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Legendre Collocation Polynomials Method to Solve

Linear Fuzzy Volterra Integral Equations

M. Arab Ameri ∗, M. Shahrezaee

Abstract. In this paper, we apply the method of Legendre collocation polynomials to approximate
the solution of linear fuzzy Volterra integral equation (FVIE). First we present the fuzzy set and
properties of Legendre polynomials then verify this properties that apply to reduce the FVIE to
two crisp linear Volterra integral equations (VIEs). Also, the convergency of the proposed method
is approved. Finally several examples are solved by the mentioned method.

Key Words and Phrases: Fuzzy function, Fuzzy Volterra integral equations, Legendre polyno-
mials.

2010 Mathematics Subject Classifications: 65R20

1. Introduction

The topic of fuzzy integral equations is related to two definitions, fuzzy function and
the integral of fuzzy function. For the first time, Chang and Zade introduced the fuzzy
mapping function [4]. Dubois and Prade [6] defined the topic of integration of fuzzy
function. While Goetchel and Voxman [9] preferred the integral in Riemann type concept,
the Lebesgue integral type approach was introduced by Kaleva [10].

The concept of the fuzzy integral equation was first presented by Congxin and Ming
[5]. Then, this subject was continued by Mordeson and Newman [13]. Also this topic was
followed by Wu and Mu in [11].

There are several research papers about solving FVIE [3, 8, 15, 16, 17]. Most of them
have converted a FVIE to a linear crisp system of integral equations using the fuzzy
number in parametric form, then have applied a method to obtain the solutions of the
resulted system. Also, the subject of the existence and uniqueness of solution to FVIE is
given in [15].

In this paper, we approximate the solution of FVIE using Legendre collocation poly-
nomial method. We also use the fuzzy number in parametric form and transform a linear
FVIE to a crisp system of two VIEs, then solve the obtained system using Legendre
polynomial.
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The frame of this paper is as follows: Some prerequistes about fuzzy set theory is
reviewed in section 2. In Section 3, we present some elementary properties of Legendre
polynomials and drive our method to solve FVIEs. Also in section 3 the convergency of the
mentioned method is approved. Section 4, includes numerical solution of three instances by
present method for proving the efficiency of method. Eventually the conclusion highlights
are given in section 5.

2. Preliminaries

In this section, we gather some well-known definitions from [9, 12, 7] which we will use
throughout the paper.

Definition 1. The parametric form of fuzzy number is represented by an ordered pair of
functions (x(α), x(α)), 0 6 α 6 1 which satisfy the following requierments:

1. x(α) is a bounded left-continuous non-decreasing function over [0, 1] ;

2. x(α) is a bounded left-continuous non-increasing function over [0, 1] ;

3. x(α) 6 x(α) 0 6 α 6 1.

For the crisp number, a, we have x(α) = x(α) = a, 0 6 α 6 1.
For arbitrary x = (x(α), x(α)) , y = (y(α), y(α)) and k ∈ R we define
addition and multiplication by k as:

(x+ y)(α) = x(α) + y(α),

(x+ y)(α) = x(α) + y(α),

kx(α) = kx(α) , kx(α) = kx(α) if k > 0,

kx(α) = kx(α) , kx(α) = kx(α) if k < 0.

We represent the set of all fuzzy numbers by E
1.

For fuzzy number x = (x(α), x(α)), 0 6 α 6 1, let

xc(α) =
x(α) + x(α)

2
,

xd(α) =
x(α)− x(α)

2
.

Clearly, xd(α) > 0, x(α) = xc(α)− xd(α) and x(α) = xc(α) + xd(α), also a fuzzy number
x ∈ E

1 is said symmetric if xc(α) is independent of α for all 0 6 α 6 1.
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For x = (x(α), x(α)), y = (y(α), y(α)) and arbitrary real numbers k, s, let z = kx+sy, then

zc(α) = kxc(α) + syc(α),

zd(α) = |k|xd(α) + |s| yd(α).

