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Some Questions of Atomic Decompositions and Frames
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Abstract. Frames in Hilbert and Banach spaces are considered and their properties in the context
of Noetherian mapping are studied in this paper. Atomic decompositions in Banach spaces are
also considered. The concept of K -closeness is introduced. The stability of frame properties and
atomic decompositions with respect to K -closeness is proved. The concept of t-frame associated
with the tensor product of Hilbert spaces is introduced. All the properties of ordinary frames
are extended to this case. Noetherian perturbation of t-frames is considered. The stability of
t-frameness with respect to quadratic closeness is proved.
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1. Introduction

Frame theory has a diverse array of applications in many scientific fields, that’s why
the global interest in it is growing at a rapid pace. Many monographs and review articles
have been dedicated to it (see, e.g., [6-8,10-12,15,24], etc.). This theory dates back to
the seminal paper by R.J.Duffin and A.C.Schaeffer [13]. Later, there appeared various
generalizations of the concept of frame such as Banach frames, p-frames ([1, 9, 19]), etc.,
and the methods to build a frame have been developed. One of these methods is a
perturbation method. Many results have been obtained using this method in the context
of classical Paley-Wiener theorem on the perturbation of orthonormal basis (more details
on these results can be found in O.Christensen’s [7, 8, 9]).

It should be noted that, unlike the Hilbert case, the definition of a Banach frame in
general does not guarantee the atomic decomposition for arbitrary element of the space
(or for any element of the closure of the linear span of considered system). In special cases,
such decompositions hold. Lp-case has been considered by A. Aldroubi, Q. Sun, W.Sh.
Tang in [1], where the concept of p-frame was introduced and the atomic decomposition
with respect to shift invariant subspaces of Lp were obtained. This idea has been extended
to the general Banach case by O.Christensen and D.T. Stoeva [9]. The above-cited works
introduced the concept of q-Riesz basis with respect to the Banach space, which is the
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generalization of the Riesz basis introduced by N.K. Bari in [2]. Similar results have been
obtained in [3-5,20-23]. There are various generalizations of the concept of frames, and
the number of research works dedicated to this topic increases (we refer the reader to
[1,9,19,25-31,42-44]).

It should be noted that the interest in the theory of frames is growing not only because
of its wide applications in various fields of science, but also because of its theoretical
importance. As a striking example of this fact, we can mention a relationship between the
theory of frames and the well-known Kadison-Singer problem of 1959. Slightly modified
but equivalent statements of this famous problem have been studied extensively in many
areas of mathematics such as theory of frames, operator theory, time-frequency analysis,
etc. For the results concerning this problem we refer the reader to [32-39] and references
therein.

This work consist of two parts. In Part I we consider the frames in Noetherian mapping
in Hilbert and Banach spaces. Atomic decompositions in Hilbert and Banach spaces are
also considered. More precisely, we consider the perturbations of atomic decompositions
and frames in Hilbert and Banach spaces. The concept of K -closeness is introduced and
the stability of atomic decomposition and frame properties with respect to this closeness
is proved.

In Part II we consider the tensor product of Hilbert spaces and the bilinear mapping
generated by this product. We introduce the concept of t-frame using the Hilbert-valued
scalar product. Theoretically, some facts about t-frames can be established using earlier
results for G-frames obtained in [29, 30]. But, the concept of t-frame allows many facts
relating to ordinary frames to be extended to the case of t-frame. The properties of t-
frame in Noetherian mapping are also studied. The stability of t-frameness with respect
to quadratic closeness is proved. The results of this work was published in [3,4,31,42-44].

PART I

Frames In Noetherian Mapping. K -Close Frames.

2. Needful Information

We will use the standard notation. N will be a set of all positive integers; Banach
space will be referred to as B-space; Hilbert space will be referred to as H-space; ‖ · ‖X
will denote a norm in the space X; (· ; ·)X will denote a scalar product in X; L [M ] will
denote the linear span of the set M and M will stand for the closure of M ; δnk will be the
Kronecker symbol; ◦ will be a symbol of composition; X∗ will stand for a space conjugated
to X; DT (RT ) will denote a domain (range of definition) of the operator T ; IX will be
an identity operator in X; KerT will stand for the kernel of the operator T ; L (X; Y )
will denote a B-space of bounded operators from X to Y ; dimX will stand as usual for a
(linear) dimension of X; and by X/X0

we will denote a factor space with respect to the
subspace X0 ⊂ X. Throughout this paper ~x will be denoted ~x ≡ {xn}n∈N .
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Let us recall the definition of Noetherian operator. Let X, Y be B-spaces and T : X →
Y be a linear operator. If R̄T = RT and α = dimKerT < +∞, β = dim Y /RT

< +∞,
then the operator T is called Noetherian and the number æ = α− β is called the index of
the operator T . For α = β, T is called a Fredholm operator.

We will also give the concepts of left and right regularizers. Operator R1 ∈ L (Y ; X)
(R2 ∈ L (Y ; X)) is called the left (right) regularizer of operator A ∈ L (X; Y ), if

R1A = IX + TX (AR2 = IY + TY ) ,

where TX (TY ) is a completely continuous operator in X (Y ). It is known that (see,
e.g., [18]) any left regularizer of Noetherian operator is also its right regularizer, and the
converse is also true. By regularizer we will mean the left or the right regularizer.

The following statement is true.

Statement 2.1. Let A ∈ L (X; Y ) be a Noetherian operator and R ∈ L (Y ; X) be its
regularizer. Let the operator B ∈ L (X; Y ) satisfy the condition ‖B‖ < ‖R‖−1. Then the
operator A + B is also Noetherian and its index is equal to the index of the operator A :
æ (A+B) = æ (A).

More details about these and other facts relating to Noetherian operators can be found
in [18].

Let’s recall some concepts and facts from the theory of frames. First, let us give a
definition of atomic decomposition.

Definition 2.2. Let X be a B-space and K be a B-space of the sequences of scalars.
Let {fk}k∈N ⊂ X , {gk}k∈N ⊂ X∗. Then

(
{gk}k∈N ; {fk}k∈N

)
is an atomic decomposition

of X with respect to K if :
(i) {gk (f)}k∈N ∈ K , ∀f ∈ X;
(ii) ∃A,B > 0:A ‖f‖X ≤

∥∥ {gk (f)}k∈N
∥∥

K
≤ B ‖f‖X , ∀f ∈ X;

(iii) f =
∑∞

k=1 gk (f) fk , ∀f ∈ X.

The concept of frame is a generalization of the concept of atomic decomposition.

Definition 2.3. Let Xbe a B-space and K be a B-space of the sequences of scalars.
Let {gk}k∈N ⊂ X∗, and S : K → X be some bounded operator. Then

(
{gk}k∈N ; S

)
forms a Banach frame for X with respect to K if :
(i) {gk (f)}k∈N ∈ K , ∀f ∈ X;
(ii) ∃A,B > 0:A ‖f‖X ≤

∥∥ {gk (f)}k∈N
∥∥

K
≤ B ‖f‖X , ∀f ∈ X;

(iii) S
[
{gk (f)}k∈N

]
= f , ∀f ∈ X.

A and B will be called frame bounds.
The following statement is true.

Statement 2.4. [7] Let X be a B-space and K be a B-space of the sequences of
scalars with a canonical basis {δn}n∈N, where δn ≡ {δkn}k∈N. Let {gk}k∈N ⊂ X∗ and
S ∈ L (K ;X). Then the following statements are equivalent to each other:
(i)
(
{gk}k∈N ; S

)
forms a Banach frame for X with respect toK ;

(ii)
(
{gk}k∈N ; {S (δk)}k∈N

)
is an atomic decomposition of X with respect to K .
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Future K will be called as K-space.

Separately we will consider the Hilbert case of spaces.

A family of vectors {fi}i∈I in a Hilbert space H is a Riesz basic sequence

if there are constants A,B > 0 such that for all scalars {ai}i∈I we have

A
∑
i∈I
|ai|2 ≤

∥∥∥∥∥∑
i∈I

aifi

∥∥∥∥∥
2

≤ B
∑
i∈I
|ai|2 .

We call
√
A ,
√
B the lower and upper Riesz basis bounds for {fi}i∈I , respectively. If the

Riesz basic sequence {fi}i∈I spans H we call it a Riesz basis for H . So ”{fi}i∈I is a
Riesz basis for H” means there is an orthonormal basis {ei}i∈I such that the operator
T (ei) = fi is invertible. In particular, each Riesz basis is bounded. That is, 0 < inf

i∈I
‖fi‖ ≤

sup
i∈I
‖fi‖ <∞.

Hilbert space frames were introduced by Duffin and Schaeffer [13] to address some
very deep problems in nonharmonic Fourier series (see [15]). A family {fi}i∈I of elements
of a (finite or infinite dimensional) Hilbert space H is called a frame for H if there are
constants 0 < A ≤ B < ∞ (called the lower and upper frame bounds, respectively) such
that for all f ∈ H

A ‖f‖2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B ‖f‖2 . (1)

If we only have the right hand inequality in (1) we call {fi}i∈I a Bessel sequence with
Bessel bound B. If A = B, we call this an A-tight frame and if A = B = 1, it is called a
Parseval frame. If all the frame elements have the same norm, this is an equal norm frame
and if the frame elements are of unit norm, it is a unit norm frame. Obviously, ‖fi‖2 ≤ B.
If also inf ‖fi‖ > 0, then {fi}i∈I is a bounded frame. The numbers {〈f, fi〉}i∈I are the
frame coefficients of the vector f ∈ H. If {fi}i∈I is a Bessel sequence, then the synthesis
operator for {fi}i∈I is the bounded linear operator T : l2 (I)→ H given by T (ei) = fi for
all i ∈ I. The analysis operator for {fi}i∈I is T ∗ and satisfies: T ∗ (f) =

∑
i∈I 〈f, fi〉 ei. In

particular, ‖T ∗f‖2 =
∑

i∈I |〈f, fi〉|
2, for all f ∈ H, and hence the smallest Bessel bound

for {fi}i∈I equals ‖T ∗‖2. In view of (1) we have

Theorem 2.5. Let H be a Hilbert space and T : l2 → H, T (ei) = fi be a bounded
linear operator. The following are equivalent:

(1) {fi}i∈I is a frame for H.

