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Boundedness of the Fractional Maximal Operator in Lo-
cal and Global Morrey-type Spaces on the Heisenberg
Group

F.A. Alizade

Abstract. We study the boundedness of the fractional maximal operator M, on the Heisenberg
group H™ in local and global Morrey-type spaces LM .,(H") and GMyg ., (H™), respectively. We
give a characterization of strong and weak type boundedness for the operator M, in local Morrey-
type spaces LM ., (H™).
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1. Introduction

In this paper, we establish the norm inequalities for the fractional maximal operator
in local Morrey-type spaces on Heisenberg group. The Heisenberg group [6, 7, 15, 17]
appears in quantum physics and many fields of mathematics, including harmonic analysis,
the theory of several complex variables and geometry. We begin with some basic notation.
The Heisenberg group H,, a non-commutative nilpotent Lie group with the product spaces
R27*1 that have the multiplication

n
Ty = <ZE' + 9 T2pt1 + Yant + 2 Z LkYn+k — $n+k:yk)a
k=1

where 2 = (2/, x2,41), and y = (v, y2n+1). By the definition, the identity element on H,
is 0 € R?"*1 while the inverse element of x = (2/,t) is 27! = (—a/, —t).
The corresponding Lie algebra is generated by the left-invariant vector fields:

0 0 0
— 2. X —
Zj BTont1 y A2n+1

Xj Xn+j ':1,...,77,.

8CCj 8x2n+1 ’ 8xn+j 6x2n+1 ’
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The only non-trivial commutator relations are
[X]7Xn+]] = _4X2n+1a ]: 1a"'7n'

The non-isotropic dilation on Hj, is defined as &;(z', z2,11) = (tz’, 229, 41) for t > 0.
The Haar measure dz on this group coincides with the Lebesgue measure on R?" 1. It is
easy to check that d ((5t:c) = r@dz. In the above, Q = 2n+2 is the homogeneous dimension
of H,. The norm of 2 = (2/,22,4+1) € H, is given by |z|, = (|2'|* + 23,,,)'/*, where
|22 = 211 xi The norm satisfies the triangle inequality and leads to the left-invariant
distance d(x,y) = |ry~!|,. With this norm we define the Heisenberg ball, B(z,r) = {y €
H,, : |zy~t|, < 7}, where z is the center and r is the radius. The volume of B(z,r) is
d,r*"2 where dC,, is the volume of the unit ball B; = B(e,1). Let Sy = {z € H, :
|z|, = 1} be the unit sphere in H,, equipped with the normalized Haar surface measure
do.

The fractional maximal function M,f, 0 < a < @ on the Heisenberg groups of a
function f € LI°°(H,,) is defined by

Mo f(z) = sup | Bz, )"+ / F)ldy.
t>0 B(z,t)

If @« =0, then M = Mj is the maximal operator on the Heisenberg groups. It is well
known that the fractional maximal operator on the Heisenberg groups play an important
role in harmonic analysis (see [7, 16]).

The main purpose of [10] is to give some sufficient conditions for the boundedness of
fractional integral operators and singular integral operators defined on homogeneous Lie
groups G in local Morrey-type space LMpg ,, (G). In a series of papers by Burenkov V.,
Guliyev H. and Guliyev V. etc. (see, for example [2, 3, 4]) be given some necessary and suf-
ficient conditions for the boundedness of fractional maximal operators, fractional integral
operators and singular integral operators in local Morrey-type spaces LMpg ., (R™).

In this paper, we study the boundedness of the fractional maximal operator M, on
the Heisenberg group H" in local Morrey-type spaces LMpg .,(H™). Also we give a charac-
terization of strong and weak type boundedness for the operator M, in local Morrey-type
spaces LM ., (H").

By A < B we mean that A < C'B with some positive constant C' independent of
appropriate quantities. If A < B and B < A, we write A &~ B and say that A and B are
equivalent. For a number p, p’ = p/(p — 1) denotes the conjugate exponent of p.

