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Abstract. In this work the problem of the completeness of the classical system of cosines is
considered in a weighted Morrey spaces with a power weight. These spaces, generally speaking,
are not separable. Therefore, classical trigonometric systems are not complete in these spaces.
Starting from the shift operator, a subspace of Morrey space in which continuous functions are
dense is defined. A sufficient condition on the weight function is found, under which the cosine
system is complete in this subspace.
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1. Introduction

Morrey spaces were introduced by Morrey, see [1], in the setting of partial differential
equations, and presented in various books, see [2, 3, 4, 5], survey papers [6, 7, 8] and the
references therein. The splash of interest to Morrey-type spaces during the last decade
has advances in many areas, which allow to consider the basis properties of systems in
such spaces in order to fill the gaps in the theory of Morrey spaces. These problems arise
naturally in the solution of many partial differential equations by the Fourier method.

Several authors have studied the basis properties of trigonometric systems in Banach
function spaces. Well-known results concerning the basis properties of the systems of
exponentials in the case of the Lebesgue space Lp, (1 < p <∞), can be found in [9, 10, 11].
Babenko [12] has proved that the degenerate system of exponentials

{
|t|α eint

}
n∈Z with

|α| < 1
2 forms a basis for L2 (−π, π) but does not form a Riesz basis when α 6= 0, where

Z is the set of integers. This result has been generalized by Gaposhkin [13]. In [14], the
conditions on the weight function ρ, for which the system

{
eint
}
n∈Z forms an unconditional

basis for the weighted Besov space have been obtained. Similar problems have been studied
in [15, 16, 17, 18, 38, 39]. The basicity of the systems of sines and cosines with degenerate
coefficients have been widely analyzed. Amongst the Banach spaces where the basicity
are known we mention the Lebesgue space Lp, (1 < p <∞), [19, 20]. Basis properties of
the systems of sines, cosines and exponentials with the linear phase in weighted Lebesgue
space have been studied in [21, 22, 23]; see also [24, 25, 26].
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The basis properties of the systems of sines, cosines and exponentials in Morrey spaces
are much less studied. In the paper [27], there were studied the basis properties of the
system of exponentials in Morrey space. Also, in [28, 37] the basis properties of the
perturbed systems of exponentials in Morrey space have been investigated. On the other
hand, some approximation problems have been investigated in Morrey-Smirnov classes in
[29].

We will use the standard notation. Denote the set of natural numbers by N and the
set of nonnegative integers by N0. We denote by L[M ] the linear span of the set M . M
will stand for the closure of the set M . ‖ · ‖∞ means sup-norm.

Our goal in this paper is the study of completeness of the system {cosnt}n∈N0
in

weighted Morrey space Lp,λν (0, π) defined by a product of power weights of the form

ν(t) =
r∏

k=0

|t− tk|αk , t ∈ [0, π] , (1)

where t0 = 0, tr = π, and tk are arbitrary finite points in the interval (0, π) for all k =
1, 2, ..., r− 1, and αk ∈ R for all k = 0, 1, ..., r. Also, we will consider the weighted Morrey
space Lp,λν (−π, π), where

ν(t) =

r∏
k=0

|t− tk|αk , t ∈ [−π, π] , (2)

and tk are arbitrary finite points in the interval [−π, π] and αk ∈ R for all k = 0, 1, ..., r.

Although the same properties of trigonometric systems, as well as their pertubations,
are well studied in weighted Lebesgue spaces, the situation changes cardinally in Morrey
spaces. For instance, since the functional characterization of dual spaces of Morrey spaces
is not known, it avoids working with dual spaces. Another difficulty, that frustrates the
“usual” attempts is that, the infinitely differentiable functions(even continuous functions)
are not dense in Morrey spaces, but we still seek to prove “density” property of trigono-
metric functions, which are infinily differentiable. For these reasons, unlike the Lp case,
here will be used another methods to study the basis properties(especially, completeness
and basisness) in weighted Morrey spaces.