(2) The operator T is bounded, linear, and onto.

(3) The operator T ∗ is an (possibly into) isomorphism.

Moreover, if {fi}i∈I is a Riesz basis, then the Riesz basis bounds are
√
A ,
√
B, where

A,B are the frame bounds for {fi}i∈I .

It follows that a Bessel sequence is a Riesz basic sequence if and only if T ∗ is onto.
The frame operator for the frame is the positive, self-adjoint invertible operator S = TT ∗ :
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H → H. That is

Sf = TT ∗f = T

(∑
i∈I
〈f, fi〉 ei

)
=
∑
i∈I
〈f, fi〉Tei =

∑
i∈I
〈f, fi〉 fi.

In particular

〈Sf, f〉 =
∑
i∈I
|〈f, fi〉|2 .

Regarding frame sequences, we have the following theorem.

Theorem 2.6. The removal of a vector fj from a frame {fk}k∈N for H leaves either
a frame or an incomplete set. More precisely

if < fj , S
−1fj >6= 1, then {fk}k 6=j is a frame for H; if < fj , S

−1fj = 1, then {fk}k 6=j
is incomplete.

Regarding perturbation of frames, we have the following theorem.

Theorem 2.7. Let {fk}k∈N be a frame for H, and let {gk}k∈N be a sequence in H . If
K : l2 → H , K

(
{ck}k∈N

)
=
∑∞

k=1 ck (fk − gk), is a well-defined compact operator, then
{gk}k∈N is a frame sequence.

This theorem has the following immediate corollary.

Corollary 2.8. Let {fk}k∈N be a frame for H, and {gk}k∈N a sequence in H. If
gk = fk except for a finite set of k ∈ N , then {gk}k∈N is a frame sequence.

In this paper, all of these results are generalized to the case of t-frame. Moreover,
we considered the most general case of perturbation, namely, Noetherian perturbation.
Of course, these results are special cases of Noetherian perturbation. More details about
these results can be found in the monographs by O. Christensen [7, 8] and Heil Ch. [15].

3. Main Results

3.1. Hilbert case. First let’s consider the case of H-space. Let X (Y ) be an H-space
with a norm ‖ · ‖X (‖ · ‖Y ), the system {xn}n∈N ≡ ~x form a frame for it and A;B > 0 be
the corresponding frame bounds. Let T ∈ L (X; Y ) be a Noetherian operator. Then it is
clear that RT is closed. It is known that (see, e.g., [24, 6, 7, 8]) ∃ {x∗n}n∈N ⊂ X∗ : x =∑∞

n=1 (x; x∗n)X xn, ∀x ∈ X. Assume L
[
{yn}n∈N

]
≡ Y1 ⊂ Y , where yn = Txn, ∀n ∈ N.

It is absolutely clear that Y1 ≡ RT . Represent X as a direct sum X = KerT +̇X1.
Consider the restriction of T on X1, and denote it by T1, i.e. T1 = T/X1

. It is clear that
T1 ∈ L (X1; Y1), and it is bounded invertible as RT1 = RT (invertibility follows from the
Banach theorem). Following [7], we call T−11 a pseudoinverse of T . Take ∀y ∈ Y1. Let
x = T−11 y ∈ X1. Consequently

x =

∞∑
n=1

(
T−11 y; x∗n

)
X
xn =

∞∑
n=1

(
y;
(
T−11

)∗
x∗n

)
Y
xn.
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It follows directly that

y = Tx =
∞∑
n=1

(y; y∗n)Y yn,

where y∗n =
(
T−11

)∗
x∗n ∈ Y , ∀n ∈ N. Let us show that the system ~y forms a frame for Y1.

Projectors generated by the decomposition X = KerT +̇X1 are denoted by P0 and P1,
respectively. It is obvious that the projectors P0 and P1 are continuous.

We have x = P0x+ P1x. Consequently

Tx = TP1x = T1P1x⇒ P1x = T−11 Tx = T−11 y,

where y = Tx. Thus∑
|(y; yn)Y |

2 =
∑
|(y; Txn)Y |

2 =
∑
|(T ∗y; xn)X |

2 ≤

≤ B ‖T ∗y‖2X ≤ B ‖T
∗‖2 ‖y‖2Y ,∀y ∈ RT .

On the other hand, let y ∈ RT ⇒ ∃x ∈ X : Tx = y. Hence Tx = Tx1, where x1 = P1x.
We have

‖y‖2Y = |(y; y)Y | = |(Tx1; y)Y | =

∣∣∣∣∣
(
T

( ∞∑
n=1

(x1; x
∗
n)X xn; y

)
Y

)∣∣∣∣∣ ≤
≤
∞∑
n=1

|(x1; x∗n)X | |(yn; y)Y | ≤
∥∥{(x; x∗n)X}n∈N

∥∥
l2

∥∥{(y; yn)Y }n∈N
∥∥
l2
. (2)

Taking into account that x1 = T−11 y, from the condition (ii ) of Definition 2.3 we obtain∥∥{(x1; x∗n)X}n∈N
∥∥
l2
≤ A−1

∥∥T−11 y
∥∥ ≤ A−1 ∥∥T−11

∥∥ ‖y‖Y .
As a result, it follows from (2) that

‖y‖2Y ≤ A
−1 ∥∥T−11

∥∥∥∥{(y; yn)Y }n∈N
∥∥
l2
.

Thus, the following theorem is valid.

Theorem 3.1. Let X; Y be H-spaces and T ∈ L (X; Y ) be some Noetherian operator.
If ~x ≡ {xn}n∈N ⊂ X forms a frame (is an atomic decomposition) for X, then ~y ≡
{Txn}n∈N is a frame sequence (sequence of atomic decomposition) in Y .

This theorem has the following corollaries.

Corollary 3.2. Let T ∈ L (X; Y ) be a Fredholm operator. If ~x forms a frame (is an
atomic decomposition) for X, then T~x = ~y (i.e. yn = Txn, ∀n ∈ N) also forms a frame
(is an atomic decomposition) for Y , if ~y is complete in it.
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In fact, if all the conditions of this corollary are fulfilled, then it is not difficult to see
that the operator T is bounded invertible as RT = X. The rest follows directly from the
definitions of atomic decomposition and frame.

Corollary 3.3. Let T = IX +K, where K is a compact operator in X, and the system
~x forms a frame (is an atomic decomposition) for X. Then the system ~y = T~x also forms
a frame (is an atomic decomposition) for X.

The following corollary is also holds.

Corollary 3.4. Let T ∈ L (X; Y ) be a Noetherian operator and the system ~x be a
frame sequence in X. Then the system T~x is also frame sequence in Y .

If we take L [~x] as X, then the latter corollary will follow from Theorem 3.1.
3.2. Banach case. Let X; Y be B-spaces and K be some B-space of the sequences

of scalars with a norm ‖ · ‖K . Assume that the couple {~x∗; ~x} is an atomic decomposition
of X with respect to K , where K : K → X is a decomposition operator defined as follows

K~λ =
∞∑
n=1

λnxn, ~λ ∈ K .

Let T ∈ L (X; Y ) be a Noetherian operator. Assume ~y = T~x. Let us show that ∃~y∗ ⊂ Y ∗ :
{~y∗; ~y} is an atomic decomposition of RT ≡ Y1 with respect to K . Take ∀y ∈ RT . Then
∃x ∈ X : Tx = y. Let X = KerT +̇X1. Put T1 = T/X1

. It is obvious that T1 ∈ L (X1;Y1)

is bounded invertible operator: T−11 ∈ L (Y1; X1). Thus, RT1 = RT : Tx = T1x1, where
x = x0 + x1, x0 ∈ KerT , x1 ∈ X1. Let x1 = T−11 y. We have

x1 =

∞∑
n=1

x∗n (x1)xn ⇒ y = T

( ∞∑
n=1

x∗n (x1)xn

)
=

=
∞∑
n=1

x∗n (x1) yn =
∞∑
n=1

y∗n (y) yn,

where y∗n =
(
T−11

)∗
x∗n. Consequently, ∀y ∈ RT we have

y =

∞∑
n=1

y∗n (y) yn.

Since y∗n (y) =
[(
T−11

)∗
x∗n

]
(y) = x∗n

(
T−11 y

)
and T−11 y ∈ X, it is clear that {y∗n (y)}n∈N ∈

K , ∀y ∈ RT . We have∥∥{y∗n (y)}n∈N
∥∥

K
=
∥∥∥{x∗n (T−11 y

)}
n∈N

∥∥∥
K
≤ B

∥∥T−11 y
∥∥
X
≤ B

∥∥T−11

∥∥ ‖y‖Y .
Similarly we obtain∥∥{y∗n (y)}n∈N

∥∥
K

=
∥∥∥{x∗n (T−11 y

)}
n∈N

∥∥∥
K
≥ A

∥∥T−11 y
∥∥
X
≥ A ‖T1‖−1 ‖y‖Y .
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Consequently, the following relation is valid

A1 ‖y‖Y ≤
∥∥{y∗n (y)}n∈N

∥∥
K
≤ B1 ‖y‖Y , ∀y ∈ RT , (3)

where A1 = A ‖T1‖−1, B1 = B
∥∥T−11

∥∥. Thus, we get the validity of

Theorem 3.5. Let T ∈ L (X; Y ) be a Noetherian operator and {~x∗; ~x} be an atomic
decomposition of X with respect to K . Then ∃~y∗ ⊂ Y ∗ : {~y∗; ~y} is an atomic decomposi-
tion of RT (X, if L [~y] = X) with respect to K , where ~y = T~x.

