Weak Solvability of the First Boundary Value Problem for a Class of Parabolic Equations with Discontinuous Coefficients in Paraboloid Type Domains

N.J. Jafarov

Abstract

In the paper, weak solvability of the first boundary value problem is proved for a class of parabolic equations with discontinuous coefficients and given in parabolic type domains in Sobolev's weight spaces. The coefficients of these equation bear discontinuity at the vertex of $P-$ domain. At the vertex P - domain touches the characteristics of the equation.

Key Words and Phrases: boundary value problem, weak solvability, parabolic operator. 2010 Mathematics Subject Classifications: $35 \mathrm{~K} 05,35 \mathrm{~K} 08,34 \mathrm{~B} 05$

1. Introduction

Let E_{n} and R_{n+1} be $-n$ - dimensional and $(n+1)$ dimensional Euclidean spaces of the points $x=\left(x_{1}, \ldots, x_{n}\right)$ and $(x, t)=\left(x_{1}, \ldots, x_{n}, t\right)$ respectively. D be a bounded domain E_{n} with a boundary $\partial D, \quad 0 \in D, \quad R_{n+1}^{-}=R_{n+1} \cap\{(x, t): t<0\}$.

The domain $Q \subset R_{n+1}^{-}$is said to be a paraboloid type domain (or P-domain) if its cross section with each hyperplane $t=\tau(\tau<0)$ has the form:

$$
\left\{x: \frac{x}{2 \sqrt{-\tau}} \in D\right\} .
$$

The domain D is called a foot of the P - domain Q.
Let further $Q_{T}=Q \cap\{(x, t):-T<t<0\}, \quad S_{T}=\partial Q \cap\{(x, t): T<t<0\}$, $D_{T}=Q \cap\{(x, t): t=-T\}, \Gamma\left(Q_{T}\right)$ be a parabolic boundary of the domain Q_{T}. Consider in Q_{T} the following operator

$$
L=\Delta+\lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} \cdot \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\frac{\partial U}{\partial t}
$$

where Δ is the Laplace operator and the number parameter λ satisfies the condition

$$
\begin{equation*}
\frac{1}{d^{2}}<\lambda<\infty \tag{1}
\end{equation*}
$$

Here $d=\sup _{y \epsilon D}|y|$. It is easy to see that subject to condition (1) the operator L uniformly parabolic in the domain Q_{T}. By analogy with the elliptic case, we call the operator L the Gilbarg-Serrin parabolic operator.

Let us agree in the following denotation u_{i} and $u_{i j}$ are the derivatives of $\frac{\partial u}{\partial x_{i}}$ and $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$, respectively,

$$
u_{x x}=\left(u_{i j}\right), \quad u_{x}^{2}=\sum_{i=1}^{n} u_{i}^{2}, \quad u_{x x}^{2}=\sum_{i, j=1}^{n} u_{i j}^{2} ; \quad i, j=\overline{1, n}
$$

Let the number parameter γ satisfy the condition

$$
\begin{equation*}
\gamma \epsilon\left(\frac{n^{2}\left(\lambda-\frac{1}{d^{2}}\right)+2 \lambda n}{2}, \infty\right) . \tag{2}
\end{equation*}
$$

$A_{0}^{\infty}\left(Q_{T}\right)$ be a space of infinitely differentiable and finite in Q_{T} functions for which the following integral is finite $\int_{Q_{T}}(-t)^{\gamma} u^{2} d x d t, \quad L_{2, \gamma}\left(Q_{T}\right)$ be Banach space of measurable functions $u(x, t)$ given on, Q_{T} with finite norm

$$
\|u\|_{L_{2, \gamma}\left(Q_{T}\right)}=\left(\int_{Q_{T}}(-t)^{2} u^{2} d x d t\right)^{\frac{1}{2}},
$$