In this work the problem of the completeness of the classical system of cosines is
considered in a weighted Morrey spaces with a power weight. These spaces, generally
speaking, are not separable. Therefore, classical trigonometric systems are not complete
in these spaces. Starting from the shift operator, a subspace of Morrey space in which
continuous functions are dense is defined. A sufficient condition on the weight function is
found, under which the cosine system is complete in this subspace.
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2. Preliminaries

2.1. (Weighted) Morrey space on an interval

For 1 < p < ∞ and 0 ≤ λ < 1 we define the Morrey space Lp,λ(a, b) as the set of
functions f on (a, b) such that

‖f‖p,λ := ‖f‖Lp,λ(a,b) = sup
I⊂(a,b)

 1

|I|λ

∫
I

|f(t)|p dt

 1
p

<∞,

where I ⊂ (a, b) is any interval. It is clear that Lp,λ(a, b) are Banach spaces. Morrey
spaces can be defined in a more general way (see e.g. [5, 8, 29]) but this is enough for our
purposes. The Lp(a, b) spaces with the Lebesgue measure correspond with the case λ = 0.

The weighted Morrey space Lp,λν (a, b) is defined in the usual way

Lp,λν (a, b) :=
{
f : νf ∈ Lp,λ(a, b)

}
,

with ‖f‖p,λ;ν := ‖νf‖p,λ. The function ν is called the weight or weight function of this
space.

It is evident that the space Lp,λν (a, b) contains constant functions if and only if ν ∈
Lp,λ(a, b). Throughout the paper, unless otherwise stated, we will assume that 1 < p, q <
∞, p−1 + q−1 = 1 and 0 < λ < 1. Also, the letter ”c” denotes a positive constant, which
is not necessarily the same at each occurance but is independent of the essential variable
and quantities. The expression f∼g, t→ a means that in suffeciently small neighborhood

Oδ of the point t = a, the inequalities 0 < δ ≤
∣∣∣f(t)g(t)

∣∣∣ ≤ δ−1 < ∞ hold in Oδ. If the last

inequalities hold on an interval I, we write f∼g on I. For example sin t∼t(π− t) on [0, π] .
We assume here some familiarity with basic concepts of basis theory and we refer to

the books of Heil [30], Christensen [31], Singer [32, 33] and Bilalov B.T. [39] for basic
definitions such as complete and minimal systems and basis in Banach spaces.

The following lemma has been proved by Samko [34] in the case of Morrey space on a
bounded rectifiable curve. In our case it reads

Lemma 1. The power function |t− t0| α, t0 ∈ [a, b] , belongs to the Morrey space Lp,λ(a, b)

if and only if α ∈
[
λ−1
p ,∞

)
.

Direct application of the above lemma implies the following

Proposition 1. Let ν be given as in (1). Then

{cosnt}n∈N0
⊆ Lp,λν (0, π), 0 < λ < 1, if and only if

αk ∈
[
λ− 1

p
,∞
)
, for all k = 0, 1, 2, ..., r. (3)

Remark 1. The case λ > 0 differs from the case λ = 0: when λ = 0, conditions (3) must
be replaced by the conditions

αk ∈
(
−1

p
,∞
)
, for all k = 0, 1, 2, ..., r.
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2.2. Auxiliary propositions

Let us start by considering the space(
Lp,λ

)′
=

{
g : sup
‖f‖p,λ=1

‖f g‖L1
< +∞

}
,

with the norm
‖g‖

(Lp,λ)
′ = sup

f∈Lp,λ,‖f‖p,λ=1

‖fg‖L1 .

It can be proved that
(
Lp,λ

)′
is a normed space and the following inequality is satisfied

‖fg‖L1 ≤ ‖f‖p,λ ‖g‖(Lp,λ)′ , (4)

for all f ∈ Lp,λ and g ∈
(
Lp,λ

)′
.

The following lemma is true.

Lemma 2. |t|β ∈
(
Lp,λ(−π, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p < +∞.

The following lemma is also true.

Lemma 3. |t|β ∈
(
Lp,λ(0, π)

)′
⇐ β ∈

(
−λ−1

p − 1,∞
)
, 0 ≤ λ < 1, 1 < p < +∞.

Proof. Firstly, suppose β ∈
(
−λ−1

p − 1,∞
)

. Then, for all f ∈ Lp,λ(0, π), we have∫ π

−π
|t|β |f(t)| dt =

∞∑
k=1

∫
t∈[2−k−1π,2−kπ]

|t|β |f(t)| dt

≤ c
∞∑
k=1

2−kβ
∫
t∈[2−k−1π,2−kπ]

|f(t)| dt

≤ c
∞∑
k=1

2−kβ2
−k
(
1− 1

p

)(∫
t∈[2−k−1π,2−kπ]

|f(t)|p dt

) 1
p

= c

∞∑
k=1

2
−k
(
β+1− 1

p
+λ
p

)
‖f‖p,λ ≤ c ‖f‖p,λ .