The similar result is true with respect to the frame. Let {~x∗; S} form a frame for
X with respect to K and T ∈ L (X; Y ) be a Noetherian operator. Let Tp = T−11 be a
pseudoinverse operator of T . Assume ~y∗ = T ∗p ~x

∗. It is absolutely clear that ~y∗ ⊂ Y ∗.
Similar to the previous case, we can show that ~y∗ (y) ∈ K , ∀y ∈ RT and the relation (3)
holds. Let S1 = TS. We have

S1 [~y∗ (y)] = S1
[
{y∗n (y)}n∈N

]
= S1

[{(
T ∗p x

∗
n

)
(y)
}
n∈N

]
=

= S1
[
{x∗n (Tpy)}n∈N

]
= T

(
S
[
{x∗n (Tpy)}n∈N

])
=

= TTpy = y,∀y ∈ RT .

It is clear that S1 ∈ L (K ; Y ). Thus, the following theorem is true.

Theorem 3.6. Let T ∈ L (X; Y ) be a Noetherian operator, S ∈ L (K ; X), ~x∗ ⊂ X∗

and {~x∗; S} form a frame for X with respect to K . Then the pair {~y∗; TS} forms a frame
for RT , where ~y∗ ≡ {y∗n}n∈N =

{
T ∗p x

∗
n

}
n∈N = T ∗p ~x

∗, and Tp is a pseudoinverse operator of
T .

4. K -Close atomic decompositions and frames

4.1. Hilbert case. Quadratically close frames. Let X be an H-space and the
system ~x form a frame for it.

Systems ~x; ~y ⊂ X are called quadratically close in X, if∑∞
n=1 ‖xn − yn‖

2
X < +∞.

The following easily provable lemma is true.

Theorem 4.1. Let the system ~x form a frame for X and the system ~y be quadratically
close to ~x. Then the system ~y forms a frame for L [~y].

Proof. Let n0 ∈ N :
∑∞

n=n0+1 ‖xn − yn‖
2
X < A, where A is a constant in condition

(ii), Definition 2.3. Assume

zn ≡
{
xn, n = 1, n0,
yn, n > n0 .

It is absolutely clear that
∑∞

n=1 ‖xn − zn‖
2
X < A. We have∥∥∥∑ ck (xn − zn)
∥∥∥
X
≤ µ

(∑
|ck|2

) 1
2
,
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where µ =
(∑∞

n=n0+1 ‖xn − zn‖
2
X

) 1
2
. By Theorem 15.1.1 of [7] we obtain that the system

~z ≡ {zn}n∈N also forms a frame for X. As a result, it follows from Theorem 15.2.1 of [7]
that the system ~y is a frame sequence. The theorem is proved.

4.2. Banach case. K -close frames. Consider the case of B-space. Let X be a
B-space and ~x∗ ⊂ X∗.

~x∗ is called q-Besselian if

‖~x∗ (x)‖lq ≤M ‖x‖X ,∀x ∈ X,

where M > 0 is an absolute constant.

Systems ~x; ~y ⊂ X are called p-close if
∑∞

n=1 ‖xn − yn‖
p
X < +∞.

Assume that K is some K-space with a canonical basis {δn}n∈N. Then it is absolutely

clear that the conjugate space K ∗ can be identified with the K-space of elements ~ϑ ≡
{ϑn}n∈N , generated by the functionals ϑ∗ ∈ K ∗, where ϑn = ϑ∗ (δn), n ∈ N. Thus, every

element ~ϑ ∈ K ∗ generates a (continuous) functional by the following expression

~ϑ (~x) =
∞∑
n=1

xnϑn, ∀~x ∈ K .

Now we introduce the following concepts.

Definition 4.2. System ~x∗ ⊂ X∗ is called K ∗-Besselian if

‖~x∗ (x)‖K ∗ ≤ B ‖x‖X ,∀x ∈ X, (4)

where B > 0 is a constant.

Definition 4.3. The systems ~x; ~y ⊂ X are called K -close if∥∥{‖xn − yn‖X}n∈N∥∥K
< +∞. (5)

Let ~x∗ ⊂ X∗, ~y ⊂ X be some systems. Assume

X~y ≡

{
y ∈ X : ∃x ∈ X ⇒ y =

∞∑
n=1

x∗n (x) yn

}
.

It is absolutely clear that X~y is a linear subspace of X.

In the sequel, we will need the following

Lemma 4.4. Let {~x∗; ~x} be an atomic decomposition of X with respect to K and
the system ~y ⊂ X differ from the system ~x by a finite number of elements, i.e. yn =
xn , ∀n ≥ n0 + 1, where n0 ∈ N is some number. Then ∃~y∗ ⊂ X∗ : {~y∗; ~y} is an atomic
decomposition of X~y with respect to K .
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Proof. Consider the operator

T0x =

∞∑
n=1

x∗n (x) (xn − yn) =

n0∑
n=1

x∗n (x) (xn − yn) .

It is clear that T0 is a finite dimensional operator, and, as a result, T = IX − T0 is a
Fredholm operator. It is easy to see that Tx =

∑∞
n=1 x

∗
n (x) yn, ∀x ∈ X. Let y ∈ RT ⇒

∃x ∈ X : Tx = y ⇒ y =
∑∞

n=1 x
∗
n (x) yn ⇒ y ∈ X~y. Vice versa, let y ∈ X~y ⇒ ∃x ∈ X :

y =
∑∞

n=1 x
∗
n (x) yn = Tx ⇒ y ∈ RT . Thus, RT = X~y ⇒ X~y is a closure subspace. Let

X = KerT +̇X1 and T1 = T/X1
. It is absolutely clear that the operator T1 ∈ L (X1; RT )

is bounded invertible. Let y∗n =
(
T−11

)∗
x∗n, ∀n ∈ N. Proceeding in the same way as in the

proof of Theorem 3.5, we get the proof of Lemma 4.4.

Remark 4.5. It should be noted that, generally speaking, X~y 6= L [~y]. In fact, let X be

B-space with the basis ~f and ~f∗ is an appropriate conjugate system.

Let K~f
be a space of coefficients of basis ~f . Assume x∗1 = f∗1 ;x∗2 = 0, x∗n = f∗n−1,∀n ≥

3; and x1 = f1, x2 = f1, xn = fn−1,∀n ≥ 3. It is easy to see that
{
~x∗; ~x;K; K~f

}
is

an atomic decomposition of X. Accept y1 = 0, y2 = f1, yn = fn−1, ∀n ≥ 3. We have

card {n : xn 6= yn} = 2. It is clear that L [~y] = X, but X~y = L
[
{fn}n≥2

]
6= X.

Let K have a canonical basis and {~x∗; ~x} be an atomic decomposition of X with
respect to K . Suppose that ~x∗ ⊂ X is K ∗-Besselian and the system ~y ⊂ X is K -close
to ~x, i.e. the relations (4) and (5) are true. Assume

~λn0 =

0; . . . ; 0︸ ︷︷ ︸
n0

; ‖xn0+1 − yn0+1‖X ; . . .

 .

The basicity of the system {δn}n∈N in K directly implies
∥∥∥~λn0

∥∥∥
K

→ 0,

n0 → ∞. Take some n0 ∈ N :
∥∥∥~λn0

∥∥∥
K

< B−1. Define the system ~z ≡ {zn}n∈N as

follows

zn =

{
xn, n = 1, n0,
yn, n > n0 .

Thus ∥∥{ ‖xn − zn‖X}n∈N∥∥K
< B−1. (6)

Consider the operator

T0x =
∞∑
n=1

x∗n (x) (xn − zn) , ∀x ∈ X,

and put T = IX − T0. We have

‖T0x‖X ≤
∞∑
n=1

|x∗n (x)| ‖xn − zn‖X ≤
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≤
∥∥ {|x∗n (x)|}n∈N

∥∥
K ∗

∥∥ {‖xn − zn‖X}n∈N∥∥K
. (7)

In the sequel, we will assume that the space K ∗ has the following property

α) {λn}n∈N ∈ K ∗ ⇔ {|λn|}n∈N ∈ K ∗ ∧
∥∥{λn}n∈N∥∥K ∗ =

∥∥{|λn|}n∈N∥∥K ∗ .

Then, taking into account (5) and (6), from (7) we obtain

‖T0‖ ≤ B
∥∥{‖xn − zn‖X}n∈N∥∥K

< 1.

Hence the operator T ∈ L (X) is an automorphism in X. We have

Tx = x− T0x = x−
∞∑
n=1

x∗n (x)xn +
∞∑
n=1

x∗n (x) zn =
∞∑
n=1

x∗n (x) zn.

Take ∀z ∈ X. Consequently, ∃!x ∈ X : Tx = z. As a result, we obtain

z = Tx =
∞∑
n=1

x∗n (x) zn =
∞∑
n=1

x∗n
(
T−1z

)
zn =

=
∑∞

n=1 z
∗
n (z) zn, where z∗n =

(
T−1

)∗
x∗n, ∀n ∈ N. From the expression z∗n (z) = x∗n

(
T−1z

)
,

∀n ∈ N, it follows directly that {z∗n (z)}n∈N ∈ K , ∀z ∈ X. We have∥∥{z∗n (z)}n∈N
∥∥

K
=
∥∥∥{x∗n (T−1z)}n∈N∥∥∥K

≤ B
∥∥T−1z∥∥

X
≤ B

∥∥T−1∥∥
X→X ‖z‖X ,∥∥{z∗n (z)}n∈N

∥∥
K

=
∥∥∥{x∗n (T−1z)}n∈N∥∥∥K

≥

≥ A
∥∥T−1z∥∥

X
≥ A ‖T‖−1X→X ‖z‖X , ∀z ∈ X.