2. Local and global Morrey-type spaces on the Heisenberg group

Let 0 < p,0 < co. Denote by 2y a set of all non-negative measurable functions w(r) on
(0,00) such that w(t) # 0 on the set of positive measure and |[w ()|, ,00) < 00 for some
t1 > 0. The set , y consists of the functions w(r) € Qy such that Hw(r)rQ/pHLe(O@) < 00
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for some ty > 0 (see [2]). Let wy € Qy, wa € p p. Recall that in 1994 the doctoral thesisis
[10] (see also [11]) by Guliyev introduced the local Morrey-type space LMpg ., and in [1]
(see also [2, 3, 4]) by Burenkov, Guliyev introduced the global Morrey-type space GMpg 1, -

Definition 1. Let 0 < p,0 < oo and let w be a non-negative measurable function on (0,00).
We denote by LMy .,(H™), GMpg .,(H™), the local Morrey-type spaces, the global Morrey-
type spaces on the Heisenberg group respectively, the spaces of all functions f € L;;OC(]HI”)
with finite quasinorms

Hf”LMpg’w(H”) = Hw(T)”fHL,,(B(o,t))HLQ(OM) )

1ty = 592 [z, ol 0,00

respectively.

Note that
||f||LMpw71(H7l) = ||f”GMpoo’1(H") = HfHLp(Hn)-
Furthermore, GM,, ,—x/»ny = M, \(H"), 0 <A< Q.

poO,T

For a measurable set H” and a function v non-negative and measurable on H", let
Ly, »(H") be the weighted L-space of all functions f measurable on H" for which || f| 7, , )
v fllz,@ny < oo '

If0<p<6< oo, then ||f||LMp97w(Hn) < ||f||Lp,w(H")v and if 0 < 0 < p < oo, then
112y ny < I FL0syg,, (sin), Where for all z € H™ W(x) = [|w]|Ly(|a),, 00)-

In particular, for 0 < p < oo ||fllza,,.@mm) = Iflz, . @n), where for all x € H"
V(z) = [wll L, (Jalyy 00) @) -

We shall use the following theorem stating necessary and sufficient conditions for the
validity of the following inequality

1Mo fllL,, . < cllfllL,, ., @m (1)

where v1 and vo are functions non-negative and measurable on H" and ¢ > 0 is independent
of f (see [5, 14]).
Given a set Q C H", xq will denote the characteristic function of €.

Theorem 1. Let 0 < a < @, 1 < p1 < p2 < 0. Moreover, let v, va be non-negative
and measurable on H™. Then inequality (1) holds if, and only if, the following equivalent
conditions are satisfied

= B|» o < 2
J ;g}%’ | Hvl HLp/l(B) ||U2HLp2(B) o0 (2)
and .
sup || M, P/ (1=p1) ‘ Hvl/(l—pl) < . 3
BCH® <XB ! ) Lygoy(B) 1171 Ly (B) 3)

Moreover, the sharp (minimal possible) constant c* in (1), satisfies the inequality ¢cJ <
c* < cJ, where ¢,c® > 0 are independent of v1 and vs.
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3. Boundedness of the fractional maximal operator in local Morrey-type
spaces on Heisenberg group

Let 0 < p,0 < co. Denote by 2y a set of all non-negative measurable functions w(r)
on (0,00) such that w(t) # 0 on the set of positive measure and [[w(7)|| 1, ,00) < 00 for
some t; > 0. Let wy € Qp, wa € Qpp. Recall that in 1994 the doctoral thesisis [10] (see
also [11]) by Guliyev V.S. introduced the local Morrey-type space LMpg ., (H") is given
by

1| 20g 0, my = N1w1 ()] f [ B0, | (0,00)-

To obtain necessary and sufficient conditions on wy and we under which M, is bounded
for other parameter values and to obtain simpler conditions for the case p = ;1 = 65 we
reduce the problem of the boundedness of M, in the local Morrey-type spaces to the
problem of the boundedness of the Hardy operator in weighted L,-spaces on the cone of
non-negative non-increasing functions.