Then, |t|β ∈
(
Lp,λ(0, π)

)′
.

Conversely, suppose that β /∈
(
−λ−1

p − 1,∞
)

. That is β + λ−1
p ≤ −1.

Then, |t|
λ−1
p ∈ Lp,λ(0, π) and∫ π

0
|t|β |t|

λ−1
p dt =

∫ π

0
|t|β+

λ−1
p dt =∞.

Thus |t|β /∈
(
Lp,λ

)′
. This completes the proof. J
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2.3. Zorko subspace of weighted Morrey space

Denote by C∞0 [−π, π] the set of all infinitely differentiable functions with compact
support in (−π, π). We observe that functions in Lp,λ (−π, π) can not be approximated by
functions in C∞0 [−π, π], nor even by continuous functions. That is the set C∞0 [−π, π] is not
dense in Lp,λ (−π, π) (c.f. [5,35]). This fact still valid in the weighted setting of Morrey
space. For example, let ν be given as in (2) under conditions (3). Let τ0 6= tk , ∀k =
0, r , τ0 ∈ (−π, π) be any points. Then, there exists sufficianly small δ0 > 0, so that

tk /∈ Oδ0 ⊂ (−π, π) , ∀k = 0, r ,

where Oδ0 = [τ0, τ0 + δ0]. Then it’s clear that g±δ0 (t) = χOδ0 (t) ν±1 (t) is a continuous
function on [−π, π]. Consider the function

f (t) = |t− τ0|
λ−1
p ν−1 (t) .

It’s obvious that f ∈ Lp,λν (−π, π). Let g ∈ C [−π, π] be any function. From (3) it follows

that g ∈ Lp,λν (−π, π). We have

‖f − g‖
Lp,λν (−π,π) ≥ ‖f − g‖Lp,λν (Oδ0) =

= ‖fν − gν‖Lp,λ(Oδ0) = ‖F −G‖Lp,λ(Oδ0) ,

where F (t) = |t− τ0|
λ−1
p ∈ Lp,λ (Oδ0), G = gν ∈ C (Oδ0). For the rest one needs to follow

the corresponding example of Zorko [5, 35].

Let f (·) be the given function on [a, b]. In determining the Zorko type subspace we will
assume that the function f (·) is continued to [2a− b, 2b− a] with the following expression
(and this function is also denoted by f (·) )

f (x) =

{
f (2a− x) , x ∈ [2a− b, a) ,
f (2b− x) , x ∈ (b, 2b− a] .

So, following Zorko [35], we consider the subspace

∼
Lp,λν (a, b) :=

{
f ∈ Lp,λν (a, b) : ‖f(.+ δ)− f(.)‖p,λ;ν → 0 asδ → 0

}
,

where ν is given as in (2) under conditions (3). We will refer to this subspace as the Zorko

subspace of Lp,λν (a, b). Also, we consider the Lp,λν -closure of
∼
Lp,λν (a, b) and denote it by

Mp,λ
ν (a, b). It is easy to see that if ν ∈ Lp,λ (a, b) , then C [−a, b] ⊂ Mp,λ

ν (a, b). In fact,
let f ∈ C [a, b] be an arbitrary function and δ be an arbitrary number (with |δ|sufficiently
small). It is obvious that the extended function f (·) is continuous on [2a− b, 2b− a]. We
have



28 F.A. Guliyeva

‖f (·+ δ)− f (·)‖p,λ,ν = sup
I⊂(a,b)

(
1

|I|λ

∫
I
|(f (t+ δ)− f (t)) ν (t)|p dt

)1/p

≤

≤ sup
t∈[a,b]

|f (t+ δ)− f (t)| ‖ν‖p,λ → 0, δ → 0.

Thus we have the following

Lemma 4. If ν ∈ Lp,λ (a, b), then C[a, b] ⊂Mp,λ
ν (a, b).

Since Mp,λ
ν (a, b) is a closed subspace of Lp,λν (a, b), it also contains the Lp,λν -closure of

C∞0 [a, b]; in fact, Mp,λ
ν (a, b) is precisely that closure.