Thus, {~z∗; ~z} is an atomic decomposition of X with respect to K . By virtue of Lemma
4.4 we obtain that ∃~y∗ ⊂ X∗ : {~y∗; ~y} is an atomic decomposition of X~y with respect to
K . Thus, the following theorem is true.

Theorem 4.6. Let K-space K have the canonical basis and possess the property α).
If {~x∗; ~x} is an atomic decomposition of X with respect to K and the system ~y ⊂ X is
K -close to ~x, then ∃~y∗ ⊂ X∗ : {~y∗; ~y} is an atomic decomposition of X~y with respect to
K .

This theorem has the following

Corollary 4.7. Let K-space K have the canonical basis and possess the property α).
If {~x∗; ~x} is a sequence of atomic decomposition in X with respect to K and the system
~y ⊂ X is K -close to ~x, then ∃~y∗ ⊂ X∗ : {~y∗; ~y} is also an atomic decomposition of X~y

with respect to K .

The scheme of the proof of Theorem 4.6 is applicable to the more general case. Namely,
the following theorem is true.
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Theorem 4.8. Let X be a B-space, Kk, k = 1, 2; be K-spaces, K2 have a canonical
basis and have the property α). Let {~x∗; ~x} be an atomic decomposition of X with respect
to K1, where the system ~x∗ ⊂ X∗ is K ∗

2 -Besselian and the system ~y ⊂ X is K2-close to
~x. Then ∃~y∗ ⊂ X∗ : {~y∗; ~y} is an atomic decomposition of X~y with respect to K1.

It follows

Corollary 4.9. Let the spaces X, Kk, k = 1, 2; satisfy the conditions of Theorem 4.8.
Let {~x∗; ~x} be an atomic decomposition of L [~x] with respect to K1 , where ~x∗ ⊂ X∗ is
K ∗

2 -Besselian and the system ~y ⊂ X is K2-close to ~x. Then ∃~y∗ ⊂ X∗ : {~y∗; ~y} is an
atomic decomposition of X~y with respect to K1.

Now let’s consider frame perturbation in B-spaces. Let X be a B-space, K be some K-
space and the pair {~x∗; S} form a frame for X with respect to K , where ~x∗ ≡ {x∗n}n∈N ⊂
X∗, S ∈ L (K ; X). Let the system ~x∗ be K -Besselian, i.e. let the inequality (12) hold
and S1 ∈ L (K ; X) be some operator. We have

‖S [~x∗ (x)]− S1 [~x∗ (x)]‖X ≤

≤ ‖S − S1‖K→X ‖~x
∗ (x)‖K ≤ B ‖S − S1‖K→X ‖x‖X . (8)

Put S0 = S◦~x∗−S1◦x∗. If ‖S − S1‖ < B−1, then it follows from (8) that ‖S0‖ < 1, and, as
a result, the operator T = IX − S0 is invertible in X. Take ∀y ∈ X ⇒ ∃!x ∈ X : Tx = y.
We have

y = Tx = x− S0x = x− S [~x∗ (x)]− S1 [~x∗ (x)] =

= x− x− S1 [~x∗ (x)] = S1 [~x∗ (x)] =

= S1
[
~x∗
(
T−1y

)]
= S1 [~y∗ (y)] ,

where ~y∗ ≡ {y∗n}n∈N ≡
{(
T−1

)∗
x∗n
}
n∈N . From the relation

~y∗ (y) = {y∗n (y)}n∈N ≡
{[(

T−1
)∗
x∗n

]
(y)
}
n∈N
≡
{
x∗n
(
T−1y

)}
n∈N ,

it follows that ~y∗ (y) ∈ K as T−1y ∈ X. On the other hand

‖~y∗ (y)‖K ≡
∥∥∥{x∗n (T−1y)}n∈N∥∥∥K

≤ B
∥∥T−1y∥∥

X
≤ B

∥∥T−1∥∥
X→X ‖y‖X ,

‖~y∗ (y)‖K ≡
∥∥∥{x∗n (T−1y)}n∈N∥∥∥K

≥ A
∥∥T−1y∥∥

X
≥ A

∥∥T−1∥∥
X→X ‖y‖ .

Thus, we have proved the following theorem.

Theorem 4.10. Let X be a B-space, K be a K-space and the pair {~x∗; S} form a
frame for X with respect to K . If the operator S1 ∈ L (K ; X) satisfies the condition
‖S − S1‖K→X < B−1, then ∃~y∗ ⊂ X∗ : {~y∗; S1} also forms a frame for X with respect to
K .
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5. Some Applications

5.1. Perturbation in the sense of Littlewood-Paley. By lp; p−2 we denote a
K-space of sequences with a norm

∥∥{λn}n∈N∥∥p; p−2 ≡
( ∞∑
n=1

np−2 |λn|p
)1/p

, 1 < p < +∞.

The classical Paley theorem can be stated as follows.
Paley theorem. An arbitrary uniformly bounded orthonormal system ~ϕ ≡ {ϕn}n∈N

in Lp (a, b), 1 < p ≤ 2, is lp; p−2-Besselian.
It is absolutely clear that the space lp; p−2, 1 < p ≤ 2, has a canonical basis and

possesses the property α). It is not difficult to see that the conjugate of lp; p−2 is the space
lq; q−2 with a norm ∥∥{λn}n∈N∥∥q, q−2 ≡

( ∞∑
n=1

nq−2 |λn|q
)1/q

.

Taking into account Corollary 4.9, we obtain

Corollary 5.1. If the system ~ψ ≡ {ψn}n∈N ⊂ Lp (a, b) is lq; q−2-close to ~ϕ, i.e.

∞∑
n=1

nq−2 ‖ϕn − ψn‖qp < +∞,

then ∃~ψ∗ ⊂ Lq (a, b) :
{
~ψ∗; ~ψ

}
is an atomic decomposition of X~ψ

with respect to lp; p−2,

where

‖f‖p =

(∫ b

a
|f (t)|p dt

)1/p

.

5.2. Frames of eigenfunctions of a Sturm-Liouville operator. Consider the
following Cauchy problem

−y′′ (x) + q (x) y (x) = λ2y (x) , x ∈ (0, π) ,

y (0) = 1, y′ (0) = σ ,

 (9)

where q (x) ∈ L1 (0, π) is a real function, σ ∈ R. This spectral problem can be understood
in the sense of V.A.Ilyin [16]. We are interested to find out: for which sequences {λn}n∈N ⊂
R the system {yλn (x)}n∈N, as a solution of the problem (9), forms a frame for Lp ≡
Lp (0, π)? Note that a similar question in the context of Riesz basicity has been earlier
studied in [14].

Let ~λ ≡ {λn}n∈N ⊂ R be some sequence and consider the system of cosines c~λ ≡
{cosλnx}n∈N. As is known (see, e.g., [17]), the following relation holds

yλ (x) = cosλx+

∫ x

0
K (x; t) cosλt dt,
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where K (x; t) is a continuous function on [0, π]. By K we denote the operator defined as
follows

[Kf ] (x) =

∫ x

0
K (x; t) f (t) dt.

It is absolutely clear that K is the Volterra operator, and hence the operator ILp + K is
bounded invertible in Lp. Then, the relation yλ (x) =

(
ILp +K

)
cosλx and the results

of previous section imply that the system {yλn (x)}n∈N is an atomic decomposition of Lp
(forms a frame for Lp) if and only if the system of cosines {cosλnx}n∈N has the same
property. Thus, the following theorem is true.

Theorem 5.2. Let K-space K have the canonical basis and possess the property α).
Let q ∈ L1 and {λn}n∈N ⊂ R be some sequence. Then the system {yλn (x)}n∈N, as a
solution of Cauchy problem (9), is an atomic decomposition of Lp (forms a frame for Lp)
with respect to K if and only if the system of cosines {cosλnx}n∈N has the same property.

Part II

Frames In Noetherian Mapping. K -Close Frames.

6. Needful Information

Let’s recall some concepts and facts concerning the tensor product of Hilbert spaces.
Let X;Y be some H-spaces and Z = X ⊗ Y be their tensor product. For simplicity, the
tensor product x ⊗ y of elements x ∈ X and y ∈ Y will be denoted by xy = x ⊗ y. Let
M ⊂ Y be some set. Assume

Lt [M ] ≡

{
z ∈ Z : ∃ {xk; yk}m1 ⊂ X ×M ⇒ z =

m∑
k=1

xkyk

}
.

Lt [M ] is called a t-span of set M . Let ~y ⊂ Y be some system. Define

Λ(t) ≡

{
~x ⊂ X :

∞∑
k=1

xkyk < +∞

}
,

where
∑

( · ) < +∞ means the convergence of series in Z.

System ~y ⊂ Y is said to be t- complete in Z, if for ∀z ∈ Z, ∃
{
x
(n)
k

}mn

k=1
⊂ X , ∀n ∈ N :

lim
n→∞

mn∑
k=1

x
(n)
k yk = z.

System {yn}n∈N ⊂ Y is said to be a t-basis with respect to the triple X; Y ;Z, if for
∀z ∈ Z there exists a unique {xn}n∈N ⊂ X :z =

∑∞
n=1 xnyn.