Lemma 1. Let 0 < a < @, 1 <p; < p2 <00 and —o0 < v < co. Then the inequality
[1MafllL,, o) < Ly, (o, 20 @ (4)

where c¢(r) > 0 is independent of f holds for all f € Lg)lc(H”) if and only if

1 1
v2-2 i @S- 2)sas@ys 5)
b2 P P2 o
If (5) holds, then the minimal constant c(r) in (4) satisfies

o(r) < roQU/m=1/p2) =y,

Proof. 'We apply Theorem 1 to the pair of functions va(z) = xp(o,)(7),v1(7) =
(||, +7)7. Then

R Up2 , R Lo\
I(v1,v2) = sup R*~9 </0 " xom (t)dt> </0 t9 (4 ) dt>

R>0
R 1/p2 R 1/p}
= pQ/P2HQ/P =7 gup RO (/ TQ_lx(OJ)(T)dT) (/ 797 (r + 1) dT)
R>0 0 0
P Up2 s rp Lo\ /P
= potQ/P2=Q/P =7 gyp =@ </ TQ_IX(OJ)(T)dT) (/ 79 +1)7 M dT)
p>0 0 0

= potQ@/P2=Q/m-1[

where K = max{Kj, Ko},

p 1/p2 p ) 1/p}
K1 = sup pa*Q </ TQ1X(071)(T)dT> </ TQil(T + 1)7p1d7'>
0 0

0<p<1
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and
p 1/p2 p , 1/p
Ky = sup pan </ TQIX(O,l)(T)dT) (/ TQil(T + 1)7p1d7') .

1<p<oo 0 0
Next,

K <0< sup pa+Q/p2_Q/p1 <o a+Q/pr—Q/p1 > 0.

0<p<1

Moreover,

p ) 1/p}
Ky < oo« sup p* @ </ TQ17p1d7'> < 00.
1<p<oo 1

If v > Q/p}, then [ 7Q-1-W1dr < 00 and Ky < oo since a < Q.
If v = Q/p}, then Ky < 0o <  sup p*~?Inp < co. Therefore again Ky < oo since

1<p<o0
a < Q.
If v < Q/p}, then

Ky <00« sup po‘*Q+Q/pl1*7 < 00 &=

1<p<oo
Q—l—g—fy<0<:>fy>04—9
pl p1

Inequality o < @, implies that ap; — Q < Q(p1 — 1). Hence Ko <00 & v > a— Q/p1.

Corollary 1. Let 1 < p; <00, 0 < pa <00 and Q (1/p1 —1/p2), < a < Q. Then there
exists ¢ > 0 such that

HGIPALY “

Q/p
1Mo fllz,, (B < cr ' (/H (al, + )@ om @

for all ¥ > 0 and for all f € LZOC(H”)

Proof. In the case 1 < p; < p2 < oo (6) follows by Lemma 1 with v = o — Q/p1.
If 0 < p2 < p1 < o0, by Holder’s inequality and (6) for po = p; we have

”MafHLpZ(B(o,r)) < (dnrQ)l/pzfl/pl HMafHLpl (B(0r)) = crQ/p2 ||Moéf|]Lp1 (B(0,))
where d,, is the volume of the unit ball in H” and ¢ > 0 depends only on @, p1 and ps.
The following lemma was proved in [2].

Lemma 2. Let 8 > 0 and ¢ be a function non-negative and measurable on H™. Then for
all >0

g2t /roo </B(o,t) wm)dﬂt) tlthﬁ = /n (|=7C’H +7’ B - 5/ (/ )dx> tlthﬁ
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Corollary 2. Let 1 < p1 < 00,0 < p2 < o0 and Q(1/p1 —1/p2), < a < Q/p1. Then
there exists ¢ > 0 such that

1/271
> dt
1Mo 1, (0.0 < €79/ ( / ( /B o If(w)lpldJU) tQ—a131+1> (7)

loc (Tn
for allr >0 and for all f € L;;¢(H").

Proof. Inequality (7) follows from inequality (6) and Lemma 2.

Corollary 3. Let 1 < p; < 00, 0 < pa < 00 and Q(1/p1 —1/p2), < a < Q/p1, then
there exists ¢ > 0 such that

IMaf |,y Bory) < er® QPP £l gany (8)
for all v >0 and for all f € Ly, (H").

