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Some Questions of Atomic Decompositions and Frames
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Abstract. Frames in Hilbert and Banach spaces are considered and their properties in the context
of Noetherian mapping are studied in this paper. Atomic decompositions in Banach spaces are
also considered. The concept of J# -closeness is introduced. The stability of frame properties and
atomic decompositions with respect to £ -closeness is proved. The concept of t-frame associated
with the tensor product of Hilbert spaces is introduced. All the properties of ordinary frames
are extended to this case. Noetherian perturbation of ¢-frames is considered. The stability of
t-frameness with respect to quadratic closeness is proved.
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1. Introduction

Frame theory has a diverse array of applications in many scientific fields, that’s why
the global interest in it is growing at a rapid pace. Many monographs and review articles
have been dedicated to it (see, e.g., [6-8,10-12,15,24], etc.). This theory dates back to
the seminal paper by R.J.Duffin and A.C.Schaeffer [13]. Later, there appeared various
generalizations of the concept of frame such as Banach frames, p-frames ([1, 9, 19]), etc.,
and the methods to build a frame have been developed. Onme of these methods is a
perturbation method. Many results have been obtained using this method in the context
of classical Paley-Wiener theorem on the perturbation of orthonormal basis (more details
on these results can be found in O.Christensen’s [7, 8, 9]).

It should be noted that, unlike the Hilbert case, the definition of a Banach frame in
general does not guarantee the atomic decomposition for arbitrary element of the space
(or for any element of the closure of the linear span of considered system). In special cases,
such decompositions hold. LP-case has been considered by A. Aldroubi, Q. Sun, W.Sh.
Tang in [1], where the concept of p-frame was introduced and the atomic decomposition
with respect to shift invariant subspaces of L” were obtained. This idea has been extended
to the general Banach case by O.Christensen and D.T. Stoeva [9]. The above-cited works
introduced the concept of ¢-Riesz basis with respect to the Banach space, which is the
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generalization of the Riesz basis introduced by N.K. Bari in [2]. Similar results have been
obtained in [3-5,20-23]. There are various generalizations of the concept of frames, and
the number of research works dedicated to this topic increases (we refer the reader to
[1,9,19,25-31,42-44]).

It should be noted that the interest in the theory of frames is growing not only because
of its wide applications in various fields of science, but also because of its theoretical
importance. As a striking example of this fact, we can mention a relationship between the
theory of frames and the well-known Kadison-Singer problem of 1959. Slightly modified
but equivalent statements of this famous problem have been studied extensively in many
areas of mathematics such as theory of frames, operator theory, time-frequency analysis,
etc. For the results concerning this problem we refer the reader to [32-39] and references
therein.

This work consist of two parts. In Part I we consider the frames in Noetherian mapping
in Hilbert and Banach spaces. Atomic decompositions in Hilbert and Banach spaces are
also considered. More precisely, we consider the perturbations of atomic decompositions
and frames in Hilbert and Banach spaces. The concept of J# -closeness is introduced and
the stability of atomic decomposition and frame properties with respect to this closeness
is proved.

In Part II we consider the tensor product of Hilbert spaces and the bilinear mapping
generated by this product. We introduce the concept of t-frame using the Hilbert-valued
scalar product. Theoretically, some facts about t-frames can be established using earlier
results for G-frames obtained in [29, 30]. But, the concept of ¢-frame allows many facts
relating to ordinary frames to be extended to the case of t-frame. The properties of ¢-
frame in Noetherian mapping are also studied. The stability of t-frameness with respect
to quadratic closeness is proved. The results of this work was published in [3,4,31,42-44].

PART I
Frames In Noetherian Mapping. 7 -Close Frames.

2. Needful Information

We will use the standard notation. N will be a set of all positive integers; Banach
space will be referred to as B-space; Hilbert space will be referred to as H-space; || - ||y
will denote a norm in the space X; (-; -)x will denote a scalar product in X; L [M] will
denote the linear span of the set M and M will stand for the closure of M; 6, will be the
Kronecker symbol; o will be a symbol of composition; X* will stand for a space conjugated
to X; Dy (%Zr) will denote a domain (range of definition) of the operator T; Ix will be
an identity operator in X; KerT will stand for the kernel of the operator T'; L (X;Y)
will denote a B-space of bounded operators from X to Y; dim X will stand as usual for a
(linear) dimension of X; and by X/ we will denote a factor space with respect to the
subspace X C X. Throughout this paper # will be denoted & = {xy},, oy -
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Let us recall the definition of Noetherian operator. Let X, Y be B-spacesand T : X —
Y be a linear operator. If Zp = %7 and o = dim KerT < +oo, 8 = dim Y/%WT < 400,
then the operator T is called Noetherian and the number & = a — 5 is called the index of
the operator T'. For o = 3, T is called a Fredholm operator.

We will also give the concepts of left and right regularizers. Operator R; € L (Y; X)
(R2 € L(Y; X)) is called the left (right) regularizer of operator A € L (X;Y), if

RlA:Ix—I—Tx(ARQZIy—i-Ty),

where T'x (Ty') is a completely continuous operator in X (Y). It is known that (see,
e.g., [18]) any left regularizer of Noetherian operator is also its right regularizer, and the
converse is also true. By regularizer we will mean the left or the right regularizer.

The following statement is true.

Statement 2.1. Let A € L(X;Y) be a Noetherian operator and R € L(Y; X) be its
reqularizer. Let the operator B € L (X;Y) satisfy the condition |B|| < |R||™". Then the

operator A + B is also Noetherian and its index is equal to the index of the operator A :
®e(A+ B)==(A).

More details about these and other facts relating to Noetherian operators can be found
in [18].

Let’s recall some concepts and facts from the theory of frames. First, let us give a
definition of atomic decomposition.

Definition 2.2. Let X be a B-space and & be a B-space of the sequences of scalars.
Let { fr}pen € Xy {9r}peny € X*. Then ({gk}keN : {fk}keN) s an atomic decomposition
of X with respect to JZ if :

(1) {9k (N} ren € A, Vf € X;
(i) IA, B > 0:A|fllx < || {ok (N}eenll < BIflx . ¥f € X;
(iii) f = S0 g (f) fur VF € X.

The concept of frame is a generalization of the concept of atomic decomposition.

Definition 2.3. Let Xbe a B-space and £ be a B-space of the sequences of scalars.
Let {gr}reny € X*, and S : K — X be some bounded operator. Then ({gk}keN ; S)
forms a Banach frame for X with respect to & if :

(i) {9k (f)}pen € H°, Vf € X;
(ii) 34, B > 0:A | fllx < [ {ox (N hrenll o < BIflx . VF € X;
(iii) S [{gk (N }een] = f, Vf € X.

A and B will be called frame bounds.
The following statement is true.

Statement 2.4. [7] Let X be a B-space and # be a B-space of the sequences of
scalars with a canonical basis {0n},crn, where 0n = {Opntren. Let {gr}peny C X* and
S e L(X;X). Then the following statements are equivalent to each other:

(i) ({gk}keN ; S) forms a Banach frame for X with respect tox ;
(i1) ({9} en 5 {S (0k)}ren) is an atomic decomposition of X with respect to A .
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Future .2 will be called as K-space.

Separately we will consider the Hilbert case of spaces.

