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Boundedness of the Fractional Maximal Operator in Lo-
cal and Global Morrey-type Spaces on the Heisenberg
Group
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Abstract. We study the boundedness of the fractional maximal operator Mα on the Heisenberg
group Hn in local and global Morrey-type spaces LMpθ,w(Hn) and GMpθ,w(Hn), respectively. We
give a characterization of strong and weak type boundedness for the operator Mα in local Morrey-
type spaces LMpθ,w(Hn).
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1. Introduction

In this paper, we establish the norm inequalities for the fractional maximal operator
in local Morrey-type spaces on Heisenberg group. The Heisenberg group [6, 7, 15, 17]
appears in quantum physics and many fields of mathematics, including harmonic analysis,
the theory of several complex variables and geometry. We begin with some basic notation.
The Heisenberg group Hn a non-commutative nilpotent Lie group with the product spaces
R2n+1 that have the multiplication

xy =
(
x′ + y′, x2n+1 + y2n+1 + 2

n∑
k=1

xkyn+k − xn+kyk

)
,

where x = (x′, x2n+1), and y = (y′, y2n+1). By the definition, the identity element on Hn

is 0 ∈ R2n+1, while the inverse element of x = (x′, t) is x−1 = (−x′,−t).
The corresponding Lie algebra is generated by the left-invariant vector fields:

Xj =
∂

∂xj
+ 2xn+j

∂

∂x2n+1
, Xn+j =

∂

∂xn+j
− 2xj

∂

∂x2n+1
, X2n+1 =

∂

∂x2n+1
, j = 1, . . . , n.

http://www.cjamee.org 120 c© 2013 CJAMEE All rights reserved.



Boundedness of the Fractional Maximal Operator in Local and Global Morrey-type Spaces 121

The only non-trivial commutator relations are[
Xj , Xn+j

]
= −4X2n+1, j = 1, . . . , n.

The non-isotropic dilation on Hn is defined as δt(x
′, x2n+1) = (tx′, t2x2n+1) for t > 0.

The Haar measure dx on this group coincides with the Lebesgue measure on R2n+1. It is
easy to check that d

(
δtx
)

= rQdx. In the above, Q = 2n+2 is the homogeneous dimension

of Hn. The norm of x = (x′, x2n+1) ∈ Hn is given by |x|H = (|x′|4 + x2
2n+1)1/4, where

|x′|2 =
∑2n

k=1 x
2
k. The norm satisfies the triangle inequality and leads to the left-invariant

distance d(x, y) = |xy−1|H . With this norm we define the Heisenberg ball, B(x, r) = {y ∈
Hn : |xy−1|H < r}, where x is the center and r is the radius. The volume of B(x, r) is
dnr

2n+2, where dCn is the volume of the unit ball B1 ≡ B(e, 1). Let SH = {x ∈ Hn :
|x|H = 1} be the unit sphere in Hn equipped with the normalized Haar surface measure
dσ.

The fractional maximal function Mαf , 0 < α < Q on the Heisenberg groups of a
function f ∈ Lloc

1 (Hn) is defined by

Mαf(x) = sup
t>0
|B(x, t)|−1+ α

Q

∫
B(x,t)

|f(y)|dy.

If α = 0, then M ≡ M0 is the maximal operator on the Heisenberg groups. It is well
known that the fractional maximal operator on the Heisenberg groups play an important
role in harmonic analysis (see [7, 16]).

The main purpose of [10] is to give some sufficient conditions for the boundedness of
fractional integral operators and singular integral operators defined on homogeneous Lie
groups G in local Morrey-type space LMpθ,w1(G). In a series of papers by Burenkov V.,
Guliyev H. and Guliyev V. etc. (see, for example [2, 3, 4]) be given some necessary and suf-
ficient conditions for the boundedness of fractional maximal operators, fractional integral
operators and singular integral operators in local Morrey-type spaces LMpθ,w1(Rn).

In this paper, we study the boundedness of the fractional maximal operator Mα on
the Heisenberg group Hn in local Morrey-type spaces LMpθ,w(Hn). Also we give a charac-
terization of strong and weak type boundedness for the operator Mα in local Morrey-type
spaces LMpθ,w(Hn).