Definition 2. The distance between fuzzy numbers x = (x(α), x(α)), y = (y(α), y(α)) in
Hausdorff metric is defined by

D(x, y) = max{ sup
06α61

|x(α)− y(α)|, sup
06α61

|x(α) − y(α)|}.

Definition 3. A fuzzy function x : R → E
1 is said to be continuous for arbitrary fixed

t0 ∈ [a, b], if for every one ε > 0 there exists δ > 0 such that if | t − t0| < δ then
D (x (t) , x (t0)) < ε.

Definition 4. Let x : [a, b] → E
1, for each partition ∆ = { s0, s1, ..., sn} of [a, b] and for

arbitrary ξp : sp−1 < ξp < sp, 1 6 p 6 n, define

R∆ =
n
∑

p=0

x(ξp)(sp − sp−1)

and
I = lim

h→ 0
R∆; h = max

16 p6n
|sp − sp−1|

if I exsits in the metric D, then it is said definite integral of x(s), i.e. I =
∫ b

a
x(s) ds.

If x : [a, b] → E
1 be continuous in the metric D, then its definite integral over [a, b]

exsits . Furthermore,

(

∫ b

a

x(s, α)ds

)

=

∫ b

a

x(s, α)ds,

(

∫ b

a

x(s, α)ds

)

=

∫ b

a

x(s, α)ds.

Similarly

(

∫ w(t)

0
x(s, α) ds

)

=

∫ w(t)

0
x(s, α) ds,

(

∫ w(t)

0
x(s, α) ds

)

=

∫ w(t)

0
x(s, α) ds.

Lemma 1. [1]. If x, y : [a, b] ⊆ R → E
1 are fuzzy continuous functions, then the function

X : [a, b] → R+ by X(s) = D (x(s), y(s)) is continuous on [a, b] and

D

(∫ b

a

x(s)ds,

∫ b

a

y(s)ds

)

6

∫ b

a

D (x (s) , y (s)) ds.
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3. Numerical method based on Legendre collocation polynomials

In this section, at first we express the properties of Legendre polynomials, then ap-
proximate the solution of FVIE using Legendre polynomials.

3.1. The properties of Legendre polynomials

The Legendre polynomials are defined on the interval [−1, 1] using of the following
recurence formula:

L0(t) = 1,

L1(t) = t,

Lj+1(t) =
2j + 1

j + 1
tLj(t)−

j

j + 1
(t), j = 1, 2, · · · , −1 6 t 6 1.

for using these polynomials on the interval [0, l] we define the so-called shifted Legen-
dre polynomials of degree p as follow:

ψp = Lp(
2

l
t− 1), p = 0, 1, 2, · · · .

The space L2[0, l] is presented with the following inner product and norm

〈 f, g〉 =

∫ l

0
f(t)g(t)dt, ‖ f‖2 =

√

〈 f, f〉 .

The set of shifted Legendre polynomials forms a complete orthogonal space with L2-
norm and orthogonality is guaranteed by

∫ l

0
ψp(t)ψq(t)dt =







l

2p + 1
, p = q,

0, p 6= j.

Any function x(t) ∈ L2[0, l] can be expressed in terms of shifted Legendre polynomials
as

x(t) =

∞
∑

p=0

apψp(t), (1)

where the coefficients ap are given by

ap =
2p+ 1

l

∫ l

0
x(t)ψp(t)dt, p = 0, 1, 2, · · · .
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If we consider only the first (n+ 1)-terms of (1), then we obtain

x(t) ≃ xn(t) =

n
∑

p=0

apψp(t).

3.2. Legendre collocation polynomial method

Our objective in this section is to describe the Legendre collocation polynomial method
for the numerical solution of FVIE. We explain our method for the following FVIE

B(t)x(t, α) = f(t, α) + µ

∫ w(t)

0
k(t, s)x(s, α) ds, (2)

the functions B(t), w(t), f(t, α) and k(t, s) are known for 0 6 t, s 6 l and 0 6 α 6 1.
k(t, s) is kernel of integral, f(t, α) is a fuzzy function and x(t, α) is the unknown function.