A family of vectors {f;};.; in a Hilbert space H is a Riesz basic sequence
if there are constants A, B > 0 such that for all scalars {a;},.; we have

2
<B> il

el

AY aif <

el

Zaifi

el

We call VA, /B the lower and upper Riesz basis bounds for { fi}icr» respectively. If the
Riesz basic sequence {fi};c; spans H we call it a Riesz basis for H . So "{fi},c; is a
Riesz basis for H” means there is an orthonormal basis {e;};c; such that the operator
T (e;) = fi is invertible. In particular, each Riesz basis is bounded. That is, 0 < 115 | fill <

sup || fi|l < oo.
i€l

Hilbert space frames were introduced by Duffin and Schaeffer [13] to address some
very deep problems in nonharmonic Fourier series (see [15]). A family {f;},.; of elements
of a (finite or infinite dimensional) Hilbert space H is called a frame for H if there are
constants 0 < A < B < oo (called the lower and upper frame bounds, respectively) such
that for all f € H

AlFIP <YK B < BISIP. (1)

el

If we only have the right hand inequality in (1) we call {f;};c; a Bessel sequence with
Bessel bound B. If A = B, we call this an A-tight frame and if A = B =1, it is called a
Parseval frame. If all the frame elements have the same norm, this is an equal norm frame
and if the frame elements are of unit norm, it is a unit norm frame. Obviously, || fi||* < B.
If also inf || f;|| > 0, then {f;},.; is a bounded frame. The numbers {(f, f;)};c; are the
frame coefficients of the vector f € H. If {f;},.; is a Bessel sequence, then the synthesis
operator for {f;},; is the bounded linear operator T": I (I) — H given by T (e;) = f; for
all i € I. The analysis operator for {f;},.; is T and satisfies: T (f) = >_,c; ([, fi) e;. In
particular, \|T>"f||2 = > uerIf, fi>|2, for all f € H, and hence the smallest Bessel bound
for {fi},c; equals |7*||?. In view of (1) we have

Theorem 2.5. Let H be a Hilbert space and T : lo — H, T (e;) = f; be a bounded
linear operator. The following are equivalent:
(1) {fi};er s a frame for H.
(2) The operator Tis bounded, linear, and onto.
(8) The operator T* is an (possibly into) isomorphism.
Moreover, if { fi};c; is a Riesz basis, then the Riesz basis bounds are VA, VB, where
A, B are the frame bounds for {fi},c;

It follows that a Bessel sequence is a Riesz basic sequence if and only if 7™ is onto.
The frame operator for the frame is the positive, self-adjoint invertible operator S = T7T™ :
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H — H. That is

Sf=TT"f=T (Z (f, 1) ez-) =Y (L f)Tei =Y {f. fi) fi

icl icl il
In particular
(S£. 1) =D Kf I
i€l
Regarding frame sequences, we have the following theorem.

Theorem 2.6. The removal of a vector f; from a frame {fi},cn for H leaves either
a frame or an incomplete set. More precisely
if < f;, 871 fj ># 1, then {fk}k,#j is a frame for H; if < f;,S71f; =1, then {fk}k#
s incomplete.

Regarding perturbation of frames, we have the following theorem.

Theorem 2.7. Let { fi.},cn be a frame for H, and let {gi},cn be a sequence in H . If
K:ly— H, K({ck}ren) = Doneq ¢k (fe — gk), is a well-defined compact operator, then
{9k} pen 15 a frame sequence.

This theorem has the following immediate corollary.

Corollary 2.8. Let {fi}.cn be a frame for H, and {gi},cy a sequence in H. If
gr = fr except for a finite set of k € N, then {gy},cn is a frame sequence.

In this paper, all of these results are generalized to the case of t-frame. Moreover,
we considered the most general case of perturbation, namely, Noetherian perturbation.
Of course, these results are special cases of Noetherian perturbation. More details about
these results can be found in the monographs by O. Christensen [7, 8] and Heil Ch. [15].

3. Main Results

3.1. Hilbert case. First let’s consider the case of H-space. Let X (Y') be an H-space
with a norm || - ||y (|| - [ly-), the system {z,},.y = 7 form a frame for it and A; B > 0 be
the corresponding frame bounds. Let T' € L (X; Y) be a Noetherian operator. Then it is
clear that % is closed. It is known that (see, e.g., [24, 6, 7, 8]) I{z}}, ey C X* 1 2 =
oo (@5 xh) ¢ @n, Vo € X. Assume L [{yn}neN] =Y, CY, where y, = Tx,, Vn € N.
It is absolutely clear that Y7 = %7. Represent X as a direct sum X = KerT+Xj.
Consider the restriction of T" on X7, and denote it by 11, i.e. Ty =T/ x,- 1t is clear that
T, € L(Xy; Y1), and it is bounded invertible as Zp, = %Zp (invertibility follows from the
Banach theorem). Following [7], we call T, a pseudoinverse of T. Take Vy € Y. Let
x="T, Ly € X1. Consequently

[e.o] oo

Ty o) g = (y; (Tfl)*wil)yzn-

TLZ]. n=1
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It follows directly that
o)
= Z Yi Uy Yns

where y; = (Tfl)* xy €Y, Vn € N. Let us show that the system ¢ forms a frame for Yj.
Projectors generated by the decomposition X = KerT+X; are denoted by Py and P,
respectively. It is obvious that the projectors Py and P are continuous.

We have x = Pyx + Pix. Consequently

Te =TPix=T1Pix = Pz = Tl_lTx = Tl_ly,

where y = Tx. Thus

Z’yayn Z’yaT$n Z| yaxn S

* 112 * (12 2
< B|T*yllx < BIT*" lylly vy € Zr.

On the other hand, let y € Zr = dx € X : Tx = y. Hence Tx = Txq, where x1 = Pjx.

We have
Iy} = (v ¥)y| = [(Ta1; y) ‘( (Z T15 ) x Tn; y) )
=1 Y

Z L1; T XH Yns Y )Y| < H{ T, & )X}nENHl2 H{ Y yn)Y}neNle (2)

<

Taking into account that zq = T 1y, from the condition (7 ) of Definition 2.3 we obtain
s 2h)xchnenll, < A7HIT ] < ATHITT Tl

As a result, it follows from (2) that

lylly < AT H s wn)y ey, -

Thus, the following theorem is valid.

Theorem 3.1. Let X; Y be H-spaces and T € L (X;Y) be some Noetherian operator.
If # = {zn} ey C X forms a frame (is an atomic decomposition) for X, then §j =
{Txn},cn 15 a frame sequence (sequence of atomic decomposition) in 'Y .

This theorem has the following corollaries.

Corollary 3.2. Let T € L(X;Y) be a Fredholm operator. If & forms a frame (is an
atomic decomposition) for X, then TZ = ¢ (i.e. y, = Txn, ¥Yn € N) also forms a frame
(is an atomic decomposition) for Y, if i is complete in it.
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In fact, if all the conditions of this corollary are fulfilled, then it is not difficult to see
that the operator T is bounded invertible as %1 = X. The rest follows directly from the
definitions of atomic decomposition and frame.

Corollary 3.3. Let T = Ix + K, where K is a compact operator in X, and the system
Z forms a frame (is an atomic decomposition) for X. Then the system § = T'Z also forms
a frame (is an atomic decomposition) for X .

The following corollary is also holds.

Corollary 3.4. Let T € L(X;Y) be a Noetherian operator and the system T be a
frame sequence in X. Then the system TX is also frame sequence in 'Y .

If we take L[] as X, then the latter corollary will follow from Theorem 3.1.