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent. For a number p, p′ = p/(p− 1) denotes the conjugate exponent of p.

2. Local and global Morrey-type spaces on the Heisenberg group

Let 0 < p, θ ≤ ∞. Denote by Ωθ a set of all non-negative measurable functions w(r) on
(0,∞) such that w(t) 6= 0 on the set of positive measure and ‖w(r)‖Lθ(t1,∞) <∞ for some

t1 > 0. The set Ωp,θ consists of the functions w(r) ∈ Ωθ such that ‖w(r)rQ/p‖Lθ(0,t2) <∞
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for some t2 > 0 (see [2]). Let w1 ∈ Ωθ, w2 ∈ Ωθ,p. Recall that in 1994 the doctoral thesisis
[10] (see also [11]) by Guliyev introduced the local Morrey-type space LMpθ,w1 and in [1]
(see also [2, 3, 4]) by Burenkov, Guliyev introduced the global Morrey-type space GMpθ,w1 .

Definition 1. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable function on (0,∞).
We denote by LMpθ,w(Hn), GMpθ,w(Hn), the local Morrey-type spaces, the global Morrey-
type spaces on the Heisenberg group respectively, the spaces of all functions f ∈ Lloc

p (Hn)
with finite quasinorms

‖f‖LMpθ,w(Hn) =
∥∥w(r)‖f‖Lp(B(0,t))

∥∥
Lθ(0,∞)

,

‖f‖GMpθ,w(Hn) = sup
x∈Hn

∥∥w(r)‖f‖Lp(B(x,t))

∥∥
Lθ(0,∞)

respectively.

Note that
‖f‖LMp∞,1(Hn) = ‖f‖GMp∞,1(Hn) = ‖f‖Lp(Hn).

Furthermore, GMp∞,r−λ/p(Hn) ≡Mp,λ(Hn), 0 ≤ λ ≤ Q.
For a measurable set Hn and a function v non-negative and measurable on Hn, let

Lp,v(Hn) be the weighted Lp-space of all functions f measurable on Hn for which ‖f‖Lp,v(Hn) =
‖vf‖Lp(Hn) <∞.

If 0 < p ≤ θ ≤ ∞, then ‖f‖LMpθ,w(Hn) ≤ ‖f‖Lp,W (Hn), and if 0 < θ ≤ p ≤ ∞, then
‖f‖Lp,W (Hn) ≤ ‖f‖LMpθ,w(Hn), where for all x ∈ Hn W (x) = ‖w‖Lθ(|x|H ,∞).

In particular, for 0 < p ≤ ∞ ‖f‖LMpp,w(Hn) = ‖f‖Lp,V (Hn), where for all x ∈ Hn

V (x) = ‖w‖Lp(|x|H ,∞)(Hn).
We shall use the following theorem stating necessary and sufficient conditions for the

validity of the following inequality

‖Mαf‖Lp2,v2 (Hn) ≤ c‖f‖Lp1,v1 (Hn) (1)

where v1 and v2 are functions non-negative and measurable on Hn and c > 0 is independent
of f (see [5, 14]).

Given a set Ω ⊂ Hn, χΩ will denote the characteristic function of Ω.

Theorem 1. Let 0 ≤ α < Q, 1 < p1 ≤ p2 < ∞. Moreover, let v1, v2 be non-negative
and measurable on Hn. Then inequality (1) holds if, and only if, the following equivalent
conditions are satisfied

J = sup
B⊂Hn

|B|
α
n
−1
∥∥v−1

1

∥∥
Lp′1

(B)
‖v2‖Lp2 (B) <∞ (2)

and

sup
B⊂Hn

∥∥∥Mα

(
χBv

p1/(1−p1)
1

)∥∥∥
Lp2,v2 (B)

∥∥∥v1/(1−p1)
1

∥∥∥−1

Lp1 (B)
<∞. (3)

Moreover, the sharp (minimal possible) constant c∗ in (1), satisfies the inequality cJ ≤
c∗ ≤ cJ , where c, c∗ > 0 are independent of v1 and v2.
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3. Boundedness of the fractional maximal operator in local Morrey-type
spaces on Heisenberg group

Let 0 < p, θ ≤ ∞. Denote by Ωθ a set of all non-negative measurable functions w(r)
on (0,∞) such that w(t) 6= 0 on the set of positive measure and ‖w(r)‖Lθ(t1,∞) < ∞ for
some t1 > 0. Let w1 ∈ Ωθ, w2 ∈ Ωθ,p. Recall that in 1994 the doctoral thesisis [10] (see
also [11]) by Guliyev V.S. introduced the local Morrey-type space LMpθ,w1(Hn) is given
by

‖f‖LMpθ,w1
(Hn) = ‖w1(r)‖f‖B(0,r)‖Lθ(0,∞).