System {yn} ⊂ Y is said to be t-independent if for every finite set of {xn} the equality∑
n xnyn = 0 holds only when xn = 0 , ∀n.
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Thus

(x1 ⊗ y1; x2 ⊗ y2)Z = (x1; x2)X (y1; y2)Y , ∀xk ∈ X, ∀yk ∈ Y, k = 1, 2,

where ( · ; · )Z is a scalar product in Z and ‖ · ‖2Z = ( · ; · )Z .
Let us introduce the concept of t-scalar product for the pair (y; z) ∈ Y × Z. Take

∀x ∈ X and consider the linear functional ϑ(y; z) (x) = (x⊗ y; z)Z . We have∣∣ϑ(y; z) (x)
∣∣ ≤ ‖x⊗ y‖Z ‖z‖Z = ‖y‖Y ‖z‖Z ‖x‖X .

Consequently, ϑ(y; z) ∈ X∗ ≡ X. As a result, ∃! x̃ ∈ X: ϑ(y; z) (x) = (x; x̃)X , ∀x ∈ X.
x̃ will be called a t-scalar product of the elements y and z, and we will denote it by
x̃ =< y; z >X .

7. t-Besselian systems

Let us introduce the following definition.

Definition 7.1. System ~y ⊂ Y is called t-Besselian, if ∃M > 0:

∞∑
n=1

‖〈yn; z〉X‖
2
X ≤M ‖z‖

2
Z ,∀z ∈ Z. (10)

Let us prove the following theorem.

Theorem 7.2. Let ~y ⊂ Y be some system and let the series
∑∞

n=1 xn⊗yn be convergent
in Z for ∀~x ⊂ X. Then the expression

T~x =

∞∑
n=1

xn ⊗ yn

defines a bounded operator, i.e. T ∈ L (l2 (X) ; Z). The conjugate operator T ∗ ∈
L (Z; l2 (X)) has the form T ∗z = {< yn; z >X}n∈N . Moreover

∞∑
n=1

‖< yn; z >X‖2X ≤ ‖T‖
2 ‖z‖2Z ,∀z ∈ Z.

Proof. Consider the bounded operators Tn:

Tn~x =
n∑
k=1

xk ⊗ yk,∀n ∈ N. (11)

It is clear that Tn~x
n→T~x, ∀~x ∈ l2 (X). Then, by the Banach-Steinhaus theorem we obtain

sup
n
‖Tn‖ < +∞ ⇒ T ∈ L (l2 (X) ; Z). Let’s find the expression for T ∗z. Consider the

operators Tn, defined by (11). It is clear that T ∗nz 7→ T ∗z, ∀z ∈ Z. We have

(T ∗nz) ~x = (~x ; T ∗nz)X = z (Tn~x) = (Tn~x; z)Z =

(
n∑
k=1

xk ⊗ yk; z

)
Z

=
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=

n∑
k=1

(xk ⊗ yk; z)Z =

n∑
k=1

(xk, < yk; z >X)X = (~x ; T ∗nz)X ,

where (ϑ) ~x means the value of the functional ϑ on ~x and

T ∗nz = {< y1; z >X , . . . , < yn; z >X , 0, 0, . . .}. It follows directly that

{< yk; z >X}k∈N ∈ l2 (X) ∧ T ∗z ≡ {< yk; z >X}k∈N .

Thus
∞∑
k=1

‖< yk; z >X‖2X = ‖T ∗z‖2l2(X) ≤ ‖T
∗‖2 ‖z‖Z = ‖T‖2 ‖z‖2Z ,∀z ∈ Z.

The theorem is proved.

The following theorem is true.

Theorem 7.3. The sequence ~y ≡ {yn}n∈N ⊂ Y is t-Besselian if and only if T ∈
L (l2 (X) ; Z) and ‖T‖ ≤

√
M , where T ~x =

∑∞
k=1 xk ⊗ yk, ∀~x ∈ l2 (X), and M is a

constant from (10).

Proof. Let ~y be t-Besselian. Take ∀n; m ∈ N : n < m. We have∥∥∥∥∥
m∑
k=n

xk ⊗ yk

∥∥∥∥∥
Z

= sup
‖z‖Z=1

∣∣∣∣∣
(

m∑
k=n

xk ⊗ yk; z

)
Z

∣∣∣∣∣ =

= sup
‖z‖Z=1

∣∣∣∣∣
m∑
k=n

(xk; < yk; z >X)X

∣∣∣∣∣ ≤ sup
‖z‖Z=1

m∑
k=n

‖xk‖X ‖< yk; z >X‖X ≤

≤

(
m∑
k=n

‖xk‖2X

)1/2

sup
‖z‖Z=1

(∑
‖< yk; z >X‖2

)1/2

≤
√
M

(
m∑
k=n

‖xk‖2X

)1/2

. (12)

As ~x ∈ l2 (X), it follows that the sequence {
∑n

k=1 xk ⊗ yk}n∈N is fundamental in Z, and,
as a result, the series

∑∞
k=1 xk ⊗ yk is convergent in Z. Taking n = 1 in (12) and passing

to the limit as m → ∞, we obtain ‖T‖ ≤
√
M . The converse follows from Theorem 7.2.

Theorem is proved.

For the t-Besselness of the system, it suffices that the relation (10) hold with respect
to a dense set in Z, i.e. the following lemma is true.

Lemma 7.4. Let ~y ⊂ Y , and let Z0 ⊂ Z be a dense set in Z. If ∃M > 0:

∞∑
n=1

‖< yn; z >X‖2X ≤M ‖z‖
2
Z , ∀z ∈ Z0,

then the system ~y is t-Besselian.
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Proof. Let ~y be not t-Besselian. Then ∃w ∈ Z:

∞∑
n=1

‖< yn; w >X‖2X > M ‖w‖2Z .

Then it is absolutely clear that ∃n0 ∈ N :

n0∑
n=1

‖< yn; w >X‖2X > M ‖w‖2Z . (13)

By the definition of x̃ =< y; w >X we immediately obtain that

‖< y; w >X‖X = ‖x̃‖X =
∥∥ϑ(y;w)∥∥ =

sup
‖x‖X=1

∣∣ϑ(y;w) (x)
∣∣ = sup

‖x‖X=1
|(x⊗ y; w)Z | ≤

≤ ‖w‖Z sup
‖x‖X=1

‖x⊗ y‖Z = ‖y‖Y ‖w‖Z .

It follows that < y; w >X depends continuously on y and w. As Z0 = Z, from (13) we
obtain that ∃z0 ∈ Z0:

n0∑
n=1

‖< yn; z0 >X‖2X > M ‖z0‖Z .

So we arrive at the contradiction which proves the lemma.

By combining the results of Theorems 7.2 and 7.3, we get the validity of the following
theorem.

Theorem 7.5. With respect to the system ~y ⊂ Y , the following properties are equiva-
lent:

1) ~y is t-Besselian;

2) the series
∑∞

n=1 xn ⊗ yn is convergent for ∀~x ∈ l2 (X);

3) T ∈ L (l2 (X) ; Z), where T~x =
∑∞

n=1 xn ⊗ yn.

In exactly the same way we prove the following

Lemma 7.6. Let ~y ⊂ Y , and let Z0 ⊂ Z be a dense set in Z. If ∃m > 0:

m ‖z‖2Z ≤
∞∑
n=1

‖< yn; z >X‖2X , ∀z ∈ Z0,

then this inequality holds for ∀z ∈ Z.
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8. t-frames

Let us introduce the concept of t-frame. Let ~y ≡ {yn}n∈N ⊂ Y be some system.

Definition 8.1. System ~y ⊂ Y is called a t-frame in Z if ∃ A; B > 0:

A ‖z‖2Z ≤
∞∑
n=1

‖< yn; z >X‖2X ≤ B ‖z‖
2
Z , ∀z ∈ Z. (14)

Constants A, B are called the bounds of t-frame. inf B and supA which satisfy (14)
are called the optimal bounds (upper and lower, respectively) of t-frame. Similar to the
ordinary case, we introduce the following

Definition 8.2. t-frame is said to be tight if A = B. t-frame is said to be exact if it
is no longer a t-frame after exclusion of any one of its elements.

Let Lt [~y] denote a t-span of the system ~y.

Definition 8.3. System ~y ⊂ Y is called a t-frame sequence if it forms a t-frame for
Lt [~y].

Example 1. Let Y be an H-space with an orthonormal basis ~e ≡ {en}n∈N . Assume

~f ≡ {fn}n∈N ≡

e1; e1; . . . ; e1︸ ︷︷ ︸
m1

; . . . ; ek; . . . ; ek︸ ︷︷ ︸
mk

; . . .

 ,

i.e. fi = en for i ∈ In, where In = {mn−1; mn−1 + 1; . . . ; mn}, m0 = 1. Let us show that
~f forms a t-frame. As the system ~e forms a t-basis for Z, it is clear that all possible finite
sums of the form z =

∑
k∈M xk ⊗ ek are dense in Z, where M ⊂ N is a finite set. It is

absolutely clear that in this case we have

‖z‖2Z =
∑
k∈M
‖xk‖2 .

Let i ∈ In. We have

‖< fi; z >X‖2X = (< fi; z >X ; < fi; z >X)X =

= (x; < fi; z >X)X = (x⊗ fi; z)Z , where x =< fi; z >X .

Taking into account the expression for z, we obtain

‖< fi; z >X‖2X =
∑
k∈M

(x⊗ fi; xk ⊗ ek)Z =
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=
∑
k∈M

(x; xk)X (fi; ek)Y = (x; xn)X χM
⋂
In (i) ,

where χM0 (·) is a characteristic function of M0. On the other hand

(x; xn)X = (xn; < fi; z >X)X = (xn ⊗ en; z)Z =

=
∑
k∈M

(xk ⊗ ek; xn ⊗ en)Z = ‖xn‖2X χM ⋂
In (i) .

Summing over i we have ∑
i

‖< fi; z >X‖2X =
∑
k

mk ‖xk‖2X .

Let m = min
k
mk, M = max

k
mk < +∞. Consequently

m ‖z‖2Z ≤
∑
i

‖< fi; z >X‖2X ≤M ‖z‖
2
Z .