3.2. Banach case. Let X; Y be B-spaces and J# be some B-space of the sequences
of scalars with a norm || - || ,,. Assume that the couple {Z*; Z} is an atomic decomposition
of X with respect to £, where K : # — X is a decomposition operator defined as follows

KX:iAnxn,XEX.

n=1

Let T'€ L (X; Y) be a Noetherian operator. Assume § = T'%. Let us show that 35* C Y™ :
{7*; ¥} is an atomic decomposition of Zr = Y7 with respect to #. Take Yy € Z7r. Then
drec X:Tex=vy. Let X = KerT+X;. Put T} = T/Xl' It is obvious that T} € L ( X1;Y7)
is bounded invertible operator: Tfl € L(Y1; X1). Thus, Zr, = Zr : Tx = Tix1, where
r=2x0+ 21, xg € KerT, x1 € Xy. Let 1 = Tl_ly. We have

o0 o0
x1 :Zx; (1) zp=y=T (Zwi(ml)xn> =
n=1 n=1

o o
=Y 2 (@) yn =Y _ U (1) Uns
n=1 n=1

where y) = (Tl_l)* x, . Consequently, Vy € #Zr we have
o0
y=>_ v 1Y) tn.
n=1
Since y (y) = [(Tfl)* x;‘L} (y) = = (Tfly) and Tfly € X, it is clear that {y (y)},en €
H Ny € Zr. We have

1 el = {2 (7 9) Y|, < BIT il < BIZ ol -

Similarly we obtain

s @ buelL = {2 (07 b, = ANT 01l = ANT Dl
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Consequently, the following relation is valid

Arllylly < [{yn @ hnenll < Brllylly . ¥y € 2r, (3)
where A} = A||Ty|| ™}, By = B HTl_lH. Thus, we get the validity of

Theorem 3.5. Let T € L(X;Y) be a Noetherian operator and {Z*; ¥} be an atomic
decomposition of X with respect to . Then 3y* C Y* : {§*; 4§} is an atomic decomposi-
tion of %1 (X, if L[y] = X ) with respect to A, where §j = TZ.

The similar result is true with respect to the frame. Let {z*; S} form a frame for
X with respect to # and T € L(X;Y) be a Noetherian operator. Let T, = T, ! be a
pseudoinverse operator of T'. Assume y* = T7z*. It is absolutely clear that §* C Y™.
Similar to the previous case, we can show that §* (y) € £, Vy € %7 and the relation (3)
holds. Let S; =T'S. We have

S1T )] = 51 [{57 ) hen]) = $1 [{(T523) 0)}] =

=51 [{a () bnen) = T (S ({25 () }en]) =
=TTy =y,Yy € Zr.
It is clear that Sy € L (#7; Y). Thus, the following theorem is true.

Theorem 3.6. Let T € L(X;Y) be a Noetherian operator, S € L(#; X), & C X*
and {&*; S} form a frame for X with respect to . Then the pair {y*; TS} forms a frame
for Zr, where " = {y; },en = {T;a:;‘l}neN = T,;@*, and T}, is a pseudoinverse operator of
T.

4. # -Close atomic decompositions and frames

4.1. Hilbert case. Quadratically close frames. Let X be an H-space and the
system & form a frame for it.

Systems  X; C X are called quadratically  close in X, if
532l — gl < +o.

The following easily provable lemma is true.

Theorem 4.1. Let the system & form a frame for X and the system ¥ be quadratically
close to &. Then the system i forms a frame for Ly].

Proof. Let ng € N: 7% [z, — ynl% < A, where A is a constant in condition
(ii), Definition 2.3. Assume

_ xnanzlan()v
2 =
Yn, T > N0 -

It is absolutely clear that Y°°° | ||z, — 2,5 < A. We have

[Sevten -2, < (Sl
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1

where p = (Zzo:no“ | zn — zn||§() ?) By Theorem 15.1.1 of [7] we obtain that the system

Z = {2zn}, ey also forms a frame for X. As a result, it follows from Theorem 15.2.1 of [7]
that the system g is a frame sequence. The theorem is proved.

4.2. Banach case. .7 -close frames. Consider the case of B-space. Let X be a
B-space and 2" C X*.

T* is called q-Besselian if

1Z* ()|l < M|y V2 € X,

where M > 0 is an absolute constant.
Systems &; § C X are called p-close if Y ooy ||z — ynll5 < +o0.
Assume that .7 is some K-space with a canonical basis {0y}, cn. Then it is absolutely

clear that the conjugate space £ can be identified with the K-space of elements J =
{90 },en » generated by the functionals ¥* € %™, where ¥,, = 9% (,), n € N. Thus, every

element ¥ € ™ generates a (continuous) functional by the following expression

G (2) = wny, V3 € K.
n=1

Now we introduce the following concepts.

Definition 4.2. System & C X* is called Z*-Besselian if
1% (@) g < Bllzllx, Vo € X, (4)

where B > 0 1s a constant.

Definition 4.3. The systems &; §f C X are called # -close if

[{llzn = ynllxFnenl] - < +o0. (5)

Let & C X* ¢ C X be some systems. Assume

XgE{yEX:EIxEXiyszfL(x)yn}.

n=1

It is absolutely clear that Xy is a linear subspace of X.
In the sequel, we will need the following

Lemma 4.4. Let {Z*; ¥} be an atomic decomposition of X with respect to & and
the system y C X differ from the system T by a finite number of elements, i.e. Yy, =
ZTn, Yn >mng+ 1, where ng € N is some number. Then 35 C X* : {§*; §} is an atomic
decomposition of Xy with respect to .
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Proof. Consider the operator

Tox = 2:1 zy, (2) (T — Yn) = z:l 2y, (2) (Tn — Yn) -

It is clear that Tj is a finite dimensional operator, and, as a result, T' = Ix — Ty is a
Fredholm operator. It is easy to see that Tx = > >, a} () yp,Vz € X. Let y € Zr =
JreX : Te=y=y= 2,2, (x)yn = y € Xy Vice versa, let y € Xy = Jz € X :
y=y oz (@)y, =Te =y € XZr. Thus, Zr = Xy = Xy is a closure subspace. Let
X =KerT+X; and T} = T/Xl. It is absolutely clear that the operator T} € L (X1; %Z7)
is bounded invertible. Let vy, = (T1_ 1)* xy, ¥n € N. Proceeding in the same way as in the

proof of Theorem 3.5, we get the proof of Lemma 4.4.

Remark 4.5. It should be noted that, generally speaking, Xy # L [y]. In fact, let X be
B-space with the basis f and f* s an appropriate conjugate system.

Let A be a space of coefficients of basis f. Assume x] = flias=0,2; = fr_;,Vn >

3 and x1 = fi,x0 = fi,xn = fn_1,Yn > 3. It is easy to see that {:E’*;f;K;Jiff} 18
an atomic decomposition of X. Accept y1 = 0,92 = fi1,yn = fu-1,Yn > 3. We have

card{n : x, # yn} = 2. It is clear that L[y] = X, but Xy= L [{fn}nzz} # X.