To obtain necessary and sufficient conditions on w1 and w2 under which Mα is bounded
for other parameter values and to obtain simpler conditions for the case p = θ1 = θ2 we
reduce the problem of the boundedness of Mα in the local Morrey-type spaces to the
problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of
non-negative non-increasing functions.

Lemma 1. Let 0 ≤ α < Q, 1 < p1 ≤ p2 <∞ and −∞ < γ <∞. Then the inequality

‖Mαf‖Lp2 (B(0,r)) ≤ c(r)‖f‖Lp1,(|x|H+r)γ (Hn), (4)

where c(r) > 0 is independent of f holds for all f ∈ Lloc
p1 (Hn) if and only if

γ ≥ −Q
p2

and Q

(
1

p1
− 1

p2

)
≤ α ≤ Q

p1
+ γ. (5)

If (5) holds, then the minimal constant c(r) in (4) satisfies

c(r) � rα−Q(1/p1−1/p2)−γ .

Proof. We apply Theorem 1 to the pair of functions v2(x) = χB(0,r)(x), v1(x) =
(|x|H + r)γ . Then

I(v1, v2) = sup
R>0

Rα−Q
(∫ R

0
tQ−1χ(0,r)(t)dt

)1/p2 (∫ R

0
tQ−1 (t+ r)−γp

′
1 dt

)1/p′1

= rQ/p2+Q/p′1−γ sup
R>0

Rα−Q

(∫ R
r

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ R
r

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1

= rα+Q/p2−Q/p1−γ sup
ρ>0

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1

≡ rα+Q/p2−Q/p1−γK,

where K = max{K1,K2},

K1 = sup
0<ρ≤1

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1
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and

K2 = sup
1<ρ≤∞

ρα−Q
(∫ ρ

0
τQ−1χ(0,1)(τ)dτ

)1/p2 (∫ ρ

0
τQ−1(τ + 1)−γp

′
1dτ

)1/p′1
.

Next,
K1 <∞⇔ sup

0<ρ≤1
ρα+Q/p2−Q/p1 <∞⇔ α+Q/p2 −Q/p1 ≥ 0.

Moreover,

K2 <∞⇐⇒ sup
1<ρ<∞

ρα−Q
(∫ ρ

1
τQ−1−γp′1dτ

)1/p′1
<∞.

If γ > Q/p′1, then
∫∞

1 τQ−1−γp′1dτ <∞ and K2 <∞ since α < Q.
If γ = Q/p′1, then K2 < ∞ ⇔ sup

1≤ρ<∞
ρα−Q ln ρ < ∞. Therefore again K2 < ∞ since

α < Q.
If γ < Q/p′1, then

K2 <∞⇐⇒ sup
1≤ρ<∞

ρα−Q+Q/p′1−γ <∞⇐⇒

α−Q+
Q

p′1
− γ ≤ 0⇐⇒ γ ≥ α− Q

p1
.

Inequality α < Q, implies that αp1 −Q < Q(p1 − 1). Hence K2 <∞ ⇔ γ ≥ α−Q/p1.

Corollary 1. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α < Q. Then there
exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crQ/p2
(∫

Hn

|f(x)|p1
(|x|H + r)Q−αp1

dx

) 1
p1

, (6)

for all r > 0 and for all f ∈ Llocp1 (Hn).

Proof. In the case 1 < p1 ≤ p2 <∞ (6) follows by Lemma 1 with γ = α−Q/p1.
If 0 < p2 < p1 <∞, by Hölder’s inequality and (6) for p2 = p1 we have

‖Mαf‖Lp2 (B(0,r)) ≤ (dnr
Q)1/p2−1/p1 ‖Mαf‖Lp1 (B(0,r)) ≤ cr

Q/p2 ‖Mαf‖Lp1 (B(0,r)) ,

where dn is the volume of the unit ball in Hn and c > 0 depends only on Q, p1 and p2.