Proposition 2. Let ν be given as in (2) and the following condition holds

αk ∈
[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 0, r. (5)

Then the set C∞ [−π, π] is dense in Mp,λ
ν (−π, π).

We need the following lemma.

Lemma 5. [Minkowski inequality for integrals in weighted Morrey spaces] Let (X;Xσ;µ)
be a measurable space with an σ-additive measure µ (·) on a set X, ν = ν(t) a weight func-
tion, dy a linear Lebesgue measure on an interval (a, b) and F (x, y) is µ× dy-measurable.
If 1 ≤ p <∞, then ∥∥∥∥∫

X
F (x, y)dµ(x)

∥∥∥∥
p,λ;ν

≤
∫
X
‖F (x, y)‖p,λ;ν dµ(x).

Proof. By using the Minkowski inequality for integrals in Lp(a, b),∥∥∥∥∫
X
F (x, y)ν(y)dµ(x)

∥∥∥∥
Lp

≤
∫
X
‖F (x, y)ν(y)‖Lp dµ(x),

we have(∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p

≤
∫
X

(∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x),

where Br (x) is a ball with a radius r > 0 and the center at x ∈ X. Then(
1

rλ

∫
Br(x)

∣∣∣∣∫
X
F (x, y)ν(y)dµ(x)

∣∣∣∣p dy
) 1

p
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≤
∫
X

(
1

rλ

∫
Br(x)

|F (x, y)ν(y)|p dy

) 1
p

dµ(x).

The required result follows by taking the supremum over all x ∈ (a, b) and r > 0 in the
last inequality. J

It is now easy to provide the
Proof of Proposition 2. Let f ∈ Mp,λ

ν (−π, π), and ε > 0, be a sufficiently small
number. Consider the function

wε(t) =

{
cεe

(
−ε2
ε2−t2

)
, |t| < ε,

0, |t| ≥ ε,

where cε is chosen such that
∫∞
−∞wε(t)dt = 1. Define the function fε(t) as

fε(t) =

∫ ∞
−∞

wε(s)f(t− s)ds.

As ε > 0 is sufficiently small, this definition is correct. Indeed, it is enough to prove that
f ∈ L1 (−π, π). From f ∈Mp,λ

ν (−π, π) it follows that (fν) ∈ Lp,λ (−π, π). Let (5) holds.

By using Lemma 2 it is easy to prove that ν−1 ∈
(
Lp,λ (−π, π)

)′
. Since (fν) ∈ Lp,λ (−π, π),

we have f = (fν) ν−1 ∈ L1 (−π, π).
It is clear that fε(t) is infinitely differentiable function on [−π, π], and

‖fε − f‖p,λ;ν =

∥∥∥∥∫ ∞
−∞

wε(s)f(t− s)ds− f(t)

∥∥∥∥
p,λ;ν

=

∥∥∥∥∫ ∞
−∞

wε(s) [f(t− s)− f(t)] ds

∥∥∥∥
p,λ;ν

Applying Lemma 5, we get

‖fε − f‖p,λ;ν ≤
∫ ∞
−∞
‖wε(s) [f(.− s)− f(.)]‖p,λ;ν ds

≤ sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν

∫ ε

−ε
wε(s)ds

= sup
|s|<ε
‖[f(.− s)− f(.)]‖p,λ;ν → 0 as ε→ 0.

This completes the proof.
By similar way we can define Mp,λ

ν (0, π) and prove the following

Proposition 3. Let ν be given as in (1) and the conditions (5) be satisfied. Then the set
C∞[0, π], of all infinitely differentiable functions with compact support in (0, π), is dense

in Mp,λ
ν (0, π).
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3. Main result

In this section we will establish the completeness of system of cosines in weighted
Morrey spaces.

Theorem 1. The system {cosnt}n∈N0
is complete in Mp,λ

ν (0, π) , 0 < λ < 1, 1 < p < +∞,
if conditions

α0;αr ∈
(
−1− λ

p
,−1− λ

p
+ 1

)
, αk ∈

[
−1− λ

p
,−1− λ

p
+ 1

)
, k = 1, r − 1, (6)

are satisfied.