Let % have a canonical basis and {#*; Z} be an atomic decomposition of X with
respect to JZ. Suppose that £* C X is £ *-Besselian and the system i C X is J# -close
to 7, i.e. the relations (4) and (5) are true. Assume

Xno =05 ...:0; [|ngrt — Yno+illx - -

no

Xno — 0,

The basicity of the system {0n},cy in # directly implies }

H
ng — oo. Take some ny € N : ‘Xno < B7!'. Define the system Z = {z,},cy as
follows _
{ Tn, N = 17 no,
Zn =
Yn, M >N .
Thus
H{”xn_znnx}neNH;g <B_1‘ (6)

Consider the operator

oo
Tox = Za::l () (zn — 2n), Vo € X,
n=1

and put T = Ix — Ty. We have

[eS)
IToxllx <D 125 (@) lzn — 2nllx <
n=1
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< [H{la, @) henllg | Hlzn = 2zl xnenll . - (7)

In the sequel, we will assume that the space £ has the following property

@) {Antnen € X {{Anl}en € A A H{)‘n}neNHx* = H{’)‘n‘}nENHJ{* :

Then, taking into account (5) and (6), from (7) we obtain

IToll < B [[{llzn — 2nll x bnenll , < 1-

Hence the operator T' € L (X) is an automorphism in X. We have

o0 o oo
Tx:x—TO:U:x—Zx:(a@)xn—i—Zx:(w)zn :Zx; () zp.
n=1 n=1

n=1

Take Vz € X. Consequently, 'z € X : Tx = z. As a result, we obtain
o0 oo
z=Tx = Za::; (z) 2z, = Zx; (T_lz) Zp =
n=1 n=1

=0 2% (%) zn, where 2} = (T‘l)* a},, Vn € N. From the expression 27, (2) =z, (T 'z),
Vn € N, it follows directly that {2 (2)},cn € %, V2 € X. We have

142 Ohuenll = {25 @9 }ea|, < BIT 2l < BIT |y x I2lx

[z D haenll e = |[{zn (T2 )|, 2

> AT > ANTIRL x Nl Ve € X.

Thus, {z*; Z} is an atomic decomposition of X with respect to #. By virtue of Lemma
4.4 we obtain that 37 C X* : {¢*; ¢} is an atomic decomposition of Xy with respect to
J . Thus, the following theorem is true.

Theorem 4.6. Let K-space # have the canonical basis and possess the property «).
If {&*; &} is an atomic decomposition of X with respect to # and the system § C X is
JH -close to X, then Jy* C X* : {y*; yj} is an atomic decomposition of Xy with respect to
K.

This theorem has the following

Corollary 4.7. Let K-space £ have the canonical basis and possess the property a).
If {&*; Z} is a sequence of atomic decomposition in X with respect to & and the system
§ C X is K -close to &, then 35 C X* : {§*; ¥} is also an atomic decomposition of X
with respect to A .

The scheme of the proof of Theorem 4.6 is applicable to the more general case. Namely,
the following theorem is true.
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Theorem 4.8. Let X be a B-space, %3, k = 1, 2; be K-spaces, Jt5 have a canonical
basis and have the property o). Let {Z*; &} be an atomic decomposition of X with respect
to 1, where the system ©* C X* is J5"-Besselian and the system y C X 1is Ja-close to
Z. Then 3y* C X*: {y*; y} is an atomic decomposition of Xy with respect to J1.

It follows

Corollary 4.9. Let the spaces X, %, k = 1, 2; satisfy the conditions of Theorem 4.8.
Let {z*; &} be an atomic decomposition of L [Z] with respect to 1 , where T* C X* is
o -Besselian and the system y C X is Ha-close to £. Then Iy C X* : {§*; ¢y} is an
atomic decomposition of Xy with respect to J.

Now let’s consider frame perturbation in B-spaces. Let X be a B-space, # be some K-
space and the pair {#*; S} form a frame for X with respect to £, where * = {z}}, .y C
X*, S € L(x; X). Let the system Z* be J# -Besselian, i.e. let the inequality (12) hold
and S; € L (; X) be some operator. We have

15 [Z* (2)] = Su[Z* ()]l x <

<15 = Sillrox 17 @)l < BIIS = Sill g x 12l x - (8)

Put So = So* —Syox*. If |S — S1|| < B~L, then it follows from (8) that [|Sp|| < 1, and, as
a result, the operator T'= Ix — Sy is invertible in X. Take Vy € X = Jlz e X : Tx =y.
We have

y=Ter=z— Sz =a2—-S[Z ()] -5 & (2)] =

=x—x— 5[ (x)] =51 [ ()] =
_ i [ (TY)] = S 7 (W),

where §* = {y; },,eny = {(T‘l)* x;}neN . From the relation

7 W) = s When = { (@) @] @)} _ = (o0 (T7%) b

neN

it follows that 7* (y) € # as T~ 'y € X. On the other hand
15 @)l = {22 @70 ben|, < BIT 0lle < BT o lollx

17 W) = [ {2 ) ], 2 AIT 0l 2 AIT L Il
Thus, we have proved the following theorem.

Theorem 4.10. Let X be a B-space, & be a K-space and the pair {Z*; S} form a
frame for X with respect to . If the operator S; € L (% X) satisfies the condition
1S = Sill y_x < B7L, then 35* € X* : {§*; S1} also forms a frame for X with respect to
K.
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5. Some Applications

5.1. Perturbation in the sense of Littlewood-Paley. By [,.,_2 we denote a
K-space of sequences with a norm

00 1/p
A nenllp ps = (Z P2 y/\n‘p> , 1<p<+oo.
n=1

The classical Paley theorem can be stated as follows.

Paley theorem. An arbitrary uniformly bounded orthonormal system @ = {¢n}
in Ly (a, b), 1 <p <2, s by, ,—2-Besselian.

It is absolutely clear that the space [p,,—2, 1 < p < 2, has a canonical basis and
possesses the property «). It is not difficult to see that the conjugate of [, ,,—2 is the space
lg: g—2 with a norm

neN

fe's) 1/‘1
b, .y = (z w) |

n=1

Taking into account Corollary 4.9, we obtain

Corollary 5.1. If the system ¢ = {¥n}tnen C Ly (a, b) is Iy, q—2-close to @, i.e.

o
> 0T [lon — tallf < 400,

n=1

then EI@;* C Lg(a, b) : {J*, 1;} is an atomic decomposition of XJ with respect to lp, p—2,

where Y
b P
11, = (/ f(t)!pdt> |

5.2. Frames of eigenfunctions of a Sturm-Liouville operator. Consider the
following Cauchy problem

—y" () +q(@)y(x) =Ny (x), z€(0,m),
(9)
y(0) =1 ¢(0)=o0,

where ¢ (z) € L; (0, ) is a real function, o € R. This spectral problem can be understood
in the sense of V.A Ilyin [16]. We are interested to find out: for which sequences {\,}, oy C
R the system {yx, (z)},cy, as a solution of the problem (9), forms a frame for L, =
L, (0, 7)? Note that a similar question in the context of Riesz basicity has been earlier
studied in [14].

Let X = {Mn}tnen € R be some sequence and consider the system of cosines c; =
{cos Ay}, oy As is known (see, e.g., [17]), the following relation holds

yx () = cos \x +/ K (x; t) cos At dt,
0
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where K (z; t) is a continuous function on [0, 7]. By K we denote the operator defined as
follows

K f)] () = /0 " K (s 0) () dr.

It is absolutely clear that K is the Volterra operator, and hence the operator I, + K is
bounded invertible in L,. Then, the relation yy (z) = (I L, + K ) cos Ax and the results
of previous section imply that the system {y», (7)},cy is an atomic decomposition of L,
(forms a frame for L) if and only if the system of cosines {cos Az} has the same
property. Thus, the following theorem is true.

neN

Theorem 5.2. Let K-space % have the canonical basis and possess the property «).
Let ¢ € Ly and {\n},cy C R be some sequence. Then the system {yx, (z)},cn, a5 a
solution of Cauchy problem (9), is an atomic decomposition of Ly, (forms a frame for Ly)
with respect to & if and only if the system of cosines {cos A\,x}, .y has the same property.