The following lemma was proved in [2].

Lemma 2. Let β > 0 and ϕ be a function non-negative and measurable on Hn. Then for
all r > 0

β 2−β
∫ ∞
r

(∫
B(0,t)

ϕ(x)dx

)
dt

t1+β
≤
∫
Hn

ϕ(x)dx

(|x|H + r)β
≤ β

∫ ∞
r

(∫
B(0,t)

ϕ(x)dx

)
dt

t1+β
.
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Corollary 2. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α < Q/p1. Then
there exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crQ/p2
(∫ ∞

r

(∫
B(0,r)

|f(x)|p1dx

)
dt

tQ−αp1+1

)1/p1

(7)

for all r > 0 and for all f ∈ Llocp1 (Hn).

Proof. Inequality (7) follows from inequality (6) and Lemma 2.

Corollary 3. Let 1 < p1 < ∞, 0 < p2 < ∞ and Q (1/p1 − 1/p2)+ ≤ α ≤ Q/p1, then
there exists c > 0 such that

‖Mαf‖Lp2 (B(0,r)) ≤ crα−Q(1/p1−1/p2)‖f‖Lp1 (Hn) (8)

for all r > 0 and for all f ∈ Lp1(Hn).

Proof. If 0 < p2 < ∞, inequality (8) follows by inequality (6). For 0 < p2 ≤ ∞ and
α = Q/p1 it also follows directly from the definition of Mαf. Indeed, Hölder’s inequality
implies that

‖MQ/p1f‖L∞ ≤ ‖f‖Lp1 (Hn).

Hence

‖MQ/p1f‖Lp2 (B(0,r) ≤ d1/p2
n rQ/p2‖f‖Lp1 (Hn).

Let H be the Hardy operator

Hg =

∫ r

0
g(t)dt, 0 < r <∞.

Lemma 3. Let 1 < p1 <∞, 0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ ≤ ∞ and
w ∈ Ωθ. Then there exists c > 0 such that

‖Mαf‖LMp2θ,w
≤ c‖Hg‖1/p1Lθ/p1,v(0,∞)

for all f ∈ Lloc
p1 (Hn), where

g(t) =

∫
B(0,t1/(αp1−Q))

|f(y)|p1dy (9)

and

v(r) =
[
w
(
r1/(αp1−Q)

)
r(Q/p2+1/θ)/(αp1−Q)−1/θ

]p1
. (10)
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Proof. By Corollary 2

‖Mαf‖LMp2θ,w
=
∥∥∥w(r)‖Mαf‖Lp2 (B(0,r))

∥∥∥
Lθ(0,∞)

≤ c

∥∥∥∥∥∥w(r)rQ/p2

(∫ ∞
r

(∫
B(0,t)

|f(x)|p1dx

)
dt

tQ−αp1+1

)1/p1
∥∥∥∥∥∥
Lθ(0,∞)

= c(Q− αp1)−1/p1

∥∥∥∥∥∥w(r)rQ/p2

(∫ rαp1−Q

0

(∫
B(0,τ1/(αp1−Q))

|f(x)|p1dx

)
dτ

)1/p1
∥∥∥∥∥∥
Lθ(0,∞)

= c(Q− αp1)−1/p1

∫ ∞
0

(
w(r)rQ/p2

)θ(∫ rαp1−Q

0
g(τ)dτ

)θ/p1
dr

 1
θ

= c

(∫ ∞
0

(
w
(
ρ1/(αp1−Q)

)
ρQ/(p2(αp1−Q))

)θ
ρ1/(αp1−Q)−1

(∫ ρ

0
g(τ)dτ

)θ/p1
dρ

) 1
θ

= c‖Hg‖1/p1Lθ/p1,v(0,∞),

where c > 0 depends only on Q, p1, p2 and α.