Let
(

f(t), f(t)
)

and (x(t), x(t)), 0 6 α 6 1 are parametric form of f(t) and x(t)
respectively, then we obtain parametric form of (2) as the following system:











B(t)x(t, α) = f(t, α) + µ
∫ w(t)
0 k(t, s)x(s, α) ds,

B(t)x(t, α) = f(t, α) + µ
∫ w(t)
0 k(t, s)x(s, α) ds.

(3)

Suppose k(t, s) be continuous and for fix s, k(t, s) changes its sign in finite points as tm
where tm ∈ [0, w(t)]. Without loss of generality, let k(t, s) be nonnegative over [0, t1] and
negative over [t1, w(t)], then the system of (3) yeilds











B(t)x(t, α) = f(t, α) + µ
∫ t1
0 k(t, s)x(s, α) ds+ µ

∫ w(t)
t1

k(t, s)x(s, α) ds,

B(t)x(t, α) = f(t, α) + µ
∫ t1
0 k(t, s)x(s, α) ds+ µ

∫ w(t)
t1

k(t, s)x(s, α) ds.

Refferring to section (2), we have the following equations:











B(t)xc(t, α) = f c(t, α) + µ
∫ t1
0 k(t, s)xc(s, α) ds + µ

∫ w(t)
t1

| k(t, s)|xd(s, α) ds,

B(t)xd(t, α) = fd(t, α) + µ
∫ t1
0 | k(t, s)|xd(s, α) ds + µ

∫ w(t)
t1

k(t, r)xc(s, α) ds.

(4)

Clearly, we must solve two VIEs in crisp form. According to section (3.1), the functions
xc(t, α) and xd(t, α) can be approximated as follows:

xc(t, α) ≃ xcn(t, α) =
n
∑

p=0

cpψp(t), (5)
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xd(t, α) ≃ xdn(t, α) =

n
∑

p=0

dpψp(t). (6)

The coefficients cp and dp, p = 0, 1, · · · , n are unknown. x(t, α) is approximated by
xn(t, α) = (xn(t, α), xn(t, α)) where xn(t, α) = xcn(t, α)−x

d
n(t, α) and xn(t, α) = xcn(t, α)+

xdn(t, α). Substituting equations (5) and (6) into system (4), we have:







































































B(t)
n
∑

p=0
cpψp(t) = f c(t, α) + µ

∫ t1
0 k(t, s)

(

n
∑

p=0
cpψp(s)

)

ds

+ µ
∫ w(t)
t1

| k(t, s) |

(

n
∑

p=0
dpψp(s)

)

ds,

B(t)
n
∑

p=0
dpψp(t) = fd(t, α) + µ

∫ t1
0 | k(t, s) |

(

n
∑

p=0
dpψp(s)

)

ds

+ µ
∫ w(t)
t1

k(t, s)

(

n
∑

p=0
cpψp(s)

)

ds.

(7)

Let

up(t) = B(t)ψp(t)− µ

∫ t1

0
k(t, s)ψp(s)ds,

vp(t) = −µ

∫ w(t)

t1

| k(t, s) |ψp(s)ds,

then system (7) can be rewritten as:


























n
∑

p=0
cpup(t) +

n
∑

p=0
dpvp(t) = f c(t, α),

n
∑

p=0
dpup(t) +

n
∑

p=0
cpvp(t) = fd(t, α).

(8)

The n+1 roots of the shifted Legendre polynomial ψn+1(t) can be considerd as collo-
cation nodes tq (q = 0, 1, · · · , n) in equations of system (8).

Thus we obtain the following system of equations:



























n
∑

p=0
cpup(tq) +

n
∑

p=0
dpvp(tq) = f c(tq, α), q = 0, 1, · · · , n,

n
∑

p=0
dpup(tq) +

n
∑

p=0
cpvp(tq) = fd(tq, α), q = 0, 1, · · · , n.