Part 11

Frames In Noetherian Mapping. .7 -Close Frames.

6. Needful Information

Let’s recall some concepts and facts concerning the tensor product of Hilbert spaces.
Let X;Y be some H-spaces and Z = X ® Y be their tensor product. For simplicity, the
tensor product x ® y of elements x € X and y € Y will be denoted by zy = z ® y. Let
M CY be some set. Assume

m
L [M] = {zGZ:EI{xk;yk}TlnCXxM:z:Zxkyk}.
k=1

L. [M] is called a t-span of set M. Let § C Y be some system. Define

AW = {a_c'CX : Zxkyk < +oo},

k=1

where ) (-) < 400 means the convergence of series in Z.
System if C Y is said to be t- complete in Z, if for Vz € Z, 3 {x,(:)}

Mn
CX,VneN:
1

Mn
: (n), _
nl;ngo;wk Yp = 2.

System {Yn},en C Y is said to be a t-basis with respect to the triple X; Y5 Z, if for
Vz € Z there exists a unique {xn},cny C X 12 =73 07 TnYn.

System {yn} C Y is said to be t-independent if for every finite set of {x,,} the equality
> TnYn = 0 holds only when x, =0, Vn.
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Thus
(.%'1 ® Y13 T2 ®y2)Z = (':Ul; x2)X (y17 yQ)Y ,Vl’k € Xv Vyk € Y7 k= 17 27

where (-; -), is a scalar product in Z and ||- || = (-; ),
Let us introduce the concept of ¢-scalar product for the pair (y; z) € Y x Z. Take
Vz € X and consider the linear functional ¥(,. .y (z) = (z ® y; ) ,. We have
92 (@) < Nz @yllz 1207 = llylly 2] 7 2] x -

Consequently, J,.,) € X* = X. As aresult, 7 € X: ., (z) = (z; T)x, Vo € X.
Z will be called a t-scalar product of the elements y and z, and we will denote it by
r=<y; z>x.

7. t-Besselian systems

Let us introduce the following definition.

Definition 7.1. System i C Y is called t-Besselian, if AM > 0:

D yns 2xllx < Mzll7 ¥z € 2. (10)

n=1
Let us prove the following theorem.

Theorem 7.2. Let f C Y be some system and let the series y oo | xn®yy be convergent
in Z for Vi C X. Then the expression

oo
TT = an @ Yn
n=1

defines a bounded operator, i.e. T € L(lo(X); Z). The conjugate operator T* €
L(Z; 12 (X)) has the form Tz = {< yn; 2 >x }pen- Moreover

o
D I<yms 2 >xllx < ITI? |2lZ . V2 € 2.

n=1

Proof. Consider the bounded operators T,:

n
Tnf:Zxk@)yk,VnEN. (11)
k=1

It is clear that T}, -5 T¥, V& € Iy (X). Then, by the Banach-Steinhaus theorem we obtain
sup |T,,]| < 400 = T € L(l2(X); Z). Let’s find the expression for T*z. Consider the
n

operators T),, defined by (11). It is clear that T,z — T*z, Vz € Z. We have

n
(Th2)Z=(Z; Ty 2)x = 2 (1) = (T3 2), = (Z Tk ® Yk; z) =
k=1 VA
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n n

= (@ Oy 2)y = Y (@, <y 2>x)x = (F; Ti2)x
k=1 k=1

where (¢) & means the value of the functional ¢ on Z and
Trz={<wyi; 2>x, ..., <Yn; 2 >x, 0,0, ...}. It follows directly that

{<yes 2 >xheny €L(X)AT 2 = {< yr; 2 >x fpen -
Thus

o

2 2 2 21,12
D l<wms 2 >xllx = 1T 2l < TPl = IT1 11117 V= € 2.
k=1

The theorem is proved.
The following theorem is true.

Theorem 7.3. The sequence § = {yn},cy C Yis t-Besselian if and only if T €
L(l2(X); Z) and |T|| < VM, where TZ = Y 32 ok @ Y, VT € 12 (X), and M is a
constant from (10).

Proof. Let 4 be t-Besselian. Take Vn; m € N: n < m. We have

m m
Zwk®yk < Tk & Yk; Z)
k=n k=n VA

,  lellz=t
m m
= sup Y (zr <wyriz2>x)x| < sup Y llwkllx 1< yriz >xllx <
lzll z=1 | =0 lzll z=1 .=,
m 1/2 1/2 m 1/2
<(Swt) o (Srcmeont?) <vii (i) - o
k=n Zllz= k=n

As 7 € I (X)), it follows that the sequence {d }_; 2r ® i}, is fundamental in Z, and,
as a result, the series Y 7 | 2} @ yi, is convergent in Z. Taking n =1 in (12) and passing
to the limit as m — oo, we obtain ||T|| < v/M. The converse follows from Theorem 7.2.
Theorem is proved.

For the t-Besselness of the system, it suffices that the relation (10) hold with respect
to a dense set in Z, i.e. the following lemma is true.

Lemma 7.4. Let Y C Y, and let Zg C Z be a dense set in Z. If IM > 0O:
oo
S < s = >xly < MG, Ve € Z,
n=1

then the system i is t-Besselian.
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Proof. Let i be not t-Besselian. Then Jw € Z:

oo
D I< s w >x |5 > M w7

n=1

Then it is absolutely clear that Ing € N:

no
D I<yns w>xllx > Ml (13)

n=1

By the definition of & =< y; w >x we immediately obtain that
<y w>xllx =2y = Hﬁ(y;w)H =

sup ‘ﬁ(y;w)(m)‘: sup [(z ®@y; w),| <

llzll x =1 llell x =1

<|lwllz sup flz@yllz = llylly wlz-
llzll x =1

It follows that < y; w >x depends continuously on y and w. As Zy = Z, from (13) we
obtain that dzg € Zjy:

0o
2
D 1I< s 20 >x 5% > M 205
n=1
So we arrive at the contradiction which proves the lemma.

By combining the results of Theorems 7.2 and 7.3, we get the validity of the following
theorem.

Theorem 7.5. With respect to the system y C Y, the following properties are equiva-
lent:

1) i is t-Besselian;
2) the series Y 2 | &p & Yp is convergent for VT € ly (X);
3)T eL(ly(X); Z), where TZ =3 07 | Ty & Yn.

In exactly the same way we prove the following

Lemma 7.6. Let y C Y, and let Zy C Z be a dense set in Z. If I3m > 0:

oo
mll2ll <> I< yns = >xI% V2 € Zo,

n=1

then this inequality holds for Vz € Z.
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8. t-frames

Let us introduce the concept of t-frame. Let §f = {yn},cn C Y be some system.

Definition 8.1. System i C Y is called a t-frame in Z if 3 A; B > 0:

oo
AllzlZ < Y II< s 2 >xlI% < BllzlZ, Vz € 2. (14)

n=1

Constants A, B are called the bounds of ¢-frame. inf B and sup A which satisfy (14)
are called the optimal bounds (upper and lower, respectively) of ¢t-frame. Similar to the
ordinary case, we introduce the following

Definition 8.2. t¢-frame is said to be tight if A = B. t-frame is said to be exact if it
s no longer a t-frame after exclusion of any one of its elements.