Corollary 4. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ ≤ ∞
and w ∈ Ωp1,θ. Then there exists c > 0 such that

‖Mαf‖GMp2θ,w
≤ c sup

x∈Hn
‖H (g(x, ·)) ‖1/p1Lθ/p1,v(0,∞)

for all f ∈ Lloc
p1 (Hn), where v is defined by (10) and

g(x, t) =

∫
B(x,t1/(αp1−Q))

|f(y)|p1dy =

∫
B(0,t1/(αp1−Q))

|f(y−1 · x)|p1dy. (11)

Theorem 2. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 <
θ1, θ2 ≤ ∞, w1 ∈ Ωθ1 , w2 ∈ Ωθ2 . Assume that H is bounded from Lθ1/p1,v1(0,∞) to
Lθ2/p1,v2(0,∞) on the cone of all non-negative functions ϕ non-increasing on (0,∞) and
satisfying lim

t→∞
ϕ(t) = 0, where

v1(r) =
[
w1

(
r1/(αp1−Q)

)
r1/((αp1−Q)θ1)−1/θ1

]p1
, (12)

v2(r) =
[
w2

(
r1/(αp1−Q)

)
r(Q/p2+1/θ2)/(αp1−Q)−1/θ2

]p1
. (13)

Then Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn) and from GMp1θ1,w1(Hn)
to GMp2θ2,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,θ1 , w2 ∈ Ωp2,θ2.)
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Proof. By Lemma 3 applied to LMp2θ2,w2(Hn)

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖Hg‖

1/p1
Lθ2/p1,v2 (0,∞),

where c > 0 is independent of f .
Since g is non-negative, non-increasing on (0,∞) and limt→+∞ g(t) = 0 and H is

bounded from Lθ1/p1,v1(0,∞) to Lθ2/p1,v2(0,∞) on the cone of functions containing g, we
have

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖g‖

1/p1
Lθ1/p1,v1 (0,∞),

where c > 0 is independent of f.
Hence

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c

(∫ ∞
0

v1(t)θ1/p1‖f‖θ1
Lp1(B(0,t1/(αp1−Q)))

dt

)1/θ1

= cQ
1
θ1

(∫ ∞
0

v1(rαp1−Q)θ1/p1rαp1−Q−1‖f‖θ1Lp1 (B(0,r))dr

)1/θ1

= cQ
1
θ1

(∫ ∞
0

(
w1(r)‖f‖Lp1 (B(0,r))

)θ1
dr

)1/θ1

= cQ
1
θ1 ‖f‖LMp1θ1,w1

(Hn),

where c > 0 is independent of f.

In order to obtain explicit sufficient conditions on weight functions ensuring the bound-
edness of Mα, first we shall apply the following statement.

Lemma 4. [2] Let 0 < θ1 ≤ ∞, 0 < θ2 ≤ ∞, v1 and v2 be functions positive and
measurable on (0,∞). Then the condition∥∥∥v2(r)

∥∥∥t−(1−θ1)+/θ1v−1
1 (t)

∥∥∥
Lθ1/(θ1−1)+

(0,r)

∥∥∥
Lθ2 (0,∞)

<∞ (14)

is a sufficient conditions for the boundedness of H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) in the
case 1 ≤ θ1 ≤ ∞ and the boundedness H from Lθ1,v1(0,∞) to Lθ2,v2(0,∞) on the cone of
all non-negative functions ϕ non-increasing on (0,∞) in the case 0 < θ1 <∞.

If θ1 = ∞, then condition (14) is also necessary for the boundedness of H from
L∞,v1(0,∞) to Lθ2,v2(0,∞).

Theorem 2 and Lemma 4 imply a sufficient condition for the boundedness of Mα from
LMp1∞,w1(Hn) to LMp2θ2,w2(Hn).

Theorem 3. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q, 0 < θ2 ≤ ∞,
w2 ∈ Ωθ2.

1. For α < Q/p1, let w1 ∈ Ωθ1 and∥∥∥∥w2(r)rQ/p2
∥∥∥w−1

1 (t)tα−Q/p1−1/min{p1,θ1}
∥∥∥
Ls(r,∞)

∥∥∥∥
Lθ2 (0,∞)

<∞. (15)
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where s = p1θ1/(θ1 − p1)+. (If θ1 ≤ p1, then s = ∞.) Then Mα is bounded from
LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn).