$\stackrel{0^{1,0}}{W_{2, \gamma}}\left(Q_{T}\right)$ and $\stackrel{0}{W}_{2, \gamma}^{1,1}\left(Q_{T}\right)$ be Banach spaces of measurable functions $u(x, t)$ given on Q_{T} with finite norms

$$
\begin{gathered}
\|u\|_{W_{2, \gamma}^{1,0}\left(Q_{T}\right)}=\left(\int_{Q_{T}}(-t)^{\gamma}\left(u^{2}+u_{x}^{2}\right) d x d t\right)^{\frac{1}{2}}, \\
\|u\|_{W_{2, \gamma}^{1,1}\left(Q_{T}\right)}=\left(\int_{Q_{T}}(-t)^{\gamma}\left(u^{2}+u_{x}^{2}+u_{t}^{2}\right) d x d t\right)^{\frac{1}{2}},
\end{gathered}
$$

respectively.
${ }_{W_{2, \gamma}^{1,0}}^{W_{2, \gamma}}\left(Q_{T}\right)$ and ${ }^{0}{ }_{2, \gamma}^{1,1}\left(Q_{T}\right)$ be subspaces of $W_{2, \gamma}^{1,0}\left(Q_{T}\right)$ and $W_{2, \gamma}^{1,1}\left(Q_{T}\right)$, respectively, in which $A_{0}^{\infty}\left(Q_{T}\right)$ is a dense set.

In the domain Q_{T} consider the first boundary value problem

$$
\begin{gather*}
L u=\Delta \mathrm{u}+\lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} \cdot \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}-\frac{\partial u}{\partial t}=f+\sum_{k=1}^{n} \frac{\partial f^{k}}{\partial x^{k}} \tag{3}\\
\left.u\right|_{\Gamma\left(Q_{T}\right)}=0, \tag{4}
\end{gather*}
$$

where $f \in L_{2, \gamma}\left(Q_{T}\right), f^{k} \epsilon L_{2, \gamma}\left(Q_{T}\right) ; \quad k=\overline{1, n}$.
Therewith, it is assumed that with regard to number parameters λ and γ, conditions (1) and (2) are fulfilled. At first give definition of the weak solution of the first boundary value problem (3)-(4).

The function $u(x, t) \epsilon W_{2, \gamma}^{1,0}\left(Q_{T}\right)$ is said to be a weak solution of equation (3) in the domain Q_{T} if for any function $v(x, t) \epsilon \stackrel{0}{W}_{2, \gamma}^{1,1}\left(Q_{T}\right)$ the following integral identity is fulfilled.

$$
\begin{align*}
& B_{Q_{T}}(u, v)=\int_{Q_{T}}(-t)^{\gamma} u v_{t} d x d t-\int_{Q_{T}}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\delta_{i j}+\lambda \frac{x_{i} x_{j}}{4(-t)}\right) v_{i} u_{j} d x d t+ \\
& \quad+\lambda(n+1) \int_{Q_{T}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u v_{i} d x d t+\frac{\lambda n(n+1)}{4} \int_{Q_{T}}(-t)^{\gamma} u v d x d t- \\
& \quad-\gamma \int_{Q_{T}}(-t)^{\gamma} u v d x d t=\int_{Q_{T}}(-t)^{\gamma} f v d x d t-\int_{Q_{T}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k} v_{k} d x d t \tag{5}
\end{align*}
$$

where $\delta_{i j}$ is the Kronecker symbol.
The function $u(x, t) \epsilon W_{2, \gamma}\left(Q_{T}\right)$ being a weak solution of equation (3) in Q_{T} is called a weak solution of boundary value problem (3)-(5). Now we show the relation between equation (3) and integral identity (5). At first we represent the Hilbarg-Serrin parabolic operator in the form of a divergent operator with unbounded minor coefficients. We have

$$
L u=\Delta u+\lambda \sum_{i, j=1}^{n}\left(\frac{x_{i} x_{j}}{4(-t)} u_{i}\right)_{j}-\lambda(n+1) \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u_{i}-u_{t}
$$