Proof. If 0 < p2 < o0, inequality (8) follows by inequality (6). For 0 < py < oo and
a = @Q/p1 it also follows directly from the definition of M, f. Indeed, Hélder’s inequality
implies that

Mg /py flliee < Iz, @m)-

Hence
1Mq/p, fllL,, (BO, < di/mT'Q/pQHfHLPI(Hn)-

Let H be the Hardy operator
-
Hg:/ g(t)dt, 0<r<oo.
0

Lemma 3. Let 1 < p; <00, 0<ps <00, Q(1/p1 —1/p2), <a<Q/p1,0<0 <00 and
w € Qy. Then there exists ¢ > 0 such that

1/p
”Maf||LMp20,w S CHHgHL@/pl’,U(Oﬁ)O)

for all f € L°(H"), where

’
90 = [+ o O o)

and
v(r) = [w (Tl/(aprQ)) HQ/pa+1/60)/(ap1—Q)—1/6 p1 . a0)
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Proof. By Corollary 2

1Mo f ety = [0 1Moy 50y,

0o dt 1/p1
Q/p P
< cl||lw(r)re/P? </T </B(0,t) | f(x)] 1d:):> tQ—Oépl"rl)
Ly(0,00)
rap1—Q 1/p1
— (@ — apt) 7 [w(r)r ¥/ ( / ( / (@) dx) dT>
0 B(0,71/(ar1-Q))

Lg(0,00)

=

0o 0 rap1—Q 9/p1
= ¢(Q — apy)~ VM /0 (w(r)rQ/pQ) (/0 9(7)d7‘> dr
0/ 3
00 0 14 P1
_ . ( / (1w (/o=@ jRrtmtan-a0) pi/Gon-0)-1 < / g(T)dT> dp>
0 0

— 1/p
- CHHgHLQ/Ll,v (0700)7

where ¢ > 0 depends only on @, p1,p2 and a.
Corollary 4. Let 1 < p; < 00, 0 <p2 <00, Q(1/p1 —1/p2), <a<Q/p1,0 <0 < o0
and w € §y,, 9. Then there exists ¢ > 0 such that

1/p1

e 60 < 5D [H (0l ) [ (0

forall f € Lg’f(H”), where v is defined by (10) and

oo t) = / Fy)Prdy = / fy a1
B(x,tl/(am*Q)) B(0,t1/(aP1-Q))

Theorem 2. Let 1 < p; < 00, 0 < p2 < 00, Q(1/p1 —1/p2), < a < Q/p1, 0 <
01,00 < oo, w1 € Qy,, wa € Qp,. Assume that H is bounded from Lel/pl,vl(07 o0) to
Lo, /p, 0, (0,00) on the cone of all non-negative functions ¢ non-increasing on (0,00) and

satisfying tli>m o(t) = 0, where
v1(7") = [wl (p/(am—@)) 741/((04101_Q)gl)_l/gl}pl 7 (12)
va(r) = [wz (TI/(aprQ)) T(Q/p2+1/92)/(ap17Q),1/92i|Pl ' 13)

Then M, is bounded from LM, ¢, v, (H") to LM,,0, w,(H") and from GM,y, g, v, (H")
to GMp,0, 1w, (H™). (In the latter case we assume that wi € Qp, ,, W2 € Uy, 9,.)
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Proof. By Lemma 3 applied to LM,,g, ., (H")

1/271
L92/p1,u2 (0700) ’

|Mafllin,,,, o) < cllHgl

where ¢ > 0 is independent of f.
Since g is non-negative, non-increasing on (0,00) and lim; 4+ ¢(t) = 0 and H is
bounded from Ly, /p,, 4, (0,00) to Lg, /p, 4, (0,00) on the cone of functions containing g, we

have

1/p1

|Mafllias,,,, o < clally

where ¢ > 0 is independent of f.
Hence

oo 1/61
01/p 0
HMO‘fHLMPsz’U’z(Hn) =¢ (/0 Ul(t) 1 1HfHle (B(O,t1/<°‘p1Q)))dt>

U e 1/6,
— QM (/0 U1(7’aplQ)GI/pl"’aplQl”f”?:lpl(B(O,T))dr>

1 00 b1 16
= ([ (w0l m0ey) ")
0

1
=cQn | fllza,, o,y ()

01/p1,v1 (0700)’

where ¢ > 0 is independent of f.