2. For α = Q/p1, let

w2(r)rα−Q(1/p1−1/p2) ∈ Lθ2(0,∞). (16)

Then Mα is bounded from Lp1(Hn) to LMp2θ2,w2(Hn).

Corollary 5. Let 1 < p1 <∞, 0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ2 ≤ ∞,
w1 ∈ Ω∞, w2 ∈ Ωθ2 and let∥∥∥∥∥w2(r)rQ/p2

(∫ ∞
r

dt

wp11 (t)tQ+1−αp1

)1/p1
∥∥∥∥∥
Lθ2 (0,∞)

<∞. (17)

Then Mα is bounded from LMp1∞,w1(Hn) to LMp2θ2,w2(Hn) and from GMp1∞,w1(Hn) to
GMpθ2,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,∞, w2 ∈ Ωp2,θ2.)

Corollary 6. Let 1 < p1 < ∞, 0 < p2 < ∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, w1 ∈ Ω∞,
w2 ∈ Ω∞ and let for some c > 0 for all r > 0∫ ∞

r

dt

wp11 (t)tQ+1−αp1
≤ c

wp12 (r)r
Qp1
p2

. (18)

Then Mα is bounded from LMp1∞,w1(Hn) to LMp2∞,w2(Hn) and from GMp1∞,w1(Hn) to
GMp2∞,w2(Hn). (In the latter case we assume that w1 ∈ Ωp1,∞, w2 ∈ Ωp2,∞.)

Remark 1. Note that, the Corollary 6 was proved in [8], see also [9, 12, 13].

For the majority of cases the necessary and sufficient conditions for the validity of

‖Hϕ‖L θ2
p1
,v2

(0,∞) ≤ c‖ϕ‖L θ1
p1
,v1

(0,∞), (19)

where c > 0 is independent of ϕ, for all non-negative decreasing functions ϕ are known, for
detailed information see [18], [19]. Application of any of those conditions gives sufficient
conditions for the boundedness of the fractional maximal operator from LMp1θ1,w1(Hn) to
LMp2θ2,w2(Hn) and from GMp1θ1,w1(Hn) to GMp2θ2,w1(Hn).

However, there is no guarantee that the application of the necessary and sufficient
conditions on v1 and v2 ensuring the validity of (19) implies the necessary and sufficient
conditions for the boundedness of Mα from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn).

Fortunately for certain values of the parameters this is the case, namely for 1 < p1 <∞,
0 < p2 <∞, Q (1/p1 − 1/p2)+ ≤ α < Q/p1, 0 < θ1 ≤ θ2 <∞, θ1 ≤ p1.

Note that in this case the necessary conditions (coinciding with the sufficient ones) for
the validity of inequality (19) for decreasing functions are obtained by taking ϕ = χ(0,t)

with an arbitrary t > 0.
Since in the proof of Theorem 2 inequality (19) is applied to the function ϕ = g,

where g is given by (9), it is natural to choose, as test functions, functions ft, t > 0, for
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which
∫
B(0,u1/(αp1−Q)) |ht(y)|p1dy is equal or close to B(t)χ(0,t)(u), u > 0, where B(t) is

independent of u. The simplest choice of f satisfying this requirement is

ft(x) = χB(0,2t)\B(0,t)(x), x ∈ Hn, t > 0. (20)

Note that,

‖ft‖Lp1 (B(0,r)) = 0, 0 < r ≤ t, ‖ft‖Lp1 (B(0,r)) ≤ ct
n/p1 , t < r <∞, (21)

where c > 0 depends only on Q and p1.

For functions F,G defined on (0,∞) × (0,∞) we shall write F � G if there exist
c, c′ > 0 such that cF (r, t) ≤ G(r, t) ≤ c′F (r, t) for all r, t ∈ (0,∞).

Lemma 5. If 0 ≤ α < Q, 0 < p <∞, then

‖Mαft‖Lp(B(0,r)) � t
αrQ/p


(

t
r+t

)min{Q−α,Q/q}
, p 6= Q

Q−α ,(
t
r+t

)Q/p
ln
(
e+ r

t

)
, p = Q

Q−α .