Consider the domain $Q_{T, \delta}=Q_{T} \backslash \overline{Q_{\delta}}$ multiply the both parts of equation (3) by the function $v(x, t) \epsilon A_{0}^{\infty}\left(Q_{T}\right)$ and integrate the obtained equality with respect to $Q_{T, \delta}$. We get

$$
\begin{gather*}
\int_{Q_{T, \delta}}(-t)^{\gamma} v \Delta u d x d t+ \\
+\lambda \int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\frac{x_{? ?} x_{j}}{4(-t)} u_{i}\right)_{j} v d x d t-\lambda(n+1) \int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{j}}{4(-t)} u_{j} v d x d t- \\
-\int_{Q_{T, \delta}}(-t)^{\gamma} u_{t} v d x d t=\int_{Q_{T, \delta}}(-t)^{\gamma} f \cdot v d x d t+\int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{\partial f^{i}}{\partial x_{i}} v d x d t \tag{6}
\end{gather*}
$$

By Ostrogradskii's formula

$$
\begin{gather*}
\int_{Q_{T, \delta}}(-t)^{\gamma} v \Delta u d x d t+\lambda \int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\frac{x_{i} x_{j}}{4(-t)} u_{i}\right)_{j} v d x d t= \\
=-\int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\delta_{i j}+\lambda \frac{x_{i} x_{j}}{4(-t)}\right) u_{i} v_{j} d x d t \tag{7}
\end{gather*}
$$

In what follows we have

$$
\begin{gather*}
-\lambda(n+1) \int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u_{i} v d x d t=\frac{\lambda n(n+1)}{4} \int_{Q_{T, \delta}}(-t)^{\gamma-1} u v d x d t+ \\
+\lambda(n+1) \int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} v_{i} u d x d t \tag{8}
\end{gather*}
$$

Furthermore

$$
\begin{align*}
& \int_{Q_{T, \delta}}(-t)^{\gamma} f \cdot v d x d t+\int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{\partial f^{i}}{\partial x_{i}} v d x d t= \\
& =\int_{Q_{T, \delta}}(-t)^{\gamma} f v d x d t-\int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i=1}^{n} f^{i} v_{i} d x d t \tag{9}
\end{align*}
$$

Let $\Pi_{R}=\left\{x:\left|x_{i}\right|<R, \quad i=\overline{1, n}\right\}, \quad \mathrm{K}_{\delta}=\Pi_{R} \times(-T,-\delta)$. For simplicity we will consider that we can continue the function $u(x, t)$ in $\mathrm{K}_{\delta} \backslash \mathrm{Q}_{T, \delta}$ so that the obtained continuation $\tilde{u}(x, t)$ be the element of the space $W_{2, \gamma}^{1,0}\left(K_{\delta}\right)$. We continue the function $v(x, t)$ by a zero to $\mathrm{K}_{\delta} \backslash \mathrm{Q}_{T, \delta}$ and denote the obtained continuation again by $v(x, t)$. We have

$$
\begin{gathered}
J_{\delta}=-\int_{K_{\delta}}(-t)^{\gamma} \tilde{u}_{t} v d x d t=-\delta \int_{\Pi_{R}} \widetilde{? D}(x,-\delta) v(x,-\delta) d x+ \\
+\int_{K_{\delta}}(-t)^{\gamma} v_{t} \tilde{u} d x d t-\gamma \int_{K_{\delta}}(-t)^{\gamma-1} \widetilde{u} v d x d t=-\delta^{\gamma} \int_{K_{\delta}} u(x,-\delta) v(x,-\delta) d x+ \\
+\int_{Q_{T, \delta}}(-t)^{\gamma} v_{t} u d x d t-\gamma \int_{Q_{T, \delta}}(-t)^{\gamma-1} u v d x d t
\end{gathered}
$$

Hence it follows that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0+} J_{\delta}=\int_{Q_{T}}(-t)^{\gamma} v_{t} u d x d t-\gamma \int_{Q_{T}}(-t)^{\gamma-1} u v d x d t \tag{10}
\end{equation*}
$$

Now, taking into account (7)-(10) in (6), and tending δ to zero we arrive at integral identity (5).

