
Caspian Journal of Applied Mathematics, Ecology and Economics
V. 3, No 2, 2015, December
ISSN 1560-4055

Parabolic Fractional Maximal Operator with Rough Ker-
nels in Parabolic Local Generalized Morrey Spaces

A.S. Balakishiyev∗, E.A. Gadjieva, N.Z. Orucov

Abstract. Let P be a real n×n matrix, whose all the eigenvalues have positive real part, At = tP ,
t > 0, γ = trP is the homogeneous dimension on Rn and Ω is an At-homogeneous of degree zero
function, integrable to a power s > 1 on the unit sphere generated by the corresponding parabolic
metric. We study the parabolic fractional maximal operator MP

Ω,α, 0 ≤ α < γ with rough kernels

in the parabolic local generalized Morrey space LM
{x0}
p,ϕ,P (Rn). We find conditions on the pair

(ϕ1, ϕ2) for the boundedness of the operator IPΩ,α from the space LM
{x0}
p,ϕ1,P

(Rn) to another one

LM
{x0}
q,ϕ2,P

(Rn), 1 < p < q < ∞, 1/p − 1/q = α/γ, and from the space LM
{x0}
1,ϕ1,P

(Rn) to the weak

space WLM
{x0}
q,ϕ2,P

(Rn), 1 ≤ q <∞, 1− 1/q = α/γ.
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1. Introduction

The boundedness of classical operators of the real analysis, such as the maximal oper-
ator and fractional maximal operator, from one weighted Lebesgue space to another one
is well studied by now, and there are well known various applications of such results in
partial differential equations. Besides Lebesgue spaces, Morrey spaces, both the classical
ones (the idea od their definition having appeared in [13]) and generalized ones, also play
an important role in the theory of partial differential equations.

In this paper, we find conditions for the boundedness of the parabolic fractional maxi-
mal operators with rough kernel from a parabolic local generalized Morrey space to another
one, including also the case of weak boundedness.

Note that we deal not exactly with the parabolic metric, but with a general anisotropic
metric ρ of generalized homogeneity, the parabolic metric being its particular case, but we
keep the term ”parabolic in the title and text of the paper, following the existing tradition,
see for instance [4].
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For x ∈ Rn and r > 0, we denote the open ball centered at x of radius r by B(x, r),

its complement by
{
B(x, r) and |B(x, r)| will stand for the Lebesgue measure of B(x, r).

Let P be a real n × n matrix, whose all the eigenvalues have positive real part. Let
At = tP (t > 0), and set

γ = trP.

Then, there exists a quasi-distance ρ associated with P such that (see [5])

(a) ρ(Atx) = tρ(x), t > 0, for every x ∈ Rn;

(b) ρ(0) = 0, ρ(x) = ρ(−x) ≥ 0

and ρ(x− y) ≤ k(ρ(x− z) + ρ(y − z));
(c) dx = ργ−1dσ(w)dρ, where ρ = ρ(x), w = Aρ−1x

and dσ(w) is a measure on the unit ellipsoid Sρ = {w : ρ(w) = 1}.

Then, {Rn, ρ, dx} becomes a space of homogeneous type in the sense of Coifman-Weiss
(see [5]) and a homogeneous group in the sense of Folland-Stein (see [7]).

In the standard parabolic case P0 = diag(1, . . . , 1, 2) we have

ρ(x) =

√
|x′|2 +

√
|x′|4 + x2

n

2
, x = (x′, xn).

The balls E(x, r) = {y ∈ Rn : ρ(x− y) < r} with respect to the quasidistance ρ are
ellipsoids. For its Lebesgue measure one has

|E(x, r)| = vρr
γ ,

where vρ is the volume of the unit ellipsoid. By
{E(x, r) = Rn \ E(x, r) we denote the

complement of E(x, r).

Everywhere in the sequel A . B means that A ≤ CB with some positive constant C
independent of appropriate quantities. If A . B and B . A, we write A ≈ B and say
that A and B are equivalent.

