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Abstract. In this paper we proved sufficient conditions for boundedness of Hardy type integral
operator in weighted Lebesgue spaces.
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1. Introduction

Let φ be a fixed kernel defined on (0,∞), i.e. φ ∈ Lloc1 (0,∞), then the Hardy type
integral operator is defined in the following way

Hφ (f) (x) =

∞∫
0

φ
(
x
y

)
y

f (y) dy. (1)

This integral operator (1) is deeply rooted in the study of one-dimensional Fourier
analysis and has become an essential part of modern harmonic analysis.In particular, it is
closely related to the summability of the classical Fourier series (see [8]). Many important
operators in analysis are special cases of the integral operator (1), by taking suitable choice
of φ.

The considered integral operator (1) has been extensively studied in recent years,
particularly its boundedness on the Lebesgue space as well as on the Hardy space(see
[2, 3, 4]). We also refer to [5, 6, 7] for some recent work in this vein. Moreover the
generalized version of the considered operators on multidimensional Euclidean spaces have
been studied (see [2], [8]). About boundedness of Hausdorff operator in different Lebesgue
spaces we refer to [1].

In this paper we proved sufficient conditions for boundedness of integral operator (1)
in weighted Lebesgue spaces.
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2. Main Results

We recall some notation and basic facts about function spaces.

Let ω be a weight function on R+, i.e ω ∈ Lloc1 (R+) and almost everywhere is a positive
function. The weighted Lebesgue space Lp,ω (R+) is the class of all measurable functions
f defined on R+ such that

‖f‖Lp,ω(R+) =

 ∞∫
0

|f (x)|p ω (x) dx

 1
p

<∞.

Theorem 1. Let 1 < p < q < ∞ and Hφ is a Hausdorff operator. Let u be pos-
itive non-decreasing weighted function on (0,∞). Suppose that satisfying the following
conditions:

1)

1
2∫
0

φ(y)
y y

1
pdy < +∞ and there exists a constant C1 such that for any t ≥ 1

2 the

following inequality holds

|φ (t)| ≤ C1

t
,

2)

sup
t>0

 ∞∫
t

u (x)

xp
dx

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

<∞.

Then there exists C > 0 for all f ∈ Lp,u (0,∞) the following inequality holds ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

. (2)

Proof: Without loss of generality we may assume that the function u has the form

u (t) = u (0) +

t∫
0

ψ (τ) dτ,

where u (0) = lim
t→+0

u (t) and ψ is a positive function on (0,∞). Indeed, for increasing

functions on (0,∞) there exists a sequence of absolutely continuous functions ϕn (t) such
that lim

n→∞
ϕn (t) = u (t) , 0 ≤ ϕn (t) ≤ u (t) a.e. t > 0 and ϕn (0) = u (0). Furthermore the

functions ϕn (t) are increasing, and besides

ϕn (t) = ϕn (0) +

t∫
0

ϕ
′
n (τ) dτ.
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Where lim
n→∞

ϕ
′
n (t) = ψ (t). Hence, using Fatou’s theorem , we obtain estimate (2) for any

increasing functions on (0,∞).

Let us estimate the left –hand side of inequality (2). We have ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

=

 ∞∫
0

|Hφf (x)|p
u (0) +

x∫
0

ψ (t) dt

 dx

 1
p

.

If u (0) = 0, then

(∞∫
0

|Hφf (x)|p u (x) dx

) 1
p

=

(∞∫
0

|Hφf (x)|p
(∫ x

0 ψ (t) dt
)
dx

) 1
p

.

However, if u (0) > 0, then ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤

 ∞∫
0

|Hφf (x)|p u (0) dx

 1
p

+

 ∞∫
0

|Hφf (x)|p
 x∫

0

ψ (t) dt

 dx

 1
p

= E1 + E2.

First estimate E1. By boundedness of integral operator (1) in Lebesgue spaces (see [2, 8]),
we get

E1 =

 ∞∫
0

|Hφf (x)|p u (0) dx

 1
p

= (u (0))
1
p

 ∞∫
0

|Hφf (x)|p dx

 1
p

≤ C (u (0))
1
p

 ∞∫
0

|f (x)|p dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

= C‖f‖Lp,u(0,∞).

Let us estimate the integral E2. We have

E2 =

 ∞∫
0

|Hφf (x)|p
 x∫

0

ψ (t) dt

 dx

 1
p

=

 ∞∫
0

|Hφf (x)|p
 ∞∫

0

ψ (t)χ{x>t} (x) dt

 dx

 1
p

=

 ∞∫
0

ψ (t)

 ∞∫
t

|Hφf (x)|p dx

 dt

 1
p
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≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
∞∫

2t

φ
(
x
y

)
y

f (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

+2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
2t∫
0

φ
(
x
y

)
y

f(y)dy

∣∣∣∣∣∣
p

dx

 dt


1
p

= E21 + E22.