Theorem 1. If with respect to number parameters λ and γ conditions (1) and (2) are fulfilled, then the first boundary value problem (3)-(4) is uniquely weakly solvable in the $0^{1,0}$
space $\stackrel{0}{W}_{2, \gamma}^{1,0}\left(Q_{T}\right)$ for any $f(x, t) \in L_{2, \gamma}\left(Q_{T}\right)$ and $f^{k}(x, t) \in L_{2, \gamma}\left(Q_{T}\right) ; \quad k=\overline{1, n}$.
Proof. At first prove the existence of the solution. To this end we consider the extending sequence of domains $\left\{D_{m}\right\}, \quad m=1,2, \ldots$; approximating from within the domain D, i.e. $\overline{D_{m}} \subset D_{m+1}, \overline{D_{m}} \subset D, \lim _{m \rightarrow \infty} D_{m}=D$. Therewith we choose D_{m} so that for any natural $m \quad \partial D_{m} \in C^{2}$. Let further Q^{m} be a P-domain whose foot is the domain D_{m},

$$
Q_{T}^{m}=Q^{m} \cap\{(x, t): t>-T\}, \quad Q_{T, \delta}^{m}=Q_{T}^{m} \backslash \bar{Q}_{\delta}^{m}, \quad \delta \in(0, T)
$$

Denote by f^{h} and $f^{k, h}$ the Friedrichs averaged functions, respectively, $k=\overline{1, n}$ with a parameter $h>0$. Consider for $h>0$ and natural m the family of the first boundary value problems

$$
\begin{gather*}
\Delta u^{m, h}+\lambda \sum_{i, j=1}^{n}\left(\frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h}\right)_{j}-\lambda(n+1) \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u_{i}^{m, h}-u_{t}^{m, h}= \\
=f^{h}+\sum_{k=1}^{n} \frac{\partial f^{k, h}}{\partial x_{k}} ; \quad(x, t) \in Q_{T, \delta}^{m} \tag{11}\\
\left.u^{m, h}\right|_{\Gamma\left(Q_{T, \delta}^{m}\right)}=0 \tag{12}
\end{gather*}
$$

As for any natural m and positive h and δ the coefficients and the right side of equation (11) are infinitely differentiable in $\bar{Q}_{T, \delta}^{m}$ functions, problem (11)-(12) has a unique classic solution $u^{m, h}(x, t)$. Indeed, $u^{m, h}(x, t)$ depends on δ as well, but for brevity of notation we write $u^{m, h}(x, t)$ instead of $u_{\delta}^{m, h}(x, t)$. Multiply the both sides of equation (11) by the function $(-t)^{\gamma} u^{m, h}(x, t)$ and integrate the obtained equality with respect to the domain $Q_{T, \delta}^{m}$.

We get

$$
\begin{gather*}
\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \Delta u^{m, h} \cdot u^{m, h} d x d t+\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} u^{m, h} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{x_{i} x_{j}}{4(-t)} u_{j}^{m, h}\right) d x d t- \\
-\lambda(n+1) \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u_{i}^{m, h} u^{m, h} d x d t-\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} u_{i}^{m, h} u_{t}^{m, h} d x d t= \\
=\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} f^{h} \cdot u^{m, h} d x d t+\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} \frac{\partial f^{k, h}}{\partial x_{k}} u^{m, h} d x d t . \tag{13}
\end{gather*}
$$

Further we have

$$
\begin{align*}
\int_{Q_{T, \delta}^{m}} & (-t)^{\gamma} \Delta u^{m, h} \cdot u^{m, h} d x d t+\lambda \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} u^{m, h} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(\frac{x_{i} x_{j}}{4(-t)} u_{j}^{m, h}\right) d x d t= \\
& =-\int_{Q_{T, \delta}^{m}}(-t)^{\gamma}\left(u_{x}^{m, h}\right)^{2} d x d t-\lambda \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} u_{j}^{m, h} d x d t . \tag{14}
\end{align*}
$$