Let L, [y] denote a t-span of the system .

Definition 8.3. System ¢ C Y is called a t-frame sequence if it forms a t-frame for
Ly [9].

Example 1. Let Y be an H-space with an orthonormal basis &= {e,},cy. Assume

fE{fn}neNE €15 €15 « o €15 evn €Y e €L et Py

mi mg

ie. fi =ey, for i € I, where I, = {my—1; mu—1+ 1; ...; my}, mop = 1. Let us show that
f forms a t-frame. As the system € forms a t-basis for Z, it is clear that all possible finite
sums of the form z = )7, .\, 71 ® e; are dense in Z, where M C N is a finite set. It is
absolutely clear that in this case we have

2 2
2% = > laxll®.

keM

Let i € I,,. We have
1< fis 2 >xll% = (< fis 2 >x5 < fi; 2>x)x =
=(z; < fis 2>x)x = (@ ® fi; 2),,, where z =< f;; 2 >x .

Taking into account the expression for z, we obtain

I< fiiz>xlx =D (@@ fiox@er)y =
keM
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=Y (z 2r)x (fis er)y = (@ 2a) x xar 1, (1)
keM

where Xy, (+) is a characteristic function of My. On the other hand

(25 0) x = (s < fis 2>x)x = (T @en; 2), =

= Z (T @ ex; T @ )y = ”%H; Xmni, (8-
keM

Summing over ¢ we have
S oI< fis 2 >xl5 =Y mu -
i k

Let m = mkin my, M = ml?x my < +o0o. Consequently

2 2 2
mllzly < I fis 2 >xlk < Mz

(2

Then from Lemmas 7.4 and 7.6 we obtain that the system f forms a t-frame for Z.
As in the ordinary case, the operator T : la (X) — Z, defined by the expression

oo
TE= 2y @y, T €Il (X),
n=1
is called a synthesis operator, and the adjoint operator
T*:Z—=1(X): T2 ={< yn; 2 >X}pen

is called an analysis operator. The operator S : Z — Z; S = TT* is called a t-frame
operator. Thus

(o]
Sz=TT"2 = Z < 2 Yn >x QUYn. (15)

n=1

Similar to the ordinary case, we prove the following
Lemma 8.4. Let the system ¥ CY form a t-frame for Z. Then
SecL(Z),35'eL(Z), S*=S and S > 0.
By virtue of Lemmas 7.4 and 7.6, we get the validity of the following statement.
Statement 8.5. Let ¥ C Y, and let Zyg C Z be a dense set in Z. If 4A; B > 0:
(@)
A2l < l<yms 2 >xlx < Bll2ly, Vz € Z,
n=1

then the system i forms a t-frame for Z.
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Let the system i C Y form a t-frame for Z. Then, by Lemma 8.4, the operator S is
invertible. Take Vz € Z. We have

oo o0
z:SS_lz:Z <yn; STz >x ®yn:ZSynz®yna (16)

n=1 n=1

where Sy, z =< yn; S~z >x. It is clear that S, € L(Z; X), Vn € N. Thus

o0 o
DSyl = Y < uns 72 >x | < BIIS Tl < BT =117

oo
D 1Sy 2l% = AISIT? llllz, V2 € Z.

n=1

The system {S,,}, .y is called a t-frame dual to ¢, and {Sy,z}, ., are called t-frame
coefficients.
Let Z €l (X): 2= 0" & @ yn. Assume o = {x,, — Sy, 2}y € l2(X). We have

0o
Z yn ®yn—zxn®yn

n=1

o
—ZSynz®yn:0:>:i’oeKerT.

n=1

On the other hand
T*(57'2) = {< yn; 512 >X}n€N = {Sy.2}pen € 12(X),

because S™'z € Z. Consequently, {Sy, 2}, .n € #Zr-. By T = Ty + {Sy,2},cy> from
KerT = %, we obtain

. . 2
1212, 06y = IollE ) + €5 2nenl - (17)
This implies the validity of the following lemma.

Lemma 8.6. Let 4y C Y form a t-frame for Z. Then

H{Synz}neNHzg(X) = min{HleQ(X) tz = an @Yn, TEI (X)} )
n=1

Take Vng € N and consider the mapping Sy, : X — X defined by
Spox =< SN (2 @ Yny) ; Yno >x, Yz € X.

Assume 3, = 9\ {yn,}. We have
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Theorem 8.7. Let the systemy C Y form at-frame for Z. Then: 1) if Ker (Ix — Sy,) #
{0}, then ¢y, ist-non-complete in Z, but it forms a t-frame for Ly [Un,]; 2) if Ker (Ix — Sp,) =
{0} and (Ix — S’no)_l € L(X), then ¥y, forms a t-frame for Z.

Proof. Let Ker (Ix — Sp,) # {0} and z¢ # 0: zo = Sy,x0. As y forms a t-frame for
Z, we have

o0
20 = T @ Yny = Z < yn; S20 >x QYn.
n=1

On the other hand

[e.e]

20 = Z (5nn0x0) X Yn-

n=1

By virtue of (17) we obtain

lzolx = [[{dnnoo — SynzO}neNHZ(X) + H{SynZO}nENHZ(X) =

= Sy,20 = 0, ¥n # ny.

It is clear that zp # O for y,, # 0. Consequently, the system %, is t-non-complete in
Z. Let us show that in this case S,, = Ix. Assume the converse. Then Jz; € X\ {0}:
Snox1 # 1. Consider

(o)
PLQYng = Y, < S (@1 @ Yny) 5 Yn >x Dy =
n=1

= (71 — Snoffl) & Yng = Z Sy, (11 ® yno) & Yn.- (18)

n#ny
Let
an = [|r1 — 5n0x1||§<2 (Syn (1 ®@ Yno) 5 71 — Snoxl)x , Yn # no.

Scalar multiplication of both sides of (18) by (x1 — Sp,x1) yields
Yng = Z anYn-
n#no
Since Vz € Z can be expanded as

oo
Z:ZSynZ(X)yn: Z Synz®yn+

n=1 n#no

-I-Synoz & Z AnYn — Z (SynZ + anSynO Z) X Yn,

n#ng n#ng



38 B.T. Bilalov, T.B. Gasymov, F.A. Guliyeva

we obtain that the system ¢, is t-complete in Z, which contradicts the condition of the
theorem. So S, = Ix.
Take Vx € X\ {0}. We have

TRy = Sy, (@ k) ® yn, Yk # no.
n=1

If Sy, (z® yr) # 0, then, similar to the previous case, we find that the system ¥, is ¢-
complete in Z, which contradicts the condition of the theorem. Consequently, Sy, (z ® yx) =
0, Vo € X, Vk # ng. It follows directly that S, z =0, Vz € ng, where L§f3 is a closure

of the t-span of the system 7, i.e. Lgfo) = Lt [Un,]. Thus

z= Z Syn2 @ Yn, Vz € ng (19)

n#no

We have
2117 = > (@ ®uni 2)z= Y (@n; <n; 2 >x)x,

n#no n#ng

where x,, = Sy, 2, Vn # ng. Hence

1/2 1/2

2 2 2
21z < | D llzallk Do I<yns 2 >xly

n#ng n#ng
From (19) we obtain

Sy = Z Sz, @yn) =

n#ng
= (S_1Z5 Z)Z = Z (S_l (Tn @ yn); Z)Z =
n#ng
= Z (xn & Yn; Sflz)Z = Z (xn; < yn; Sz >X)X.
n#ng n#ng

Taking into account the expression

Ty = Sy, 2 =< Yn; S~z >x,

we have
(Silz; z)Z = Z ||a:n\|§(
n#no
Consequently
1/2
1
2% < [(57'2 )12 | D2 I<wmi = >xl% <

n#ng



Some Questions of Atomic Decompositions and Frames 39
1/2

1
<ISTHE AL | D < yms 2 >xI% =
n#ng

= 217 < [|S7Y Y. < yn; 2 >xll%, Vz e LY.
n#ng

It is absolutely clear that the following relation is valid

2 2
Y I<yni 2 >I% < Blzlz-

n#no

Thus, the assertion 1) is proved.