1.1. Parabolic local generalized Morrey spaces

In the doctoral thesis [8], 1994 by Guliyev (see, also [9], [1]-[3]) introduced the local
Morrey-type space LMpθ,w given by

‖f‖LMpθ,w
=
∥∥w(r) ‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

,

where w is a positive measurable function defined on (0,∞). If θ = ∞, it denotes
LMp,w ≡ LMp∞,w. In [8] Guliyev intensively studied the classical operators in the lo-
cal Morrey-type space LMpθ,w (see also the book [9] (1999)), where these results were



Parabolic Fractional Maximal Operator 139

presented for the case when the underlying space is the Heisenberg group or a homo-
geneous group, respectively. Note that, the generalized local (central) Morrey spaces

LMp,ϕ(Rn) = LM
{0}
p,ϕ (Rn) introduced by Guliyev in [8] (see also, [9], [1]-[3]).

We define the parabolic local Morrey space LMp,λ,P (Rn) via the norm

‖f‖LMp,λ,P
= sup

t>0

(
t−λ

∫
E(0,t)

|f(y)|pdy

)1/p

<∞,

where 1 ≤ p ≤ ∞ and 0 ≤ λ ≤ γ.

If λ = 0, then LMp,0,P (Rn) = Lp(Rn); if λ = γ, then LMp,γ,P (Rn) = L∞(Rn); if λ < 0
or λ > γ, then LMp,λ,P = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

We also denote by WLMp,λ,P (Rn) the weak parabolic Morrey space of functions f ∈
WLloc

p (Rn) for which

‖f‖WLMp,λ,P
= sup

t>0
r
−λ
p ‖f‖WLp(E(0,r)) <∞,

where WLp(E(0, r)) denotes the weak Lp-space of measurable functions f for which

‖f‖WLp(E(0,r)) = sup
t>0

t |{y ∈ E(0, r) : |f(y)| > t}|1/p .

Note that WLp(Rn) = WLMp,0,P (Rn),

LMp,λ,P (Rn) ⊂WLMp,λ,P (Rn) and ‖f‖WLMp,λ,P
≤ ‖f‖LMp,λ,P

.

If P = I, then LMp,λ(Rn) ≡ LMp,λ,I(Rn) is the local Morrey space.

We introduce the parabolic local generalized Morrey spaces following the known ideas
of defining local generalized Morrey spaces ([8, 10, 11] etc).

Definition 1.1. Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and 1 ≤
p < ∞. The space LMp,ϕ,P ≡ LMp,ϕ,P (Rn), called the parabolic local generalized Morrey
space, is defined by the norm

‖f‖LMp,ϕ,P
= sup

t>0
ϕ(0, t)−1 |E(0, t)|−

1
p ‖f‖Lp(E(0,t)).

Definition 1.2. Let ϕ(x, r) be a positive measurable function on Rn× (0,∞) and 1 ≤ p <
∞. The space WLMp,ϕ,P ≡ WLMp,ϕ,P (Rn), called the weak parabolic local generalized
Morrey space, is defined by the norm

‖f‖WLMp,ϕ,P
= sup

t>0
ϕ(0, t)−1 |E(0, t)|−

1
p ‖f‖WLp(E(0,t)).

If P = I, then LMp,ϕ(Rn) ≡ LMp,ϕ,I(Rn) and WLMp,ϕ(Rn) ≡WLMp,ϕ,I(Rn) are the
generalized local Morrey space and the weak generalized local Morrey space, respectively.
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Definition 1.3. Let ϕ(x, r) be a positive measurable function on Rn× (0,∞) and 1 ≤ p <
∞. For any fixed x0 ∈ Rn we denote by LM

{x0}
p,ϕ,P ≡ LM

{x0}
p,ϕ,P (Rn) the parabolic generalized

local Morrey space, the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖
LM

{x0}
p,ϕ,P

= ‖f(x0 + ·)‖LMp,ϕ,P
.

Also by WLM
{x0}
p,ϕ,P ≡ WLM

{x0}
p,ϕ,P (Rn) we denote the weak generalized Morrey space of all

functions f ∈WLloc
p (Rn) for which

‖f‖
WLM

{x0}
p,ϕ,P

= ‖f(x0 + ·)‖WLMp,ϕ,P
<∞.

According to this definition, we recover the space LM
{x0}
p,λ,P (Rn) under the choice ϕ(0, r) =

r
λ−γ
p :

LM
{x0}
p,λ,P (Rn) = LM

{x0}
p,ϕ,P (Rn)

∣∣∣∣∣
ϕ(x0,r)=r

λ−γ
p

.