Furthermore

$$
\begin{align*}
-\lambda(n+1) & \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \sum_{i=1}^{n} \frac{x_{i}}{4(-t)} u_{i} u d x d t \tag{15}
\end{align*}=\frac{\lambda(n+1) \cdot n}{2} \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} \frac{u^{2}}{4(-t)} d x d t,
$$

Finally, by means of arguments similar to ones that were used by deriving integral identity (5), we get

$$
\begin{equation*}
-\int_{Q_{T, \delta}^{m}}(-t)^{\gamma} u u_{t} d x d t=-\frac{\gamma}{2} \int_{Q_{T, \delta}^{m}}(-t)^{\gamma} u^{2} d x d t+i_{1}(\delta) \tag{17}
\end{equation*}
$$

where $\lim _{\delta \rightarrow \infty} i_{1}(\delta)=0$.
Taking into account (13)-(16) in (12) and tending δ to zero, we conclude

$$
\begin{gather*}
\int_{Q_{T, \delta}^{m}}(-t)^{\gamma}\left(\left(u_{x}^{m, h}\right)^{2}+\lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)^{m}} u_{i}^{m, h} \cdot u_{j}^{m, h}\right) d x d t- \\
-\frac{\lambda(n+1)-4 \gamma}{2} \cdot \int_{Q_{T}^{m}}(-t)^{\gamma} \frac{\gamma\left(u^{m, h}\right)^{2}}{4(-t)} d x d t= \\
=\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k} u_{k}^{m, h} d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} f u^{m, h} d x d t . \tag{18}
\end{gather*}
$$

Here $u^{m, h}(x, t)=\lim _{\delta \rightarrow 0+} u_{\delta}^{m, h}(x, t)$.
The existence of the pointwise limit is proved in the same as in [1].
If now $\frac{\lambda n(n+1)-4 \gamma}{2} \leq 0$, i.e. $\gamma \geq \frac{\lambda n(n+1)}{2}$, then from (17) it follows

$$
\begin{align*}
& \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\left(u_{x}^{m, h}\right)^{2}+\lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h}\right) d x d t \leq \\
& \leq \int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k, h} u_{k}^{m, h} d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} f^{h} u^{m, h} d x d t . \tag{19}
\end{align*}
$$

Note that for $\geq 0, \lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h} \geq 0$. But if $-\frac{1}{d^{2}}<\lambda<0$, then

$$
\lambda \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h} \geq \lambda d^{2}\left(u_{x}^{m, h}\right)^{2}
$$

Thus, if $\gamma \geq \frac{\lambda n(n+1)}{2}$, then from (18) we get

$$
\begin{gather*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(u_{x}^{m, h}\right)^{2} d x d t \leq C_{1}(\lambda, n, d, \gamma) \\
\left(\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k, h} u_{k}^{m, h} d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} f^{h} u^{m, h} d x d t\right) \tag{20}
\end{gather*}
$$

Now consider the case

$$
\begin{equation*}
\gamma \in\left(\frac{n^{2}\left(\lambda-\frac{1}{d^{2}}\right)+2 \lambda n}{8}, \frac{\lambda n(n+1)}{2}\right) \tag{21}
\end{equation*}
$$

According to inequality (17)

$$
\begin{gather*}
\frac{\lambda n(n+1)-4 \gamma}{2} \int_{Q_{T}^{m}}(-t)^{\gamma} \frac{\left(u^{m, h}\right)^{2}}{4(-t)} d x d t \leq \\
\leq \frac{2 \lambda n(n+1)-8 \gamma}{n^{2}} \int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h} d x d t . \tag{22}
\end{gather*}
$$

But on the other hand, from (20) it follows that there exists $\mu \in(0,1)$ for which

$$
\frac{2 \lambda n(n+1)-8 \gamma}{n^{2}}<\frac{1}{d^{2}}+\lambda-\frac{\mu}{d^{2}}
$$