Now let’s show the validity of the assertion 2). Consider the tensor product of the
operators (Ix —Sy,) and Iy : S = (Ix — Sp,) @ Iy. It is clear that S is bounded and
boundedly invertible operator in L (Z). We have

(€1 = Sne1) @ Yng = D Sy, (¥1 @ Yny) @ Y, Va1 € X.
n#ng
Let
Tng = (Ix — Sng) T1, Tn = Sy, (T1 @ Yng) »
ie.
Frp @ Yng = D, Fn @ Yn. (20)
n#no
Take Vz € Z. Scalar multiplication of both sides of (20) by z yields:
(Fno @ Ynoi 2)z = D (En @ Yni 2)7-

n#ng
Thus
(Fnoi < Unos 2 >X)x = D, (En; < ¥ni 2 >x)x
n#ng
Take
x1 = (Ix — SSno)fl < Yngs 2 >X -
We have
1< Ynos 2 >x 1% = D (Syo (21 ®@ Yng) 3 < Yns 2 >x)y <
n#ng
1/2 1/2
2 2
<D 1Sy, (21 @ yng) 1% D < yns 2 >xl% : (21)
n#ng n#ng

Taking into account the expression

Syn (:L'l ®yn0) =< S_l (.%'1 ®yn0) 3 Yn >X7
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from the t-frameness of the system i we get

S 1Sy, (21 @yl = D 1< S @1 @ Yng) 5 vn >x |y <

n#ng n#ng

< B[S (21 @ )|l < B|IS7Y Nymoll? 2113 <

< BQ H< Yng; # >XH§( ’
where
A - -1
B = VB[ (1x = Suo) ™| lmally -
As a result, it follows from (21) that

1< gnos 2 >x1% < B Y 1< yms 2 >x|% -
n#ng

We have

Auw<2wmw>mx(uﬂﬁgysznm

n#ng
< (1+5%) Bl:I%.

The theorem is proved.
This theorem has the following corollary.

Corollary 8.8. Let the system i C Y form a t-frame for Z. Then the system yr =
N AUk }rep forms a t-frame for Ly [§F], where F C N : cardF < 400 is an arbitrary set.

Let’s prove that the converse is also true. Let the system ¢ C Y form a t-frame for
Ly [g]. Consider the system ¥ = {0y}, U7y, where {93}, Y is some system. Let us

show that ¥ forms a t-frame for Ly [5} . Without loss of generality, we assume that m = 1.

Consider two cases: i) Ly [01] € Lt [y]; 4i) L [91] ¢ Lt [y]. Let’s start with the case ).
Take Vz € Ly [y]. We have

00 00
Al2llZ <D< yns 2 >x % < D lI< Ons 2 >x | <
n=1 n=1

2 1112 2 2
< [lly llzllz + B llzllz = Brll=lz

where By = B+ ||[013, 9nt1 = Yn, ¥n € N.
Now consider the case i7). We have

Ly [iﬂ = Ly [91] + L¢ [3]).
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Then it is known that 3¢ > 0: Vz € L; [5} can be represented as z = 21 + 22, 21 € Ly [V1],

zo € Ly [y] with ||z1]|, + ||22]| , < m]|2]|,. More details about this result can be found,
e.g., in W. Rudin [40].

By Y1 : Y1 = L[y] we denote the closure of the linear span of the (ordinary) system
¥ in Y. It is not difficult to see that Z; = L; [y] = X ® Y;. By assumption, ¢ forms a
t-frame for Z;. Denote the corresponding frame operator by S. So, Si; Sl_l € L(Zy). As

zo € Zy, it is clear that the following decomposition is valid

00 )
Z2 :Z < Yn; 51_122 >x QYn :Zan®yn7

n=1 n=1

where a,11 =< Yn; 31_122 >x, n=1,00 . Let 21 = a1 ® ¥1. We have

2
121z = (2 2)z =

:<Zan®ﬁn;z> :Z(an(@ﬁn;z)Z:Z(an;<19n;z>X)X§

n=1 VA n=1 n=1

< lanllx 1< O 2 >xllx < (Z Han|’§() (Z < s 2 >X\_2x> - (22)
n=1 n=1 n=1

We denote the frame bounds of system ¢ in Z; by A1 > 0 and By > 0. Consequently

)
2 2 -2 2
laall% + D llanllk = 91157 121017 +
n=2

o0
+ 3 < yns Stz x| < m2 1012 120G + By ||ST 22, < Bzl

n=1

where By = m? (Hﬁlﬂ;Q + B H51_1H2). Hence, by (22), we obtain that

o0
1217 < B2 Y II< 9 2 >x % - (23)
n=1

Denote by Li the orthogonal complement of L; [§] in Z. Take Vz € L; [5} . Let z = 20+21,
where 29 € Li-, z1 € L¢[§]. It is obvious that (z ® yn; 20), = 0, V2 € X, Vn € N. We

have
2 2 2
<15 2 >xI%x < [y =17

H< Yn; Z >XHX = Hﬁ(yn,z)H = sup ‘ﬁ(yn;z) (x)} =
llzll x=1

= sup [(z@yn; 2)zl = sup [(z @yn; 21)| = [[<wn; 21 >x|lx -

llzll x =1 llell x=1
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Thus
oo o0
2 2 2 2
D o ll<On; 2 >xl% < Il 12015 + D 1< yns 21 >x % <
n=1 n=1
2 2 2 2 2
<N 1% + Bllaa < (193 + B) 11213 (24)

From (23), (24) it follows that the system ¥ forms a t-frame for L, [5‘1 So we have

Lemma 8.9. Let § C Ybe a t-frame sequence, i.e. let ¥ CY form a t-frame for Ly [y].
Then the system y|J{V} is also a t-frame sequence for V9 € Y.

We also have

Corollary 8.10. Let ij C Y be a t-frame sequence. Then the system §\J{x},cp is
also a t-frame sequence for VE' C N : cardF < +o0.

Using Corollaries 8.8 and 8.10 , we obtain the validity of the following statement.

Statement 8.11. Let 2} § C Y and card{k : zi # yr} < +0o. Then the system 7 is a
t-frame sequence if and only if ij has the same property.

9. Noetherian perturbation

9.1. Noetherian closeness

Let X; Yy, k =1, 2,be H-spaces, and T € L (Y7; Y2) be a Noetherian operator. Let
Zy = X®Y, k =1,2. Suppose the system 71 forms a t-frame for Z;. Assume
72 =TgD, ie. gff) = Tg],(Ll), Vn € N. Denote Y = L [gj'(Q)]. It is absolutely clear that
Y = Zr. Let Y7 be represented in the form of a direct sum: Y7 = K erT+Yy. Denote
by T = T/ the restriction of the operator T on }71. It is clear that T} € L (}71; ?)