In order to obtain explicit sufficient conditions on weight functions ensuring the bound-
edness of M,, first we shall apply the following statement.

Lemma 4. [2] Let 0 < 0; < 00, 0 < 03 < o0, v1 and vy be functions positive and
measurable on (0,00). Then the condition

H’Ug(?”)”t_(1_91)+/91v1_1(t)‘ < 00 (14)

Loy /(61 -1y, (0,r) 1 Loy (0,00)

is a sufficient conditions for the boundedness of H from Lg, ,,(0,00) to Lg, 4,(0,00) in the
case 1 < 01 < oo and the boundedness H from Lg, ,,(0,00) to Lg, ,,(0,00) on the cone of
all non-negative functions ¢ non-increasing on (0,00) in the case 0 < 6 < oo.

If 6, = oo, then condition (14) is also necessary for the boundedness of H from
Lo v, (0,00) to Lg, 4,(0,00).

Theorem 2 and Lemma 4 imply a sufficient condition for the boundedness of M, from
LMp, o0,u, (H") to LM, (H™).

Theorem 3. Let 1 < p; < 00,0 < p2 < o0, Q(1/p1 —1/p2), < a<Q,0 <0z < oo,
wy € QQQ.
1. For a < Q/p1, let wy € Qy, and

wy ™t (t)¢ " @/pr=1/min{pL6i} < o0. (15)

Hw2 (r)rQ/p2
Lo, (0,00)

Ls(r,00)
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where s = p101/(01 —p1)+. (If 01 < pi1, then s = oco.) Then M, is bounded from
LMP191,’LU1 (Hn) to LMP292,U)2 (Hn)
2. For o= Q/p1, let

wy (r)r@QW/PL=1/p2) ¢ L, (0, 00). (16)
Then M, is bounded from Ly, (H") to LMy,g, v, (H™).

Corollary 5. Let 1 <p; <00, 0<p2 <00, Q(1/p1 —1/p2), < a<Q/p1, 0 < by < oo,
w1 € Qoo, wo € g, and let

00 1/
wo (r)rQ/p2 dt "
. W@

Then M, is bounded from LMy, oo w, (H™) to LMy, w,(H") and from GMp, o w, (H™) to
G My, 1w, (H™). (In the latter case we assume that wi € Qp, o, W2 € Qp, 4,-)

< 00. (17)
Lo, (0,00)

Corollary 6. Let 1 < p; < o0, 0 < p2 <00, Q(1/p1 —1/p2) | < a < Q/p1, w1 € O,
wy € Qs and let for some ¢ > 0 for allr >0

> dt c
/7, w{’l(t)tQH—amgwpl Qe (18)

Then M, is bounded from LMy, o0 w, (H™) to LMy, 00w, (H"™) and from GMp, 0w, (H™) to
GMpyoo,mw,(H™). (In the latter case we assume that wy € Qp, 0, W2 € Qp, 0.)

Remark 1. Note that, the Corollary 6 was proved in [8], see also [9, 12, 13].

For the majority of cases the necessary and sufficient conditions for the validity of
IHelL,, (000 <cllell,, (000 (19)
P12 p1°Y1

where ¢ > 0 is independent of ¢, for all non-negative decreasing functions ¢ are known, for
detailed information see [18], [19]. Application of any of those conditions gives sufficient
conditions for the boundedness of the fractional maximal operator from LMy, g, ., (H") to
LM,,,6, 0, (H™) and from G My, ¢, w, (H") to GMp,g, w, (H™).

However, there is no guarantee that the application of the necessary and sufficient
conditions on v; and vy ensuring the validity of (19) implies the necessary and sufficient
conditions for the boundedness of M, from LMy g, w, (H™) to LMp,0, ., (H™).

Fortunately for certain values of the parameters this is the case, namely for 1 < p; < oo,
0 < p2 < 00, Q(l/pl—l/p2)+ §0&<Q/p1, 0<6; <6 <00, 0 <p1.

Note that in this case the necessary conditions (coinciding with the sufficient ones) for
the validity of inequality (19) for decreasing functions are obtained by taking ¢ = X (o)
with an arbitrary ¢ > 0.