So, from (18) and (21) we conclude

$$
\begin{gather*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(\left(u_{x}^{m, h}\right)^{2}+\frac{\mu-1}{d^{2}} \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h} d x d t\right) \leq \\
\quad \leq \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{i=1}^{n} f^{i, h} u_{i}^{m, h}-f^{h} u^{m, h}\right) d x d t \tag{23}
\end{gather*}
$$

As $\mu<1$, then

$$
\begin{equation*}
\frac{\mu-1}{d^{2}} \sum_{i, j=1}^{n} \frac{x_{i} x_{j}}{4(-t)} u_{i}^{m, h} \cdot u_{j}^{m, h} \geq(\mu-1)\left(u_{x}^{m, h}\right)^{2} \tag{24}
\end{equation*}
$$

From (22)-(23) it follows that

$$
\mu \int_{Q_{T}^{m}}(-t)^{\gamma}\left(u_{x}^{m, h}\right)^{2} d x d t \leq \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{k=1}^{n} f^{k, h} u_{k}^{m, h}-f^{h} u^{m, h}\right) d x d t
$$

The last inequality and estimation (19) allows to conclude that for $\gamma \in\left(\frac{n^{2}\left(\lambda-\frac{1}{d^{2}}\right)+2 \lambda n}{8}, \infty\right)$ the following inequality is valid

$$
\begin{equation*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(u_{x}^{m, h}\right)^{2} d x d t \leq C_{2}(\lambda, n, d, \gamma) \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{k=1}^{n} f^{k, h} u_{k}^{m, h}-f^{h} u^{m, h}\right) d x d t \tag{25}
\end{equation*}
$$

According to Friedrich's inequality we get

$$
\begin{equation*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(u^{m, h}\right)^{2} d x d t \leq C_{3}(\lambda, n, d, \gamma) \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{k=1}^{n} f^{k, h} u_{k}^{m, h}-f^{h} u^{m, h}\right) d x d t . \tag{26}
\end{equation*}
$$

Thus, from (24)-(25) we conclude

$$
\begin{gather*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(\left(u^{m, h}\right)^{2}+\left(u_{x}^{m, h}\right)^{2}\right) d x d t \leq \\
l e C_{4}(\lambda, n, d, \gamma) \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{k=1}^{n} f^{k, h} u_{k}^{m, h}-f^{h} u^{m, h}\right) d x d t . \tag{27}
\end{gather*}
$$

Further, for any $\varepsilon>0$ we have

$$
\begin{gather*}
\int_{Q_{T}^{m}}(-t)^{\gamma}\left(\sum_{k=1}^{n} f^{k, h} u_{k}^{m, h}-f^{h} u^{m, h}\right) d x d t \leq \\
\leq \frac{\varepsilon}{2} \int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n}\left(u_{k}^{m, h}\right)^{2} d x d t+\frac{1}{2 \varepsilon} \int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n}\left(f^{k, h}\right)^{2} d x d t+ \\
+\frac{\varepsilon}{2} \int_{Q_{T}^{m}}(-t)^{\gamma}\left(u^{m, h}\right)^{2} d x d t+\frac{1}{2 \varepsilon} \int_{Q_{T}^{m}}(-t)^{\gamma}\left(u^{m, h}\right)^{2} d x d t . \tag{28}
\end{gather*}
$$

Now choosing $\varepsilon=\frac{1}{C_{4}}$ from (26)-(27) we get

$$
\begin{align*}
& \int_{Q_{T}^{m}}(-t)^{\gamma}\left(\left(u^{m, h}\right)^{2}+\left(u_{x}^{m, h}\right)^{2}\right) d x d t \leq C_{5}(\lambda, n, d, \gamma) \times \\
& \times\left(\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n}\left(f^{k, h}\right)^{2} d x d t+\int_{Q_{T}^{m}}(-t)^{\gamma}\left(f^{h}\right)^{2} d x d t\right) \tag{29}
\end{align*}
$$