Theorem 1. (1) Let 1 < p1 ≤ ∞, 0 < p2 ≤ ∞, 0 ≤ α < Q, 0 < θ1, θ2 ≤ ∞,
w1 ∈ Ωθ1 and w2 ∈ Ωθ2. If Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn), then
there exists a constant C1 > 0 such that for all t > 0,

t
α− Q

p1
+min(Q−α,Q/p2)

∥∥∥ w2(r)rQ/p2

(t+ r)min(Q−α,Q/p2)

∥∥∥
Lθ2 (0,∞)

≤ C1‖w1‖Lθ1(t,∞)
.

(2) Let 1 < p1 <∞, 0 < p2 <∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1, Q
(

1
p1
− 1

p2

)
+
≤ α < Q

p1
,

w1 ∈ Ωθ1, w2 ∈ Ωθ2 and the equality
∥∥∥ w2(r)rQ/p2

(t+r)Q/p1−α

∥∥∥
Lθ2(0,∞)

≤ C2‖w1‖Lθ1(t,∞)
(C2 > 0) be

true for all t > 0; then Mα is bounded from LMp1θ1,w1(Hn) to LMp2θ2,w2(Hn). If also
w1 ∈ Ωp1,θ1 , w2 ∈ Ωp2,θ2 , then Mα is bounded from GMp1θ1,w1(Hn) to GMp2θ2,w2(Hn).

(3) In particular, for 1 < p1 < ∞, 0 < p2 < ∞, 0 < θ1 ≤ θ2 ≤ ∞, θ1 ≤ p1,
Q
(

1
p1
− 1
p2

)
≤ α < Q

p1
, w1 ∈ Ωθ1, w2 ∈ Ωθ2 the operator Mα is bounded from LMp1θ1,w1(Hn)

to LMp2θ2,w2(Hn) if and only if for all t > 0,

‖w2(r)rQ/p2(t+ r)−Q/p2‖Lθ2(0,∞)
≤ C3‖w1‖Lθ1 (t,∞).

Here the constant C3 > 0 is independent of t.

Note that, in the Euclidean setting Theorem 1 was proved in [2].

Proof. Sufficiency. It is known [19] that for θ1 ≤ θ2 ≤ ∞ the necessary and sufficient
condition for the validity of (19) for all non-negative decreasing on (0,∞) functions ϕ has
the form: for some c > 0

‖v2(r) min{t, r}‖Lθ2/p1 (0,∞) ≤ c‖v1(r)‖Lθ1/p1 (0,t)
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for all t > 0. Applying this condition to the functions v1 and v2 given by (12) and (13)
we obtain ∥∥∥∥∥w2(r)

rQ/p2

(t+ r)Q/p1−α

∥∥∥∥∥
Lθ2 (0,∞)

≤ c‖w1‖Lθ1 (t,∞). (22)

Indeed, taking into account equalities (12) and (13) and replacing r
− p2
Q by ρ and t

− p2
Q

by τ, we get that for some c > 1∥∥∥w2(ρ)ρQ/p2 min{τα−Q/p1 , ρα−Q/p1}
∥∥∥
Lθ2 (0,∞)

≤ c ‖w1‖Lθ1 (τ,∞)

for all τ > 0.

Hence (22) follows since

ρQ/p2 min{τα−Q/p1 , ρα−Q/p1} � ρQ/p2

(ρ+ τ)Q/p1−α
.

Necessity. Assume that, for some c > 0 and for all f ∈ LMp1θ1,w1(Hn)

‖Mαf‖LMp2θ2,w2
(Hn) ≤ c‖f‖LMp1θ1,w1

(Hn). (23)

In (23) take f = ft, where ft is defined by (20). Then by (21) the right-hand side of
(23) does not exceed a constant multiplied by tQ/p1‖w1‖Lθ1 (t,∞). Furthermore by Lemma

5 the left-hand side of inequality (23) is greater than or equal to a constant multiplied by

tα+min{Q−α,Q/p2}

∥∥∥∥∥w2(r)
rQ/p2

(t+ r)min{Q−α,Q/p2}

∥∥∥∥∥
Lθ2 (0,∞)

.

This works foe the case α = n
p′2

too, since ln(e+ r
t ) ≥ 1.
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