Since in the proof of Theorem 2 inequality (19) is applied to the function ¢ = g,
where g is given by (9), it is natural to choose, as test functions, functions f;, ¢ > 0, for
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which fB(O’ul/(am,Q)) |ht(y)|P*dy is equal or close to B(t)x(o(u), u > 0, where B(t) is
independent of u. The simplest choice of f satisfying this requirement is

ft(z) = xBo.20\B(0y)(T), T €H", t>0. (20)
Note that,

1ilo, omy = 0. 0<r<t, ISl ony <c™P, t<r<oo,  (21)

where ¢ > 0 depends only on @ and py.
For functions F,G defined on (0,00) x (0,00) we shall write F' =< G if there exist
¢, > 0 such that cF(r,t) < G(r,t) < F(r,t) for all r,t € (0, 00).

Lemma 5. If 0 <a <@, 0<p<oo, then

t

y P

- Q/ (r+t

= taT p . Q/p .
(m) hl (6 + f) 5 P

Theorem 1. (1) Let 1 <p1 <00, 0<p2<o00,0<a<@Q,0<0,0 < oo,
wy € Qg and wy € Qg,. If My is bounded from LM, g, v, (H") to LMp,e, w,(H"), then
there exists a constant C > 0 such that for all t > 0,

N

)min{Q—a,Q/fI}
IMafill L, B0

Q
G-a

Q
Q-—a

wo (r)r@/p2

0 e min(Q—a,Q/p2)
(t + r)min(Q-c,Q/p2)

<C .
Loy = 10,

(2) Let 1 <p1 <00, 0<pr<o00,0<b <b<00, 6 <pp, Q(E—1) <a< @

2 P p2/+ — p1’

. P2

wy € Qg,, wa € Qp, and the equality H% ; < CollwillLy, 40y (C2 > 0) be
02 (0,00)

true for all t > 0; then M, is bounded from LMy, g, v, (H") to LMp,g, ., (H™). If also
w1 € Qp, 9., W2 € Qp, g,, then M, is bounded from G My, g, 1, (H") to GMp,g, w, (H™).

(3) In particular, for 1 < p; < 00, 0 < pa < 00, 0 < 0; < 0y < o0, 61 < p1,
Q(p%—p%) <a< le, wi € Qg,, wa € Qy, the operator M, is bounded from LM, g, 1, (H")
to LM,,0, w, (H™) if and only if for all t > 0,

lwz(r)r /P2 (¢ 4 1) 2|y, ) < Cllwtlliy, (100)-

Here the constant Cs > 0 is independent of t.

Note that, in the Euclidean setting Theorem 1 was proved in [2].

Proof. Sufficiency. It is known [19] that for ; < 0 < oo the necessary and sufficient
condition for the validity of (19) for all non-negative decreasing on (0, c0) functions ¢ has
the form: for some ¢ > 0

lea(r) mingt, ¥, o0 < o1, , 00
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for all ¢ > 0. Applying this condition to the functions v; and ve given by (12) and (13)
we obtain
rQ/p2

’wz(”’)m

< cllwill Ly, (#,00)- (22)

L@2 (0,00)

Indeed, taking into account equalities (12) and (13) and replacing ] by p and )
by 7, we get that for some ¢ > 1

Hw2(p)pQ/p2 min{r®~@/P1 po=Q/r1y

<
Loy (0,00) ¢ le”L"l(T’OO)

for all 7 > 0.
Hence (22) follows since

pQ/pQ

Q/p2 ¢ a—Q/p1 ,a—Q/p1\
P Il’lln{T y P }/‘ (p_|_7-)Q/p1*Ol'

Necessity. Assume that, for some ¢ > 0 and for all f € LM g, ,,, (H")

Mol 10,0, 0 m) < €l fllLr, o, 0, (E7)- (23)

In (23) take f = fi, where f; is defined by (20). Then by (21) the right-hand side of
(23) does not exceed a constant multiplied by t9/P1 ||w|| Ly, (t,00)- Furthermore by Lemma
5 the left-hand side of inequality (23) is greater than or equal to a constant multiplied by

rQ/p2
(t + r)min{Q-0,Q/p2}

L€2 (0,00)

This works foe the case o = - too, since In(e 4 7) > 1.
2

3
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