We estimate E21. Using Theorem on boundedness of integral operator (1) in Lebesgue
space, (see [1,7]) we get

E21 = 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
0

∣∣∣∣∣∣
∞∫
0

φ
(
x
y

)
y

f (y)χ{y>2t} (y) dy

∣∣∣∣∣∣
p

χ{x>t} (x) dx

 dt


1
p

≤ 2
1

p
′

∫ ∞
0

ψ (t)

 ∞∫
0

∣∣∣∣∣∣
∞∫
0

φ
(
x
y

)
y

f (y)χ{y>2t} (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

≤ C2

 ∞∫
0

ψ (t)

(∫ ∞
0
|f (x)|p χ{y>2t} (x) dx

)
dt

 1
p

= C2

 ∞∫
0

|f (x)|p


x
2∫

0

ψ (t) dt

 dx


1
p

≤ C2

 ∞∫
0

|f (x)|p u
(x

2

)
dx

 1
p

≤ C2

 ∞∫
0

|f (x)|p u (x) dx

 1
p

= C2 ‖f‖Lp,u(0,∞) .

Now we estimate E22. Note that if x > t, y ≤ 2t, then x
y ≥

1
2 . By virtue of condition

1) of Theorem 1, one has

E22 = 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

∣∣∣∣∣∣
2t∫
0

ϕ
(
x
y

)
y

f (y) dy

∣∣∣∣∣∣
p

dx

 dt


1
p

≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

 2t∫
0

∣∣∣ϕ(xy)∣∣∣
y

|f (y)| dy

p

dx

 dt


1
p
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≤ 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

 2t∫
0

|f (y)|
x

dy

p

dx

 dt


1
p

= 2
1

p
′

 ∞∫
0

ψ (t)

 ∞∫
t

dx

xp

 2t∫
0

|f (y)| dy

p

dt


1
p

.

We get following formula in a way that made use of change of variables(
t = z

2 , dt = 1
2dz, 0 < z <∞

)

E22 = 2
1

p
′ − 1

p

 ∞∫
0

ψ

(
t

2

) ∞∫
t
2

dx

xp


 t∫

0

|f (y)| dy

p

dt


1
p

.

As is well-known, the classical Hardy operator of function |f | is determined by

t∫
0

|f (y)| dy.

We have

∞∫
2t

ψ
(s

2

) ∞∫
s
2

dx

xp

 ds = 2

∞∫
t

ψ (s)

 ∞∫
s

dx

xp

 ds

= 2

∫ ∞
t

ψ (s)

 ∞∫
0

χ(s,∞) (x)x−pdx

 ds = 2

∞∫
0

ψ (s)χ(t,∞) (s)

×

 ∞∫
0

χ(s,∞) (x)x−pdx

 ds = 2

∞∫
0

∞∫
0

ψ (s)x−pχ(t,∞) (s)χ(s,∞) (x) dxds

= 2

∞∫
t

x−p

 x∫
t

ψ (s) ds

 dx ≤ 2

∞∫
t

x−p

 x∫
0

ψ (s) ds

 dx ≤ 2

∞∫
t

x−pu (x) dx.

From this, we get
∞∫
t

ψ(s)

 ∞∫
s

dx

xp

 ds ≤
∞∫
t

u (x)

xp
dx.

Let v and ω is weight functions defined on (0,∞). Follows by the theory of boundedness
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of two-weighted Hardy operators, (see [9]) we haveHf (x) =

x∫
0

f (t) dt : H : Lp,v(0,∞)→ Lp,ω(0,∞)

⇔
⇔ A = sup

t>0

 ∞∫
t

ω (x) dx

 1
p
 t∫

0

v(x)1−p
′
dx


1
p′

<∞.

(3)

Thus, from inequality (3), we have

sup
t>0

 ∞∫
t

ψ(s)

 ∞∫
s

dx

xp

 ds

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

≤ sup
t>0

 ∞∫
t

u(x)

xp
dx

 1
p
 t∫

0

u (x)1−p
′

dx


1

p
′

<∞. (4)

Taking ω(x) = ψ
(
x
2

)
x1−p and v(x) = u(x) and applying (3) and (4), we have

E22 ≤ C6

 ∞∫
0

ψ

(
t

2

) ∞∫
t
2

dx

xp


 t∫

0

|f (y)| dy

p

dt


1
p

= C7

 ∞∫
0

ω(t)

 t∫
0

|f (y)| dy

p

dt


1
p

≤ C8

 ∞∫
0

|f (t)|p u (t) dt

 1
p

.

The proof is completed.
Corollary 1. Let 1 < p < ∞ and Hφ - is the classical Hardy operator or Riemann-

Liouville operator.
Then these operators satisfy all terms of theorem 1 and these operators are bounded

on Lp,u (0,∞).
Theorem 2. Let 1 < p < ∞ and Hφ− Hausdorff operator. Let u be positive non-

increasing weighted function on (0,∞). Suppose that satisfying the following conditions:

1)

1
2∫
0

φ(y)
y y

1
pdy < +∞ and there exists a constant C1 > 0 such that for any ∀t ∈ (0, 2) the

following inequality holds
|φ (t)| ≤ C1;

2) sup
t>0

 t∫
0

u (x)

xp
dx


1
p
 ∞∫
t

u (x)1−p
′

dx

 1

p
′

<∞.
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Then there exists C > 0 for all f ∈ Lp,u (0,∞) the following inequality holds ∞∫
0

|Hφf (x)|p u (x) dx

 1
p

≤ C

 ∞∫
0

|f (x)|p u (x) dx

 1
p

.

The proof of Theorem 2 is also similar to the proof of the corresponding Theorem 1.
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