Then from Lemmas 7.4 and 7.6 we obtain that the system ~f forms a t-frame for Z.
As in the ordinary case, the operator T : l2 (X)→ Z, defined by the expression

T~x =

∞∑
n=1

xn ⊗ yn, ~x ∈ l2 (X) ,

is called a synthesis operator, and the adjoint operator

T ∗ : Z 7→ l2 (X) : T ∗z = {< yn; z >X}n∈N ,

is called an analysis operator. The operator S : Z → Z; S = TT ∗ is called a t-frame
operator. Thus

Sz = TT ∗z =
∞∑
n=1

< z; yn >X ⊗yn. (15)

Similar to the ordinary case, we prove the following

Lemma 8.4. Let the system ~y ⊂ Y form a t-frame for Z. Then

S ∈ L (Z) , ∃S−1 ∈ L (Z) , S∗ = S and S > 0.

By virtue of Lemmas 7.4 and 7.6, we get the validity of the following statement.

Statement 8.5. Let ~y ⊂ Y , and let Z0 ⊂ Z be a dense set in Z. If ∃A; B > 0:

A ‖z‖2Z ≤
∞∑
n=1

‖< yn; z >X‖2X ≤ B ‖z‖
2
Z , ∀z ∈ Z0,

then the system ~y forms a t-frame for Z.
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Let the system ~y ⊂ Y form a t-frame for Z. Then, by Lemma 8.4, the operator S is
invertible. Take ∀z ∈ Z. We have

z = SS−1z =

∞∑
n=1

< yn; S−1z >X ⊗yn =

∞∑
n=1

Synz ⊗ yn, (16)

where Synz =< yn; S−1z >X . It is clear that Syn ∈ L (Z; X) , ∀n ∈ N . Thus

∞∑
n=1

‖Synz‖
2
X =

∞∑
n=1

∥∥< yn; S−1z >X
∥∥2
X
≤ B

∥∥S−1z∥∥2
Z
≤ B

∥∥S−1∥∥2 ‖z‖2Z ,
∞∑
n=1

‖Synz‖
2
X ≥ A ‖S‖

−2 ‖z‖2Z , ∀z ∈ Z.

The system {Syn}n∈N is called a t-frame dual to ~y, and {Synz}n∈N are called t-frame
coefficients.

Let ~x ∈ l2 (X) : z =
∑∞

n=1 xn ⊗ yn. Assume ~x0 = {xn − Synz}n∈N ∈ l2 (X). We have

T~x0 =

∞∑
n=1

(xn − Synz)⊗ yn =

∞∑
n=1

xn ⊗ yn−

−
∞∑
n=1

Synz ⊗ yn = 0⇒ ~x0 ∈ KerT.

On the other hand

T ∗
(
S−1z

)
=
{
< yn; S−1z >X

}
n∈N = {Synz}n∈N ∈ l2 (X) ,

because S−1z ∈ Z. Consequently, {Synz}n∈N ∈ RT ∗ . By ~x = ~x0 + {Synz}n∈N , from

KerT = R⊥T ∗ we obtain

‖~x‖2l2(X) = ‖~x0‖2l2(X) +
∥∥{Synz}n∈N∥∥2l2(X)

. (17)

This implies the validity of the following lemma.

Lemma 8.6. Let ~y ⊂ Y form a t-frame for Z. Then

∥∥{Synz}n∈N∥∥l2(X)
= min

{
‖~x‖l2(X) : z =

∞∑
n=1

xn ⊗ yn , ~x ∈ l2 (X)

}
.

Take ∀n0 ∈ N and consider the mapping Sn0 : X → X defined by

Sn0x =< S−1 (x⊗ yn0) ; yn0 >X , ∀x ∈ X.

Assume ~yn0 ≡ ~y\ {yn0}. We have
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Theorem 8.7. Let the system ~y ⊂ Y form a t-frame for Z. Then: 1) if Ker (IX − Sn0) 6=
{0}, then ~yn0 is t-non-complete in Z, but it forms a t-frame for Lt [~yn0 ]; 2) if Ker (IX − Sn0) =
{0} and (IX − Sn0)−1 ∈ L (X), then ~yn0 forms a t-frame for Z.

Proof. Let Ker (IX − Sn0) 6= {0} and x0 6= 0 : x0 = Sn0x0. As ~y forms a t-frame for
Z, we have

z0 = x0 ⊗ yn0 =

∞∑
n=1

< yn; S−1z0 >X ⊗yn.

On the other hand

z0 =
∞∑
n=1

(δnn0x0)⊗ yn.

By virtue of (17) we obtain

‖x0‖2X =
∥∥{δnn0x0 − Synz0}n∈N

∥∥2
l2(X)

+
∥∥{Synz0}n∈N∥∥2l2(X)

⇒

⇒ Synz0 = 0, ∀n 6= n0.

It is clear that z0 6= 0 for yn0 6= 0. Consequently, the system ~yn0 is t-non-complete in
Z. Let us show that in this case Sn0 = IX . Assume the converse. Then ∃x1 ∈ X\ {0}:
Sn0x1 6= x1. Consider

x1 ⊗ yn0 =

∞∑
n=1

< S−1 (x1 ⊗ yn0) ; yn >X ⊗yn ⇒

⇒ (x1 − Sn0x1)⊗ yn0 =
∑
n6=nn

Syn (x1 ⊗ yn0)⊗ yn. (18)

Let

an = ‖x1 − Sn0x1‖
−2
X (Syn (x1 ⊗ yn0) ; x1 − Sn0x1)X , ∀n 6= n0.

Scalar multiplication of both sides of (18) by (x1 − Sn0x1) yields

yn0 =
∑
n6=n0

anyn.

Since ∀z ∈ Z can be expanded as

z =

∞∑
n=1

Synz ⊗ yn =
∑
n6=n0

Synz ⊗ yn+

+Syn0
z ⊗

∑
n6=n0

anyn

 =
∑
n 6=n0

(
Synz + anSyn0

z
)
⊗ yn,
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we obtain that the system ~yn0 is t-complete in Z, which contradicts the condition of the
theorem. So Sn0 = IX .

Take ∀x ∈ X\ {0}. We have

x⊗ yk =
∞∑
n=1

Syn (x⊗ yk)⊗ yn, ∀k 6= n0.

If Syn0
(x⊗ yk) 6= 0, then, similar to the previous case, we find that the system ~yn0 is t-

complete in Z, which contradicts the condition of the theorem. Consequently, Syn0
(x⊗ yk) =

0, ∀x ∈ X, ∀k 6= n0. It follows directly that Syn0
z = 0, ∀z ∈ L(t)

n0 , where L
(t)
n0 is a closure

of the t-span of the system ~yn0 , i.e. L
(t)
n0 ≡ Lt [~yn0 ]. Thus

z =
∞∑

n 6=n0

Synz ⊗ yn , ∀z ∈ L(t)
n0
. (19)

We have
‖z‖2Z =

∑
n 6=n0

(xn ⊗ yn; z)Z =
∑
n 6=n0

(xn; < yn; z >X)X ,

where xn = Synz, ∀n 6= n0. Hence

‖z‖2Z ≤

∑
n6=n0

‖xn‖2X

1/2∑
n6=n0

‖< yn; z >X‖2X

1/2

.

From (19) we obtain

S−1z =
∞∑

n6=n0

S−1 (xn ⊗ yn)⇒

⇒
(
S−1z; z

)
Z

=
∑
n6=n0

(
S−1 (xn ⊗ yn) ; z

)
Z

=

=
∑
n 6=n0

(
xn ⊗ yn; S−1z

)
Z

=
∑
n6=n0

(
xn; < yn; S−1z >X

)
X
.

Taking into account the expression

xn = Synz =< yn; S−1z >X ,

we have (
S−1z; z

)
Z

=
∑
n6=n0

‖xn‖2X .

Consequently

‖z‖2Z ≤
∣∣(S−1z; z)∣∣ 12

∑
n 6=n0

‖< yn; z >X‖2X

1/2

≤
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≤
∥∥S−1∥∥ 1

2 ‖z‖Z

∑
n6=n0

‖< yn; z >X‖2X

1/2

⇒

⇒ ‖z‖2Z ≤
∥∥S−1∥∥ ∑

n6=n0

‖< yn; z >X‖2X , ∀z ∈ L
(t)
n0
.

It is absolutely clear that the following relation is valid∑
n6=n0

‖< yn; z >‖2X ≤ B ‖z‖
2
Z .

Thus, the assertion 1) is proved.
Now let’s show the validity of the assertion 2). Consider the tensor product of the

operators (IX − Sn0) and IY : S̃ = (IX − Sn0) ⊗ IY . It is clear that S̃ is bounded and
boundedly invertible operator in L (Z). We have

(x1 − Sn0x1)⊗ yn0 =
∑
n6=n0

Syn (x1 ⊗ yn0)⊗ yn, ∀x1 ∈ X.

Let

x̃n0 = (IX − Sn0)x‘1 , x̃n = Syn (x1 ⊗ yn0) ,

i.e.

x̃n0 ⊗ yn0 =
∑
n6=n0

x̃n ⊗ yn. (20)

Take ∀z ∈ Z. Scalar multiplication of both sides of (20) by z yields:

(x̃n0 ⊗ yn0 ; z)Z =
∑
n6=n0

(x̃n ⊗ yn; z)Z .

Thus

(x̃n0 ; < yn0 ; z >X)X =
∑
n6=n0

(x̃n; < yn; z >X)X

Take

x1 = (IX − SSn0)−1 < yn0 ; z >X .

