of the cross section of that is R. Moreover, we assume
that on the inner surface of this cylinder normal time-harmonic ring forces act and these
forces move along the cylinder axis with constant velocity V . We associate with the central
axis of the cylinder the cylindrical system of coordinates Orθz and within this framework
we attempt to investigate the stress-strain state in the system under consideration with
utilizing the following field equations of elastodynamics.

Figure 1: The sketch of the system under consideration and the oscillating moving ring
load
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Elasticity relations:
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Strain – displacement relations:
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In equations (1), (2) and (3) the conventional notation of the theory of elasticity is used
and through the upper index (k) it is indicated the belonging of the quantities to the
cylinder under k = 2 and to the surrounding elastic medium under k = 1.

Consider also formulation of the corresponding boundary and contact conditions which
can be written as follows.
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Thus, the investigation of the problem is reduced to the boundary-contact problem
(1) – (6) for solution to which the method developed in the papers [1-4] is employed.
Now we consider some fragments of the application of this method for the problem under
consideration.

3. Method of solution

For solution of the equations (1)-(3). We use the well-known, classical Lame (or
Helmholtz) decomposition (see, for instance, the monograph [6] and others listed therein)
for solution of the above formulated problem:
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where Φ(k) and Ψ(k) satisfy the following equations:

∇2Φ(k) − 1

(c
(k)
1 )2

∂2Φ(k)

∂t2
= 0 ,∇2Ψ(k) − 1

(c
(k)
2 )2

∂2Ψ(k)

∂t2
= 0,∇2 =

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
. (8)

Here the notation c
(k)
1 =
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/
ρ(k) and c
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ρ(k) is used.

We introduce the moving coordinate system

r′ = r, z′ = z − V t, (9)
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which moves with the ring load. Representing all the sought values as g(r, z′, t) =
ḡ(r, z′)eiωt (below, the over bar and upper prime will be omitted) and rewriting the Eq.
(8) with the coordinates r′ and z′ determined in (9), we obtain:
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During the foregoing transformations, the first condition in (4) transforms to the fol-
lowing one:

σ(2)
rr

∣∣∣
r=R−h

= −P0δ(z), (11)

but the other relations and conditions in (1) – (6) remain valid for the amplitudes of the
sought values.

Below we will use the dimensionless coordinates r̄ = r/h and z̄ = z/h instead of the
coordinates r and z, respectively and the over-bar in r̄ and z̄ will be omitted.

Further, we employ the exponential Fourier transform fF =
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presented as follows:{
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Substituting the expressions in (12) into the foregoing equations, relations and contact
and boundary conditions, we obtain the corresponding ones for the Fourier transformations
of the sought values. After this transform the relation (2), the first and second relation in
(3), the second condition in (4) and all the conditions in (5) and (6) also remain valid for
their Fourier transforms. Nevertheless, the third and fourth relation in (3), the condition
(11) and the relations in (7) transform to the following ones:
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where, according to (8), the functions Φ
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where
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Taking into consideration the conditions in (6), the solution to the equations in (14)
are found as follows:
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Substituting the expressions in (17) into (13) and the Fourier transforms of the ex-
pressions in (2) it is obtained the analytic expressions for the Fourier transforms of the
sought values which contain the unknown constants A1, A2, B 1, B2, C2 and D2. Using the
Fourier transforms of the contact and boundary conditions (4) and (5) the system of alge-
braic equations are obtained for these unknowns. Thus, solving this system of equations
the Fourier transforms of the sought values are determined completely.

The originals of the aforementioned transforms are determined numerically the algo-
rithm for which are proposed and discussed in the papers [1-5]. Therefore we do not
consider here the algorithm and their testing which are used under obtaining numerical
results which are discussed below.

4. Numerical results and their discussions

First of all, we note that the numerical results which will be considered below are
obtained in the following three cases.

Case 1.