1

Besides, T7 is boundedly invertible as 21, = %1 (the invertibility follows fromNthe Banagh
theorem). Following [8], we call the operator T} ! pseudo-inverse of T. Let Z = X @Y.
Assume T = Ix ® T1. It is absolutely clear that TelL (Zl; Z), where Z1 = X ® 171
Besides, this operator is boundedly invertible. Take VZ € Z. Let z=T"'2 € Z;. Assume

that the system 71 forms a t-frame for Z. Then it is clear that z has the following
decomposition

oo
2= <yl Sz >x eyl
n=1
It is not difficult to see that

(Ix®T1)Z=(Ix®T)Z, Vz € Z3.
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We have

S)

Z (Ix®T) << yﬁll); Sz >y ®y7(11)) =

S)

Z yn ) Z >X ®Tl/ Z < yn ) Z >X ®y7(12) =

o0
=> <y STz >y @y (25)
Let us establish ¢-frame estimates. We have

ezl = e -

llzll =1

?9< @) (z)

Yn 52

= sup <x®yﬁf);2)zz|snp (txom) (zeyl):z) =

]l x =1 |zl x =1

= sup <x®y,(zl); (IX®T)*Z) = H< y Vs (Ix @ T)* 2 >XH
] x =1 d X

As the system 71 forms a ¢-frame for Z, we have
oo
3 TR 5 VDITRINN P
n=1

* 2 * (|2 2
< Bll(Ix ®T) 2l < BlIx @ T*||" [|z]lZ =
* (12 2 2 2 7
=BT l=lz = BITI"[lzl%, Vz€ 2.

Let us establish the opposite inequality. Take Vz € Z. Then z has a decomposition (25):

z—z<y(1) ST z>X®y7(12)=

—Zm ®y ,Where Ty =< y,gl);S_lf_lz >x, Vn € N.

Consequently

I21% = <§: B @y Z) = i (in; <y 2 >x)X <
A

IN

00 1/2 /s ) 1/2
(Z rmr%{) (Z |< w2 2 >XHX> . (26)
n=1 1
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As the system ¢! forms a ¢-frame, we have
oo oo 9
~ 12 15—
S @l =D ||< w5 57T > | <
n=1 n=1

e G e

Taking into account this relation in (26), we obtain
2 —1y2 || |2 - (2) 2
a1 < B s~ 30 < ol 2 >
n=1

Thus we have proved our main

Theorem 9.1. Let X; Yy, k = 1,2 be H-spaces and T € L (Y1; Ya) be a Noetherian
operator. If 7V forms a t-frame for X @ Y1, then the system T ¢V is a t-frame sequence
m X ® Y.

In particular, this theorem has the following

Corollary 9.2. Suppose that all the conditions of Theorem 8 hold and T is a Fredholm
operator. If V) forms a t-frame for X @Y1 and T4V is complete in Y, then T V) forms
a t-frame for X ® Ys.

In fact, the operator T' is boundedly invertible in this case. The rest obviously follows
from the definition of the frame.

9.2. Quadratically close t-frames.

Let X;Y be H-spacesand Z =X QY.
Systems §V); 7 C Y are called quadratically close in Y, if

S (1) (2)

2
The following theorem is true.

Theorem 9.3. Let the system 3 C'Y form a t-frame for Z and 7% C Y be quadrat-
ically close to it. Then §) is a t-frame sequence.

Proof. Let us introduce a new system

Y3 = W, 1<n<ng—1,
" yT(“Lz), ’I’LZTZ(),

where ng € N is a number to be determined. Define the operator 1"

o0
Tz = Z < yﬁll); Sl >y ®y,(13), Vz e Z.
n=1



Some Questions of Atomic Decompositions and Frames 45
We have

(77 = T)zlly = ||> <oi)s 57"z >x oyl -

—Z < gD 5 5y @y Z <y s sy ® (%(11) _y;L2>>HZ <

n=ng
1/2
) <

Z

o N\ /2
(1), -1
(Eleernl) (2
00 9 1/2
<5 (3 - ) et
n=ng

1)

Yn

If

e e

then it is clear that || Iz — T'|| < 1, and, as a result, the operator T' € L (Z) is boundedly
invertible. We have

o
=TT 'z = Z < yﬁbl); STl > ®y(3) Vz e Z.

n
n=1

Using this representation, it is easy to prove the ¢-frameness of the system ¢®) in Z. In
fact, let z,, =< y,gl); S™IT=12 >, Vn € Z. Consequently

I1201% = (2 Zz-(Zan@y(?’) ) =
z

n=1

oo oo
Z(mn@yn ; ) Z<$n7<yn 7Z>X)X§
n=1 n=1

00 1/2 0o 9 1/2
s(ernn?X) (ZH@/ ;z>XHX> . (27)
n=1 n=1

As g forms a t-frame, we have

S 2
D lanlx < BISTHENT =1 -

n=1

Using this relation in (27), we get the lower t-frame estimate for 7.
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Now let us prove the validity of upper estimate. It is quite obvious that the inequality

o LG . | :
Yo ‘ Yn' — Yn HY < 400 is true. We have
H< y3); 2 >XH2 <2 H< i3 — ;2 >XH2 + H< yl; 2 >XH2 <
n x = n n o X n ¥ =
3 _ [ 1212 (1) ?
<2 (o2 = O ety + < us = x| )
Consequently

- 3 2 — || 3 I 2
Sk =l <255 o -0 1t
n= n=

+B|zllz = Bilzlz, Vz € Z,

where By = B+2> >, ‘ Z/ﬁzg) -

a t-frame for Z. Applying Statement 2, we get the validity of theorem. So the theorem is
proved.

Example 2. Denote by %4 (C™) = La ((a, b) ; C™) the C™-valued Bochner measur-
able functions, squared C"-norms of which are summable on I = (a, b), where —oo < a <
b < +oo. Consider the Hilbert structure in % (C™), and let Lo (I) be a usual Lebesgue
space. It is known (see, e.g., [41]) that % (C™) is isometrically isomorphic to C™ ® Lo (I).
Take V¥ = (21, ...; Tm) € C™ and Yy € Lo (I). Tensor product ¥ ® y is realized as the
product y (1)@ Z@y =y (t)Z. Let € L (C™), Z(t) = (21 (t); . ..; zm (t)). We have

2
y,(ll) HY As a result, we obtain that the system ¢ forms

Vi) (&) = (@@ y; 2) gy = (T3 < Y3 2 >)om , VT EC™.

Consequently

b m m b
:/ > aiz (t)y(t)dtzzl‘k/ 2 (H)y (t) dt
e k=1 k=1 “

From these relations we immediately obtain that

<Yz >om= </abzl(t)y(t)dt; /abzm(t)y(t)dt> com,

and, as a result

m 2

1< y; Z>cmllem =
k=1

b
/ o (O (1) dt

From this relation it follows directly that if the system {yn},cn C L2 (1) forms an (ordi-
nary) frame for Lo (I), then it forms a t-frame for £ (C™).
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In particular, taking into account (16), we now obtain that the arbitrary element
Z(t) = (21 (t);...;2m (t)) € La (C™) has an expansion

Z(t) = Z Xnyn (t) 5
n=1

where Xn = ()\gn); s A&Z‘)) € C™, ¥Yn € N. This fact easily follows from the definition

of an ordinary frame. Similarly we can consider the space Lo (H) = Lo ((a,b); H) of H-
valued Bochner measurable functions, squared H-norms of which are summable on (a,b),
where H is some Hilbert space.
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