(9)

The approximate solution of xc(t, α) and xd(t, α) are obtained after computing the
values cp and dp from (9).
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3.3. Convergence property of Legendre collocation method

We will show in this section that, under mild conditions on the kernel function k, the
approximate solution obtained by Legendre collocation method do convergence toward
exact solution of FVIE as the degree of Legendre polynomial approaches ∞.

Theorem 1. For arbitrary tp ∈ [a, b], p = 0, 1, · · · , n, let x(tp, α) and xn(tp, α) are the
exact and approximate solutions of equation (2) for t = tp, respectively.
In integral equation (2), if k(t, s), 0 6 t, s 6 l, be continuous and is bounded by M, then
xn(tp, α) → x(tp, α) for all p = 0, 1, · · · , n, as n→ ∞.

Proof. The convergence in E
1 space with Hausdorff metric is defined by

lim
n→∞

xn (tp, α) = x (tp, α) ⇐⇒ lim
n→∞

D(x (tp, α) , xn (tp, α)) = 0.

D (x (tp, α) , xn (tp, α)) =

= D





∫ w(tp)

0
k(t, s)x(s, α) ds,

∫ w(tp)

0
k(t, s)





n
∑

p=0

apψp(s)



 ds





≤M D





∫ w(tp)

0
x(s, α) ds,

∫ w(tp)

0





n
∑

p=0

apψp(s)



 ds



 ,

where M is upperbound of k(t, s). Using lemma (1) we have

D (x (tp, α) , xn (tp, α)) 6 M

∫ w(tp)

0
D



x(s, α),
n
∑

p=0

apψp(s)



 ds,

So

lim
n→∞

D (x (tp, α) , xn (tp, α)) 6 M lim
n→∞





∫ w(tp)

0
D



x(s, α),

n
∑

p=0

apψp(s)



 ds



 ,

or

lim
n→∞

D (x (tp, α) , xn (tp, α)) 6 M

∫ w(tp)

0
D



x(s, α), lim
n→∞

n
∑

p=0

apψp(s)



 ds.

We know

x(s, α) = lim
n→∞

n
∑

p=0

apψp(s)

then

lim
n→∞

D



x(t, α),
n
∑

p=0

apψp(t)



 −→ 0,
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Finally, we conclude that

lim
n→∞

D (x (tp, α) , xn (tp, α)) −→ 0,

so the proof is completed.

4. Numerical examples

To show the efficiency of the proposed numerical method we use it for three FVIEs,
we compute the error of the proposed method by

γc(t, α) = ‖ ec(t, α)‖2, γd(t, α) = ‖ ed(t, α)‖2, (10)

where

ec(t, α) = |xc(t, α) − xcn(t, α)|, ed(t, α) = |xd(t, α) − xdn(t, α)|,

where xc(t, α) and xd(t, α) are the exact solutions of the system (4), xcn(t, α) and x
d
n(t, α)

are the approximated solutions.

Example 1. Consider the fuzzy Volterra integral equation (2) and let

f(t, α) = (cosh(t) + 1− cosh2(t))(α2 + α),

f(t, α) = (cosh(t) + 1− cosh2(t))(4− α3 − α), 0 6 α 6 1,

w(t) = t and kernel k(t, s) = sinh(t), 0 6 t 6 1, µ = 1.

The exact solution is

x(t, α) = (cosh(t))(α2 + α),

x(t, α) = (cosh(t))(4 − α3 − α), 0 6 α 6 1.

So the exact solution of xc(t, α) and xd(t, α) are

xc(t, α) =
1

2
(cosh(t))(4 − α3 + α2),

xd(t, α) =
1

2
(cosh(t))(4− α3 − α2 − 2α), 0 6 α 6 1.

It is clear that

f c(t, α) =
(cosh(t) + 1− cosh2(t))(4 + α2 − α3)

2
,
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fd(t, α) =
(cosh(t) + 1− cosh2(t))(4 − α3 − α2 − 2α)

2
, 0 6 α 6 1.