We have

‖< yn0 ; z >X‖2X =
∑
n6=n0

(Syn (x1 ⊗ yn0) ; < yn; z >X)X ≤

≤

∑
n 6=n0

‖Syn (x1 ⊗ yn0)‖2X

1/2∑
n6=n0

‖< yn; z >X‖2X

1/2

. (21)

Taking into account the expression

Syn (x1 ⊗ yn0) =< S−1 (x1 ⊗ yn0) ; yn >X ,
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from the t-frameness of the system ~y we get∑
n 6=n0

‖Syn (x1 ⊗ yn0)‖2X =
∑
n 6=n0

∥∥< S−1 (x1 ⊗ yn0) ; yn >X
∥∥2
X
≤

≤ B
∥∥S−1 (x1 ⊗ yn0)

∥∥2
Z
≤ B

∥∥S−1∥∥2 ‖yn0‖
2
Y ‖x1‖

2
X ≤

≤ B̃2 ‖< yn0 ; z >X‖2X ,

where

B̃ =
√
B
∥∥S−1∥∥∥∥∥(IX − Sn0)−1

∥∥∥ ‖yn0‖Y .

As a result, it follows from (21) that

‖< yn0 ; z >X‖2X ≤ B̃
2
∑
n6=n0

‖< yn; z >X‖2X .

We have

A ‖z‖2Z ≤
∞∑
n=1

‖< yn; z >X‖2X ≤
(

1 + B̃2
) ∑
n6=n0

‖< yn; z >X‖2X ≤

≤
(

1 + B̃2
)
B ‖z‖2Z .

The theorem is proved.

This theorem has the following corollary.

Corollary 8.8. Let the system ~y ⊂ Y form a t-frame for Z. Then the system ~yF ≡
~y\ {yk}k∈F forms a t-frame for Lt [~yF ], where F ⊂ N : cardF < +∞ is an arbitrary set.

Let’s prove that the converse is also true. Let the system ~y ⊂ Y form a t-frame for
Lt [~y]. Consider the system ~ϑ ≡ {ϑk}mk=1

⋃
~y, where {ϑk}mk=1

⋃
Y is some system. Let us

show that ~ϑ forms a t-frame for Lt

[
~ϑ
]
. Without loss of generality, we assume that m = 1.

Consider two cases: i) Lt [ϑ1] ∈ Lt [~y]; ii) Lt [ϑ1] /∈ Lt [~y]. Let’s start with the case i).
Take ∀z ∈ Lt [~y]. We have

A ‖z‖2Z ≤
∞∑
n=1

‖< yn; z >X‖2X ≤
∞∑
n=1

‖< ϑn; z >X‖2X ≤

≤ ‖ϑ1‖2Y ‖z‖
2
Z +B ‖z‖2Z = B1 ‖z‖2Z ,

where B1 = B + ‖ϑ1‖2Y , ϑn+1 = yn, ∀n ∈ N .

Now consider the case ii). We have

Lt

[
~ϑ
]

= Lt [ϑ1] + Lt [~y].
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Then it is known that ∃c > 0 : ∀z ∈ Lt
[
~ϑ
]

can be represented as z = z1 + z2, z1 ∈ Lt [ϑ1],

z2 ∈ Lt [~y] with ‖z1‖Z + ‖z2‖Z ≤ m ‖z‖Z . More details about this result can be found,
e.g., in W. Rudin [40].

By Y1 : Y1 ≡ L [~y] we denote the closure of the linear span of the (ordinary) system
~y in Y . It is not difficult to see that Z1 ≡ Lt [~y] = X ⊗ Y1. By assumption, ~y forms a
t-frame for Z1. Denote the corresponding frame operator by S. So, S1; S

−1
1 ∈ L (Z1). As

z2 ∈ Z1, it is clear that the following decomposition is valid

z2 =
∞∑
n=1

< yn; S−11 z2 >X ⊗yn =
∞∑
n=1

an ⊗ yn,

where an+1 =< yn; S−11 z2 >X , n = 1, ∞ . Let z1 = a1 ⊗ ϑ1. We have

‖z‖2Z = (z; z)Z =

=

( ∞∑
n=1

an ⊗ ϑn; z

)
Z

=
∞∑
n=1

(an ⊗ ϑn; z)Z =
∞∑
n=1

(an; < ϑn; z >X)X ≤

≤
∞∑
n=1

‖an‖X ‖< ϑn; z >X‖X ≤

( ∞∑
n=1

‖an‖2X

)1/2( ∞∑
n=1

‖< ϑn; z >X‖2X

)1/2

. (22)

We denote the frame bounds of system ~y in Z1 by A1 > 0 and B1 > 0. Consequently

‖a1‖2X +

∞∑
n=2

‖an‖2X = ‖ϑ1‖−2Y ‖z1‖
2
Z +

+

∞∑
n=1

∥∥< yn; S−11 z2 >X
∥∥2
X
≤ m2 ‖ϑ1‖−2Y ‖z‖

2
Z +B1

∥∥S−11 z2
∥∥2
Z
≤ B2 ‖z‖2Z ,

where B2 = m2
(
‖ϑ1‖−2Y +B1

∥∥S−11

∥∥2). Hence, by (22), we obtain that

‖z‖2Z ≤ B2

∞∑
n=1

‖< ϑn; z >X‖2X . (23)

Denote by L⊥t the orthogonal complement of Lt [~y] in Z. Take ∀z ∈ Lt
[
~ϑ
]
. Let z = z0+z1,

where z0 ∈ L⊥t , z1 ∈ Lt [~y]. It is obvious that (x⊗ yn; z0)Z = 0, ∀x ∈ X, ∀n ∈ N . We
have

‖< ϑ1; z >X‖2X ≤ ‖ϑ1‖
2
Y ‖z‖

2
Z ,

‖< yn; z >X‖X =
∥∥ϑ(yn; z)∥∥ = sup

‖x‖X=1

∣∣ϑ(yn; z) (x)
∣∣ =

= sup
‖x‖X=1

|(x⊗ yn; z)Z | = sup
‖x‖X=1

|(x⊗ yn; z1)| = ‖< yn; z1 >X‖X .
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Thus
∞∑
n=1

‖< ϑn; z >X‖2X ≤ ‖ϑ1‖
2
Y ‖z‖

2
Z +

∞∑
n=1

‖< yn; z1 >X‖2X ≤

≤ ‖ϑ1‖2Y ‖z‖
2
Z +B ‖z1‖2Z ≤

(
‖ϑ1‖2Y +B

)
‖z‖2Z . (24)

From (23), (24) it follows that the system ~ϑ forms a t-frame for Lt

[
~ϑ
]
. So we have

Lemma 8.9. Let ~y ⊂ Y be a t-frame sequence, i.e. let ~y ⊂ Y form a t-frame for Lt [~y].
Then the system ~y

⋃
{ϑ} is also a t-frame sequence for ∀ϑ ∈ Y .

We also have

Corollary 8.10. Let ~y ⊂ Y be a t-frame sequence. Then the system ~y
⋃
{ϑk}k∈F is

also a t-frame sequence for ∀F ⊂ N : cardF < +∞.

Using Corollaries 8.8 and 8.10 , we obtain the validity of the following statement.

Statement 8.11. Let ~z; ~y ⊂ Y and card {k : zk 6= yk} < +∞. Then the system ~z is a
t-frame sequence if and only if ~y has the same property.

9. Noetherian perturbation

9.1. Noetherian closeness

Let X; Yk, k = 1, 2,be H-spaces, and T ∈ L (Y1; Y2) be a Noetherian operator. Let
Zk = X ⊗ Yk, k = 1, 2. Suppose the system ~y(1) forms a t-frame for Z1. Assume

~y(2) = T ~y(1), i.e. ~y
(2)
n = T ~y

(1)
n , ∀n ∈ N . Denote Ỹ = L

[
~y(2)
]
. It is absolutely clear that

Ỹ = RT . Let Y1 be represented in the form of a direct sum: Y1 = KerT +̇Ỹ1. Denote

by T1 = T
/
Ỹ1

the restriction of the operator T on Ỹ1. It is clear that T1 ∈ L
(
Ỹ1; Ỹ

)
.

Besides, T1 is boundedly invertible as RT1 = RT (the invertibility follows from the Banach
theorem). Following [8], we call the operator T−11 pseudo-inverse of T . Let Z̃ = X ⊗ Ỹ .

Assume T̃ = IX ⊗ T1. It is absolutely clear that T̃ ∈ L
(
Z1; Z̃

)
, where Z1 = X ⊗ Ỹ1.

Besides, this operator is boundedly invertible. Take ∀z̃ ∈ Z̃. Let z = T̃−1z̃ ∈ Z1. Assume
that the system ~y(1) forms a t-frame for Z. Then it is clear that z has the following
decomposition

z =

∞∑
n=1

< y(1)n ; S−1z >X ⊗y(1)n .

It is not difficult to see that

(IX ⊗ T1) z = (IX ⊗ T ) z, ∀z ∈ Z1.
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We have

z̃ =
∞∑
n=1

(IX ⊗ T )
(
< y(1)n ; S−1z >X ⊗y(1)n

)
=

=

∞∑
n=1

< y(1)n ; S−1z >X ⊗Ty(1)n =
∞∑
n=1

< y(1)n ; S−1z >X ⊗y(2)n =

=

∞∑
n=1

< y(1)n ; S−1T̃−1z̃ >X ⊗y(2)n . (25)

Let us establish t-frame estimates. We have∥∥∥< y(2)n ; z >X

∥∥∥
X

=

∥∥∥∥ϑ(y(2)n ; z
)∥∥∥∥ = sup

‖x‖X=1

∣∣∣∣ϑ(y(2)n ; z
) (x)

∣∣∣∣ =

= sup
‖x‖X=1

(
x⊗ y(2)n ; z

)
Z

= sup
‖x‖X=1

(
(IX ⊗ T )

(
x⊗ y(1)n

)
; z
)
Z

=

= sup
‖x‖X=1

(
x⊗ y(1)n ; (IX ⊗ T )∗ z

)
Z

=
∥∥∥< y(1)n ; (IX ⊗ T )∗ z >X

∥∥∥
X
.