Let Sρ = {w ∈ Rn : ρ(w) = 1} be the unit ρ-sphere (ellipsoid) in Rn (n ≥ 2) equipped
with the normalized Lebesgue surface measure dσ and Ω be At-homogeneous of degree
zero, i.e. Ω(Atx) ≡ Ω(x), x ∈ Rn, t > 0. The parabolic fractional maximal function
MP

Ω,αf by with rough kernels, 0 < α < γ, of a function f ∈ Lloc
1 (Rn) is defined by

MP
Ω,αf(x) = sup

t>0
|E(x, t)|−1+α

γ

∫
E(x,t)

|Ω(x− y)| |f(y)|dy.

If Ω ≡ 1, then MP
α ≡ MP

1,α is the parabolic fractional maximal operator. If α = 0,

then MP
Ω ≡ MP

Ω,0 is the parabolic maximal operator with rough kernel. If P = I, then

MΩ,α ≡M I
Ω,α is the fractional maximal operator with rough kernel, and M ≡M I

Ω,0 is the
Hardy-Littlewood maximal operator with rough kernel. It is well known that the parabolic
fractional maximal operators play an important role in harmonic analysis (see [7, 14]).

We prove the boundedness of the parabolic fractional maximal operators MP
Ω,α with

rough kernel from one parabolic local generalized Morrey space LM
{x0}
p,ϕ1,P

(Rn) to another

one LM
{x0}
q,ϕ2,P

(Rn), 1 < p < q < ∞, 1/p − 1/q = α/γ, and from the space LM
{x0}
1,ϕ1,P

(Rn)

to the weak space WLM
{x0}
q,ϕ2,P

(Rn), 1 ≤ q <∞, 1− 1/q = α/γ.

2. Preliminaries

Let v be a weight on (0,∞). We denote by L∞,v(0,∞) the space of all functions g(t),
t > 0 with finite norm

‖g‖L∞,v(0,∞) = ess sup
t>0

v(t)|g(t)|
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and write L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable
functions on (0,∞) and M+(0,∞) its subset of all nonnegative functions. By M+(0,∞;↑)
we denote the cone of all functions in M+(0,∞) non-decreasing on (0,∞) and introduce
also the set

A =

{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a non-negative continuous function on (0,∞). We define the supremal operator
Su on g ∈M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [2].

Theorem 2.1. Let v1, v2 be non-negative measurable functions satisfying 0 < ‖v1‖L∞(t,∞) <
∞ for any t > 0 and let u be a continuous non-negative function on (0,∞). Then the op-
erator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞. (2.1)

We are going to use the following statement on the boundedness of the weighted Hardy
operator

H∗wg(t) :=

∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a fixed function non-negative and measurable on (0,∞).

The following theorem in the case w = 1 was proved in [3].

Theorem 2.2. Let v1, v2 and w be positive almost everywhere and measurable functions
on (0,∞). The inequality

ess sup
t>0

v2(t)H∗wg(t) ≤ C ess sup
t>0

v1(t)g(t) (2.2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := ess sup
t>0

v2(t)

∫ ∞
t

w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞. (2.3)

Moreover, if C∗ is the minimal value of C in (2.2), then C∗ = B.

Remark 2.1. In (2.2) and (2.3) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.
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3. Parabolic fractional maximal operator with rough kernels in the

spaces LM
{x0}
p,ϕ,P (Rn)

In [12] was proved the (p, p)-boundedness of the operatorMP
Ω and the (p, q)-boundedness

of the operator MP
Ω,α.

Theorem 3.1. [12] Let Ω ∈ Ls(Sρ), 1 < s ≤ ∞, be At-homogeneous of degree zero. Then
the operator MP

Ω is bounded in the space Lp(Rn), p > s′.

Corollary 3.1. [12] Suppose that 0 ≤ α < γ and the function Ω ∈ L γ
γ−α

(Sρ), is At-

homogeneous of degree zero. Let 1 ≤ p < γ
α and 1/p − 1/q = α/γ. Then the fractional

maximal operator MP
α is bounded from Lp(Rn) to Lq(Rn) for p > 1 and from L1(Rn) to

WLq(Rn) for p = 1.

The following lemma is valid.