So we have the following system of crisp VIEs











B(t)xc(t, α) = f c(t, α) + µ
∫ t

0 sinh(t)xc(s, α) ds,

B(t)xd(t, α) = fd(t, α) + µ
∫ t

0 | sinh(t)|xd(s, α) ds,

0 6 t 6 1, 0 6 α 6 1.

The functions xc(t, α) and xd(t, α) can be approximated by proposed method.
We obtain the error of the computed solution by introduced error formula. Tables 1, 2
show the convergence behavior for n = 2, 3, · · · , 7 and α = 0, 0.1, 0.5, 0.9.

Table 1: The error of x
c(t, 0), xc(t, 0.1), xc(t, 0.5), xc(t, 0.9)

n γc(t, 0) γc(t, 0.1) γc(t, 0.5) γc(t, 0.9)

2 3.48× 10−2 3.49 × 10−2 3.59× 10−2 3.55 × 10−2

3 4.7× 10−3 4.7× 10−3 4.9× 10−3 4.8× 10−3

4 1.1147 × 10−4 1.1172 × 10−4 1.1495 × 10−4 1.1373 × 10−4

5 1.0145 × 10−5 1.0167 × 10−5 1.0462 × 10−5 1.0350 × 10−5

6 1.7023 × 10−7 1.7062 × 10−7 1.7555 × 10−7 1.7368 × 10−7

7 1.165 × 10−8 1.1677 × 10−8 1.2015 × 10−8 1.1887 × 10−8

Table 2: The error of x
d(t, 0), xd(t, 0.1), xd(t, 0.5), xd(t, 0.9)

n γd(t, 0) γd(t, 0.1) γd(t, 0.5) γd(t, 0.9)

2 3.48× 10−2 3.30 × 10−2 2.29× 10−2 5.8× 10−3

3 4.7× 10−3 4.5× 10−3 3.1× 10−3 7.8274 × 10−4

4 1.1147 × 10−4 1.0559 × 10−4 7.3151 × 10−5 1.8420 × 10−5

5 1.0145 × 10−5 9.6094 × 10−6 6.6574 × 10−6 1.6764 × 10−6

6 1.7023 × 10−7 1.6125 × 10−7 1.1172 × 10−7 2.8131 × 10−8

7 1.1651 × 10−8 1.1036 × 10−8 7.6457 × 10−9 1.9253 × 10−9

Example 2. Consider the FVIE (2) with

f(t, α) = α(1 − t−
t2

2
),
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f(t, α) = (2− α)(1 − t−
t2

2
), 0 6 α 6 1,

w(t) = t and kernel k(t, s) = t− s, 0 6 t, s 6 1, µ = 1.

The exact solution of this FVIE is [16]

x(t, α) = α(1− sinh(t)),

x(t, α) = (2− α)(1 − sinh(t)), 0 6 α 6 1.

i.e.

xc(t, α) = 1− sinh(t),

xd(t, α) = (1− α)(1 − sinh(t)), 0 6 α 6 1.

Referring to section (2), we have

f c(t, α) = 1− t−
t2

2
,

fd(t, α) = (1− α)(1 − t−
t2

2
), 0 6 α 6 1.

By substituting the f c(t, α) and fd(t, α) in system (4) we obtain a system of crisp VIEs
where is solved by the present method.
Tables 3, 4 show the computed error of xc(t, α) and xd(t, α) for different values of α. In
this example xc(t, α) is independent of α, also the results in table 3, confirm independency
of α.

Table 3: The error of x
c(t, 0), xc(t, 0.1), xc(t, 0.5), xc(t, 0.9)

n γc(t, 0) γc(t, 0.1) γc(t, 0.5) γc(t, 0.9)