E(1)
/
E(2) = 0.35, ρ(1)

/
ρ(2) = 0.1, ν(1) = ν(2) = 0.25. (18)

Case 2.

E(1)
/
E(2) = 0.05, ρ(1)

/
ρ(2) = 0.01, ν(1) = ν(2) = 0.25. (19)

Case 3.

E(1)
/
E(2) = 0.5, ρ(1)

/
ρ(2) = 0.5, ν(1) = ν(2) = 0.3. (20)
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We consider of the frequency response of the interface normal stress

σrr(z) = σ(1)
rr (R, z) = σ(2)

rr (R, z) (21)

in the foregoing cases (18)-(20) for various values of dimensionless moving velocity c =

V/c
(2)
2 . The graphs of these responses are illustrated in Figs. 2, 3 and 4 for the cases

(18), (19) and (20), respectively.

Figure 2: Frequency response of the interface normal stress σrr obtained for various values
of the load moving velocity under h/R = 0.5 (a), 0.2 (b), 0.1 (c) and 0.05 (d) in Case 1

Figure 3: Graphs indicated in Fig. 2 caption and constructed in Case 2
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Figure 4: Graphs indicated in Fig. 2 caption and constructed in Case 3

It follows from Figs.2, 3 and 4 that in the all cases under consideration (except the
case where h/R = 0.5 and 0 ≤ c ≤ 0.3 in Case 1 and Case 3, and 0 ≤ c ≤ 0.1 in Case
3 under which the absolute values of the stress increase with Ω in the considered change
range) the frequency responses have non-monotonic character, i.e. there are such values of
Ω (denote this value of Ω by Ω∗) before which the absolute value of the stress σrr becomes
maximum and this maximum increases with the moving velocity of the ring load. At the
same time, it follows from the results that the values of Ω∗ decrease monotonically with c.
Moreover, Figs. 2a, 2b, 3a, 3b, 3c and 3d show that there may be cases where an increase
in the values of c leads to resonance cases. Such resonance cases, and the corresponding
resonance frequencies are indicated in these figures.

The above-noted resonances can be estimated as a parametric resonance and as a
parameter it can be taken as the load moving velocity. Consequently, under oscillating
moving load action of the ring load, resonance type accidents appear not only under
critical moving velocities of this load but also under the foregoing type of parametric
resonances. Analyses of the foregoing results also show that the absolute maximum values
of the stress under consideration increase with decreasing of the ratio h/R. Moreover,
comparison of the results obtained for Case 1, Case 2 and Case 3 with each other shows
that the responses of the interface normal stress to the moving velocity of the ring load and
its vibration depend not only on the values of this velocity and frequency, but also depend
significantly on the ratio of the mechanical properties of the selected pairs of materials, as
indicated in (18) – (20) for the hollow cylinder and surrounding elastic medium. At the
same time, the latter dependence has not only quantitative, but also qualitative character.

5. Conclusions

Thus, in the present paper the parametric resonance of the system consisting of the
hollow cylinder and surrounding elastic medium under action of the time-harmonic oscil-
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lating moving ring load acting in the interior of the cylinder is studied. The study is made
within the scope of the exact equations and relations of the elastodynamics in the axisym-
metric stress-state case. It is described the problem formulation and solution method for
this problem.

Numerical results are presented for certain cases which are determined with the ratio of
the mechanical constants of the constituents. As a result of the analyses of these results, it
is established that there exist the cases under which in the certain values of the velocity of
the moving load the oscillation of the moving load causes the resonance of the bi-material
elastic system under consideration. The appearance of the resonance cases depends also
on the ratio of the cylinder thickness to the cylinder external radius.

The obtained results and their discussions show that the investigations of the problem
under consideration have not only theoretical but also the application significance under
construction of underground structures. Therefore, it can be concluded that it is necessary
to develop such type investigations for the other related problems.

Finally, we note that the results obtained in the present paper have been presented in
the 6-th International Conference on Control and Optimization with Industrial Application
and the related summary has been published in [7].
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