Lemma 3.1. Suppose that x0 ∈ Rn, 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is At-

homogeneous of degree zero. Let 1 ≤ p < γ
α , 1

q = 1
p −

α
γ . Then for any ball E = E(x0, r) in

Rn and f ∈ Lloc
p (Rn) there hold the inequalities

‖MP
Ω,αf‖Lq(E(x0,r)) . ‖f‖Lp(E(x0,2kr)) + r

γ
q sup
t>2kr

t−γ+α‖Ω(x0 − ·)f(·)‖L1(E(x0,t)), p > 1,

‖MP
Ω,αf‖WLq(E(x0,r)) . ‖f‖L1(E(x0,2kr)) + r

γ
q sup
t>2kr

t−γ+α‖Ω(x0 − ·)f(·)‖L1(E(x0,t)), p = 1.

(3.1)

Proof. Given a ball E = E(x0, r), we split the function f as f = f1 + f2, where
f1 = fχE(x0,2kr) and f2 = fχ {(E(x0,2kr))

, and then

‖MP
Ω,αf‖Lq(E) ≤ ‖MP

Ω,αf1‖Lq(E) + ‖MP
Ω,αf2‖Lq(E).

Let p > 1. By Corollary 3.1

‖MP
Ω,αf1‖Lq(E) . ‖f‖Lp(E(x0,2kr)).

To estimate MP
Ω,αf2(y), observe that if E(y, t)∩ {

(E(x0, 2kr)) 6= ∅, where y ∈ E , then t > r.

Indeed, if z ∈ E(y, t)∩ {
(E(x0, 2kr)), then t > ρ(y−z) ≥ 1

kρ(x0−z)−ρ(x0−y) > 2r−r = r.

On the other hand, E(y, t) ∩ {
(E(x0, 2kr)) ⊂ E(x0, 2kt). Indeed, for z ∈ E(y, t) ∩

{
(E(x0, 2kr)) we get ρ(x0 − z) ≤ kρ(y − z) + kρ(x0 − y) < k(t+ r) < 2kt.

Hence

MP
Ω,αf2(y) = sup

t>0

1

|E(y, t)|1−α/γ

∫
E(y,t)∩ {(E(x0,2kr))

|f(z)||Ω(x0 − z)|dz

≤ (2k)γ−α sup
t>r

1

|E(x0, 2kt)|1−α/γ

∫
E(x0,2kt)

|f(z)||Ω(x0 − z)|dz

= (2k)γ−α sup
t>2kr

1

|E(x0, t)|1−α/γ

∫
E(x0,t)

|f(z)||Ω(x0 − z)|dz.
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Therefore, for all y ∈ E we have

MP
Ω,αf2(y) ≤ (2k)γ−α sup

t>2kr

1

|E(x0, t)|1−α/γ

∫
E(x0,t)

|f(z)||Ω(x0 − z)|dz. (3.2)

Thus

‖MP
Ω,αf‖Lq(E) . ‖f‖Lp(E(x0,2kr)) + |E|

1
q sup
t>2kr

1

|E(x0, t)|1−α/γ

∫
E(x0,t)

|f(z)||Ω(x0 − z)|dz.

Let p = 1. We have

‖MP
Ω,αf‖WLq(E) ≤ ‖MP

Ω,αf1‖WLq(E) + ‖MP
Ω,αf2‖WLq(E).

By Corollary 3.1 we get

‖MP
Ω,αf1‖WLq(E) . ‖f‖L1(E(x0,2kr)).

Then by (3.2) we arrive at (3.1) and complete the proof.

Similarly to Lemma 3.1 and Theorem 3.1 the following lemma may be proved.

Lemma 3.2. Let the function Ω ∈ Ls(Sρ), 1 < s ≤ ∞, be At-homogeneous of degree zero
and x0 ∈ Rn. Then for p > s′ and any ball E = E(x0, r) the inequality

‖MP
Ω f‖Lp(E(x0,r)) . ‖f‖Lp(E(x0,2kr)) + r

γ
p sup
t>2kr

t−γ‖Ω(x0 − ·)f(·)‖L1(E(x0,t))

holds for all f ∈ Lloc
1 (Rn).

Lemma 3.3. Suppose that the function Ω ∈ L γ
γ−α

(Sρ) is At-homogeneous of degree zero

and x0 ∈ Rn. Let 0 < α < γ, 1 ≤ p < γ
α , 1

q = 1
p −

α
γ . Then for f ∈ Lloc

p (Rn) there hold the
inequalities

‖MP
Ω,αf‖Lq(E(x0,r)) . r

γ
q sup
t>2kr

t
− γ
q ‖f‖Lp(E(x0,t)), p > 1, (3.3)

‖MP
Ω,αf‖WLq(E(x0,r)) . r

γ
q sup
t>2kr

t
− γ
q ‖f‖L1(E(x0,t)), p = 1. (3.4)

Proof. Let p > 1 Denote

A1 : = |E|
1
q

(
sup
t>2kr

1

|E(x0, t)|1−α/γ

∫
E(x0,t)

|f(z)||Ω(x0 − z)|dz

)
,

A2 : = ‖f‖Lp(E(x0,2kr)).