2 3.74× 10−2 3.74 × 10−2 3.74× 10−2 3.74 × 10−2

3 1.1× 10−3 1.1× 10−3 1.1× 10−3 1.1× 10−3

4 1.2029 × 10−4 1.2029 × 10−4 1.2029 × 10−4 1.2029 × 10−4

5 2.3639 × 10−6 2.3639 × 10−6 2.3639 × 10−6 2.3639 × 10−6

6 1.8413 × 10−7 1.8413 × 10−7 1.8413 × 10−7 1.8413 × 10−7

7 2.7093 × 10−9 2.7093 × 10−9 2.7093 × 10−9 2.7093 × 10−9

Example 3. In equation (2), let

f(t, α) = 3 + α,
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Table 4: The error of xd(t, 0), xd(t, 0.1), xd(t, 0.5), xd(t, 0.9)

n γd(t, 0) γd(t, 0.1) γd(t, 0.5) γd(t, 0.9)

2 3.47 × 10−2 3.36 × 10−2 1.87 × 10−2 3.7 × 10−3

3 1.1× 10−3 9.9836 × 10−4 5.5464 × 10−4 1.1093 × 10−4

4 1.2029 × 10−4 1.0826 × 10−4 6.0146 × 10−5 1.2029 × 10−5

5 2.3639 × 10−6 2.1275 × 10−6 1.1820 × 10−6 2.3639 × 10−7

6 1.8413 × 10−7 1.6571 × 10−7 9.2063 × 10−8 1.8413 × 10−8

7 2.7093 × 10−9 2.4384 × 10−9 1.3546 × 10−9 2.7093 × 10−10

f(t, α) = 8− 2α, 0 6 α 6 1,

w(t) = t and kernel k(t, s) = t− s, 0 6 t, s 6 1, µ = 1.

The exact solution in this case is given by [16]

x(t, α) = (3 + α)cosh(t),

x(t, α) = (8− 2α)cosh(t), 0 6 α 6 1

that means,

xc(t, α) =
1

2
(11− α)(cosh(t)),

xd(t, α) =
1

2
(5− 3α)(cosh(t)), 0 6 α 6 1.

we have

f c(t, α) =
11− α

2
,

fd(t, α) =
5− 3α

2
, 0 6 α 6 1.

Tables 5, 6 show the computed error by (10) for n = 2, 3, · · · , 7.

5. Conclusion

In this paper, we introduced a staright approach to approximate the solution of FVIE
based on the Legendre polynomial. We showed the convergency of method, also our
achieving results show that Legendre polynomials approximation method for solving FVIE,
is very effective and it produces high accurate answers. The numerical examples support
this claim.
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Table 5: The error of x
c(t, 0), xc(t, 0.1), xc(t, 0.5), xc(t, 0.9)

n γc(t, 0) γc(t, 0.1) γc(t, 0.5) γc(t, 0.9)

2 9.67× 10−2 9.58 × 10−2 9.23× 10−2 8.88 × 10−2

3 1.30× 10−2 1.29 × 10−2 1.25× 10−2 1.20 × 10−2

4 3.0836 × 10−4 3.0556 × 10−4 2.9435 × 10−4 2.8313 × 10−4

5 2.7955 × 10−5 2.7701 × 10−5 2.6685 × 10−5 2.5668 × 10−5

6 4.7033 × 10−7 4.6606 × 10−7 4.4895 × 10−7 4.3185 × 10−7

7 3.2115 × 10−8 3.1823 × 10−8 3.0656 × 10−8 2.9488 × 10−8

Table 6: The error of x
d(t, 0), xd(t, 0.1), xd(t, 0.5), xd(t, 0.9)

n γd(t, 0) γd(t, 0.1) γd(t, 0.5) γd(t, 0.9)

2 1.76× 10−2 4.13 × 10−2 3.08× 10−2 2.02 × 10−2

3 2.4× 10−3 5.6× 10−3 4.2× 10−3 2.7× 10−3

4 5.6066 × 10−5 1.3175 × 10−4 9.8115 × 10−5 6.4476 × 10−5

5 5.0828 × 10−6 1.1945 × 10−5 8.8949 × 10−6 5.8452 × 10−6

6 8.5515 × 10−8 2.0096 × 10−7 1.4965 × 10−7 9.8342 × 10−8

7 5.8392 × 10−9 1.3722 × 10−8 1.0219 × 10−8 6.7150 × 10−9
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