As the system ~y(1) forms a t-frame for Z, we have

∞∑
n=1

∥∥∥< y(2)n ; z >X

∥∥∥2
X

=
∞∑
n=1

∥∥∥< y(1)n ; (IX ⊗ T )∗ z >X

∥∥∥2
X
≤

≤ B ‖(IX ⊗ T )∗ z‖2Z ≤ B ‖IX ⊗ T
∗‖2 ‖z‖2Z =

= B ‖T ∗‖2 ‖z‖2Z = B ‖T‖2 ‖z‖2Z , ∀z ∈ Z̃.

Let us establish the opposite inequality. Take ∀z ∈ Z̃. Then z has a decomposition (25):

z =
∞∑
n=1

< y(1)n ; S−1T̃−1z >X ⊗y(2)n =

=
∞∑
n=1

x̃n ⊗ y(2)n , where x̃n =< y(1)n ; S−1T̃−1z >X , ∀n ∈ N.

Consequently

‖z‖2Z =

( ∞∑
n=1

x̃n ⊗ y(2)n ; z

)
Z

=
∞∑
n=1

(
x̃n; < y(2)n ; z >X

)
X
≤

≤

( ∞∑
n=1

‖x̃n‖2X

)1/2( ∞∑
n=1

∥∥∥< y(2)n ; z >X

∥∥∥2
X

)1/2

. (26)
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As the system ~y(1) forms a t-frame, we have

∞∑
n=1

‖x̃n‖2X =

∞∑
n=1

∥∥∥< y(1)n ; S−1T̃−1z >X

∥∥∥2
X
≤

≤ B
∥∥∥S−1T̃−1z∥∥∥2

Z
≤ B

∥∥S−1∥∥2 ∥∥∥T̃−1∥∥∥2 ‖z‖2Z .
Taking into account this relation in (26), we obtain

‖z‖2Z ≤ B
∥∥S−1∥∥2 ∥∥∥T̃−1∥∥∥2 ∞∑

n=1

∥∥∥< y(2)n ; z >X

∥∥∥2
X
.

Thus we have proved our main

Theorem 9.1. Let X; Yk, k = 1, 2 be H-spaces and T ∈ L (Y1; Y2) be a Noetherian
operator. If ~y(1) forms a t-frame for X ⊗ Y1, then the system T ~y(1) is a t-frame sequence
in X ⊗ Y2.

In particular, this theorem has the following

Corollary 9.2. Suppose that all the conditions of Theorem 8 hold and T is a Fredholm
operator. If ~y(1) forms a t-frame for X⊗Y1 and T ~y(1) is complete in Y2, then T ~y(1) forms
a t-frame for X ⊗ Y2.

In fact, the operator T is boundedly invertible in this case. The rest obviously follows
from the definition of the frame.

9.2. Quadratically close t-frames.

Let X; Y be H-spaces and Z = X ⊗ Y .
Systems ~y(1); ~y(2) ⊂ Y are called quadratically close in Y , if∑∞
n=1

∥∥∥y(1)n − y(2)n

∥∥∥2
Y
< +∞.

The following theorem is true.

Theorem 9.3. Let the system ~y(1) ⊂ Y form a t-frame for Z and ~y(2) ⊂ Y be quadrat-
ically close to it. Then ~y(2) is a t-frame sequence.

Proof. Let us introduce a new system

y(3)n =

{
y
(1)
n , 1 ≤ n ≤ n0 − 1 ,

y
(2)
n , n ≥ n0 ,

where n0 ∈ N is a number to be determined. Define the operator T :

Tz =
∞∑
n=1

< y(1)n ; S−1z >X ⊗y(3)n , ∀z ∈ Z.
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We have

‖(IZ − T ) z‖Z =

∥∥∥∥∥
∞∑
n=1

< y(1)n ; S−1z >X ⊗y(1)n −

−
∞∑
n=1

< y(1)n ; S−1z >X ⊗y(3)n

∥∥∥∥∥
Z

=

∥∥∥∥∥
∞∑

n=n0

< y(1)n ; S−1z >X ⊗
(
y(1)n − y(2)n

)∥∥∥
Z
≤

≤

( ∞∑
n=n0

∥∥∥< y(1)n ; S−1z >X

∥∥∥2
X

)1/2( ∞∑
n=n0

∥∥∥y(1)n − y(2)n

∥∥∥2
Y

)1/2

≤

≤ B1/2
∥∥S−1∥∥( ∞∑

n=n0

∥∥∥y(1)n − y(2)n

∥∥∥2
Y

)1/2

‖z‖Z .

If
∞∑

n=n0

∥∥∥y(1)n − y(2)n

∥∥∥2
Y
< B−1

∥∥S−1∥∥−2 ,
then it is clear that ‖IZ − T‖ < 1, and, as a result, the operator T ∈ L (Z) is boundedly
invertible. We have

z = TT−1z =

∞∑
n=1

< y(1)n ; S−1T−1z >X ⊗y(3)n , ∀z ∈ Z.

Using this representation, it is easy to prove the t-frameness of the system ~y(3) in Z. In

fact, let xn =< y
(1)
n ; S−1T−1z >X , ∀n ∈ Z. Consequently

‖z‖2Z = (z; z)Z =

( ∞∑
n=1

xn ⊗ y(3)n ; z

)
Z

=

=
∞∑
n=1

(
xn ⊗ y(3)n ; z

)
Z

=
∞∑
n=1

(
xn; < y(3)n ; z >X

)
X
≤

≤

( ∞∑
n=1

‖xn‖2X

)1/2( ∞∑
n=1

∥∥∥< y(3)n ; z >X

∥∥∥2
X

)1/2

. (27)

As ~y(1) forms a t-frame, we have

∞∑
n=1

‖xn‖2X ≤ B
∥∥S−1∥∥2 ∥∥T−1∥∥ ‖z‖2Z .

Using this relation in (27), we get the lower t-frame estimate for ~y(3).
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Now let us prove the validity of upper estimate. It is quite obvious that the inequality∑∞
n=1

∥∥∥y(3)n − y(1)n

∥∥∥2
Y
< +∞ is true. We have

∥∥∥< y(3)n ; z >X

∥∥∥2
X
≤ 2

(∥∥∥< y(3)n − y(1)n ; z >X

∥∥∥2
X

+
∥∥∥< y(1)n ; z >X

∥∥∥2
X

)
≤

≤ 2

(∥∥∥y(3)n − y(1)n

∥∥∥2
Y
‖z‖2Z +

∥∥∥< y(1)n ; z >X

∥∥∥2
X

)
.

Consequently
∞∑
n=1

∥∥∥< y(3)n ; z >X

∥∥∥2
X
≤ 2

∞∑
n=1

∥∥∥y(3)n − y(1)n

∥∥∥2
Y
‖z‖2Z +

+B ‖z‖2Z = B1 ‖z‖2Z , ∀z ∈ Z,

where B1 = B + 2
∑∞

n=1

∥∥∥y(3)n − y(1)n

∥∥∥2
Y

. As a result, we obtain that the system ~y(3) forms

a t-frame for Z. Applying Statement 2, we get the validity of theorem. So the theorem is
proved.

Example 2. Denote by L2 (Cm) ≡ L2 ((a, b) ; Cm) the Cm-valued Bochner measur-
able functions, squared Cm-norms of which are summable on I ≡ (a, b), where −∞ ≤ a <
b ≤ +∞. Consider the Hilbert structure in L2 (Cm), and let L2 (I) be a usual Lebesgue
space. It is known (see, e.g., [41]) that L2 (Cm) is isometrically isomorphic to Cm⊗L2 (I).
Take ∀~x = (x1, . . . ; xm) ∈ Cm and ∀y ∈ L2 (I). Tensor product ~x ⊗ y is realized as the
product y (t) ~x: ~x⊗ y = y (t) ~x. Let ~z ∈ L2 (Cm), ~z (t) = (z1 (t) ; . ..; zm (t)). We have

ϑ(y; ~z) (~x) = (~x⊗ y; ~z)L2(I)
= (~x; < y; z >)Cm , ∀~x ∈ Cm.

Consequently

(~x⊗ y; ~z)L2(I)
=

∫ b

a
(y (t) ~x; ~z (t))Cm dt =

=

∫ b

a

m∑
k=1

xkzk (t)y (t) dt =

m∑
k=1

xk

∫ b

a
zk (t)y (t) dt.

From these relations we immediately obtain that

< y; z >Cm=

(∫ b

a
z1 (t)y (t) dt; . . . ;

∫ b

a
zm (t)y (t) dt

)
∈ Cm,

and, as a result

‖< y; ~z >Cm‖2Cm =

m∑
k=1

∣∣∣∣∫ b

a
zm (t)y (t) dt

∣∣∣∣2 .
From this relation it follows directly that if the system {yn}n∈N ⊂ L2 (I) forms an (ordi-
nary) frame for L2 (I), then it forms a t-frame for L2 (Cm).
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In particular, taking into account (16), we now obtain that the arbitrary element
~z (t) = (z1 (t) ; ...; zm (t)) ∈ L2 (Cm) has an expansion

~z (t) =

∞∑
n=1

~λnyn (t) ,

where ~λn =
(
λ
(n)
1 ; ...;λ

(n)
m

)
∈ Cm , ∀n ∈ N . This fact easily follows from the definition

of an ordinary frame. Similarly we can consider the space L2 (H) ≡ L2 ((a, b) ;H) of H-
valued Bochner measurable functions, squared H-norms of which are summable on (a, b) ,
where H is some Hilbert space.
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