Applying Hölder’s inequality, we get

A1 . |E|
1
q sup
t>2kr

‖f‖Lp(E(x0,t)) ‖Ω(x0 − ·)‖L γ
γ−α

(E(x0,t)) |E(x0, t)|
α
γ
− 1
p
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. |E|
1
q sup
t>2kr

|E(x0, t)|−
1
q ‖f‖Lp(E(x0,t)).

On the other hand,

|E|
1
q sup
t>2kr

|E(x0, t)|−
1
q ‖f‖Lp(E(x0,t))

& |E|
1
q sup
t>2kr

|E(x0, t)|−
1
q ‖f‖Lp(E(x0,2kr)) ≈ A2.

Since ‖MP
Ω,αf‖Lq(E) ≤ A1 +A2, by Lemma 3.1, we arrive at (3.3).

Let p = 1. The inequality (3.4) directly follows from (3.1).

Similarly to Lemma 3.3 and Theorem 3.1 the following lemma is also proved.

Lemma 3.4. Suppose that the function Ω ∈ Ls(Sρ), 1 < s ≤ ∞, is At-homogeneous of
degree zero and x0 ∈ Rn. Then for p > s′ and any ball E = E(x0, r), the inequality

‖MP
Ω f‖Lp(E(x0,r)) . r

γ
q sup
t>2kr

t
− γ
p ‖f‖Lp(E(x0,t))

holds for f ∈ Lloc
p (Rn).

Theorem 3.2. Suppose that x0 ∈ Rn, 0 < α < γ and the function Ω ∈ L γ
γ−α

(Sρ) is

At-homogeneous of degree zero. Let 1 ≤ p < γ
α , 1

q = 1
p −

α
γ , and (ϕ1, ϕ2) satisfy the

condition

sup
r<t<∞

t
α− γ

p ess inf
t<τ<∞

ϕ1(x0, τ) τ
γ
p ≤ C ϕ2(x0, r), (3.5)

where C does not depend on x0 and r. Then the operator MP
Ω,α is bounded from LM

{x0}
p,ϕ1,P

(Rn)

to LM
{x0}
q,ϕ2,P

(Rn) for p > 1 and from LM
{x0}
1,ϕ1,P

(Rn) to WLM
{x0}
q,ϕ2,P

(Rn) for p = 1.

Proof. By Theorem 2.1 and Lemma 3.3 we get

‖MP
Ω,αf‖LM{x0}q,ϕ2,P

. sup
r>0

ϕ2(x0, r)
−1 sup

t>r
t
− γ
q ‖f‖Lp(E(x0,t))

. sup
r>0

ϕ1(x0, r)
−1 r

− γ
p ‖f‖Lp(E(x0,r)) = ‖f‖

LM
{x0}
p,ϕ1,P

,

if p ∈ (1,∞) and

‖MP
Ω,αf‖WLM

{x0}
q,ϕ2,P

. sup
r>0

ϕ2(x0, r)
−1 sup

t>r
t
− γ
q ‖f‖L1(E(x0,t))

. sup
r>0

ϕ1(x0, r)
−1 r−γ ‖f‖L1(E(x0,r)) = ‖f‖

LM
{x0}
1,ϕ1,P

,

if p = 1.

In the same way, by means of Lemma 3.4 we can obtain the following theorem.
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Theorem 3.3. Suppose that the function Ω ∈ Ls(Sρ), 1 < s ≤ ∞ is At-homogeneous of
degree zero and x0 ∈ Rn. Let p > s′ and (ϕ1, ϕ2) satisfy the condition

sup
r<t<∞

t
− γ
p ess inf
t<τ<∞

ϕ1(x0, τ) τ
γ
p ≤ C ϕ2(x0, r),

where C does not depend on x0 and r. Then the operator MP
Ω is bounded from LM

{x0}
p,ϕ1,P

(Rn)

to LM
{x0}
p,ϕ2,P

(Rn).
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