Proof. First, note that {cosnt}n∈N0
⊂ Mp,λ

ν (0, π). Indeed, by Lemma 1 under (5)

we have ν ∈ Lp,λ (0, π). Then from Lemma 4 we have C[0, π] ⊂ Mp,λ
ν (0, π), and as a

result {cosnt}n∈N0
⊂ Mp,λ

ν (0, π). Show that under (6) the set C∞0 [0, π] is also dense

in Mp,λ
ν (0, π). Indeed, from Proposition 3, we have that the set C∞ [0, π] is dense in

Mp,λ
ν (0, π). Letf ∈ Mp,λ

ν (0, π) be any function and ε > 0 be any number. Then ∃g ∈
C∞ [0, π]:

‖f − g‖p,λ;ν <
ε

2
.

Set E+
δ = (0, δ) , E−δ = (π − δ, π) . We have∥∥∥gχE±δ ∥∥∥Lp,λν (0,π)

= ‖g‖
Lp,λν (E±δ ) ≤ ‖g‖∞ ‖ν‖Lp,λ(E±δ ) .

For sufficiently small δ > 0 we get

‖ν‖Lp,λ(E+
δ ) ≤ C ‖t

α0‖Lp,λ(E+
δ ) → 0, δ → 0.

Analogously we have

‖ν‖Lp,λ(E−δ ) ≤ C ‖(π − t)
αr‖Lp,λ(E−δ ) → 0, δ → 0.

Let δ0 <
1
2 min {t1;π − tr−1} is so that

‖ν‖Lp,λ(E+
δ ) + ‖ν‖Lp,λ(E−δ ) <

ε

4 ‖g‖∞
, ∀δ ∈ (0, δ0) .

Set

gδ0 (t) =

 g (t) , t ∈ (0, π) \
(
E+
δ0/2

⋃
E−δ0/2

)
,

0 , t ∈
(
E+
δ0/2

⋃
E−δ0/2

)
.

Consider

Gδ0;τ (t) =

∫ ∞
−∞

ωε (s) gδ0 (t− s) ds.
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It is clear that
‖Gδ0;τ − gδ0‖p,λ;ν → 0, τ → 0.

Since gδ0 (·) is finitly supported on (0, π), for sufficiently small τ > 0 the function Gδ0;τ is
also finitly supported on (0, π), and as a result Gδ0;τ ∈ C∞0 [0, π]. Let τ < δ0

2 be so that

‖Gδ0;τ0 − gδ0‖p,λ;ν <
ε

4
.

We have
‖f −Gδ0;τ0‖p,λ;ν ≤ ‖f − g‖p,λ;ν + ‖g − gδ0‖p,λ;ν +

+ ‖gδ0 −Gδ0;τ0‖p,λ;ν ≤
ε

2
+ ‖g‖

Lp,λν

(
E+
δ0/2

⋃
E−
δ0/2

) +
ε

4
< ε.

As ε > 0 is arbitrary, from here we get that C∞0 [0, π] is dense in Mp,λ
ν (0, π).

So, for every f ∈Mp,λ
ν (0, π) and ε > 0, there exists fε ∈ C∞0 [0, π] such that ‖f − fε‖p,λ;ν <

ε. It is known that the Fourier sine series of fε converges uniformly to this function on
[0, π]. That is, if

Sm(t) =

m∑
n=1

cn(fε) cosnt, m ∈ N,

where cn(fε) = 2
π

∫ π
0 fε(t) cosnt dt, then there exists m0 = m0(ε) ∈ N, such that

sup
t∈0,π]

|fε(t)− Sm(t)| < ε, for all m ≥ m0.

Therefore

‖fε − Sm‖p,λ;ν = sup
I⊂(0,π)

 1

|I|λ

∫
I

|fε(t)− Sm(t)|p |ν(t)|p dt

 1
p

≤ ε sup
I⊂(0,π)

 1

|I|λ

∫
I

|ν(t)|p dt

 1
p

= ε ‖ν‖p,λ .

Then
‖f − Sm‖p,λ;ν ≤ ‖f − fε‖p,λ;ν + ‖fε − Sm‖p,λ;ν <

(
1 + ‖ν‖p,λ

)
ε.

Thus, we arrive at the result since ε was arbitrary. Thus, if the conditions (5) are satisfied,

then the system {cosnt}n∈N0
is complete in Mp,λ

ν (0, π).
The theorem is proved. J
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