Without loss of generality, we can consider that for $f \neq 0 ; f^{k} \neq 0 ; k=\overline{1, n}$. Therefore from (28) it follows that for rather small $h>0$

$$
\begin{equation*}
\left\|u^{m, k}\right\|_{W_{2, \gamma}^{1,0}\left(Q_{T}^{m}\right)} \leq C_{6}(\lambda, n, d, \gamma)\left(\|f\|_{L_{2, \gamma}\left(Q_{T}\right)}+\sum_{k=1}^{n}\left\|f^{k}\right\|_{L_{2, \gamma}\left(Q_{T}\right)}\right) \tag{30}
\end{equation*}
$$

Fix an arbitrary natural m. From inequality (29) it follows that the family of functions $\left\{u^{m, h}(x, t)\right\}$ is weakly compact (with respect to h) in the space $W_{2, \gamma}^{1,0}\left(Q_{T}^{m}\right)$. Thus, there exists such a sequence $h_{l} \rightarrow 0$ as $l \rightarrow \infty$ and the function $u^{m}(x, t) \in \stackrel{0}{W}_{0_{2, \gamma}, 0}^{\left(Q_{T}^{m}\right)}$ that the functional sequence $\left\{u^{m, h_{l}}(x, t)\right\}$ weakly converges to the function $u^{m}(x, t)$ in $W_{2, \gamma}^{1,0}\left(Q_{T}^{m}\right)$
as $l \rightarrow \infty$. This means that for any function $u^{m}(x, t) \in \stackrel{0}{W}_{W_{2, \gamma}^{1,0}}\left(Q_{T}^{m}\right)$ it holds the limit equality

$$
\begin{equation*}
\lim _{l \rightarrow \infty} B_{Q_{T}^{m}}\left(u^{m, h_{l}}, v\right)=B_{Q_{T}^{m}}\left(u^{m}, v\right) \tag{31}
\end{equation*}
$$

But on the other hand

$$
\begin{equation*}
B_{Q_{T}^{m}}\left(u^{m, h_{l}}, v\right)=\int_{Q_{T}^{m}}(-t)^{\gamma} f^{h_{l}} v d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k, h_{l}} v_{k} d x d t \tag{32}
\end{equation*}
$$

Furthermore

$$
\begin{gather*}
\lim _{l \rightarrow \infty}\left(\int_{Q_{T}^{m}}(-t)^{\gamma} f^{h_{l}} v d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k, h_{l}} v_{k} d x d t\right)= \\
\quad=\int_{Q_{T}^{m}}(-t)^{\gamma} f v d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k} v_{k} d x d t \tag{33}
\end{gather*}
$$

From (30)-(32) we conclude that

$$
B_{Q_{T}^{m}}\left(u^{m}, v\right)=\int_{Q_{T}^{m}}(-t)^{\gamma} f v d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k} v_{k} d x d t
$$

The last equality means that the function $u^{m}(x, t)$ is a weak solution of equation (3) in the domain Q_{T}^{m}. Furthermore, for the function $u^{m}(x, t)$ the following estimation is valid

$$
\begin{equation*}
\left\|u^{m}\right\|_{W_{2, \gamma}^{1,0}\left(Q_{T}^{m}\right)} \leq C_{7}(\lambda, n, d, \gamma)\left(\|f\|_{L_{2, \gamma}\left(Q_{T}\right)}+\sum_{k=1}^{n}\left\|f^{k}\right\|_{L_{2, \gamma}\left(Q_{T}\right)}\right) . \tag{34}
\end{equation*}
$$

For any natural m we continue the function $u^{m}(x, t)$ by a zero in $Q_{T} \backslash Q_{T}^{m}$ and denote the obtained continuation again by $u^{m}(x, t)$. It is easy to see that $u^{m}(x, t) \in \stackrel{0}{W}_{2, \gamma}^{1,0}\left(Q_{T}\right)$. Therewith, according to (33) the following estimation is valid

$$
\begin{equation*}
\left\|u^{m}\right\|_{W_{2, \gamma}^{1,0}\left(Q_{T}\right)} \leq C_{8}\left(\|f\|_{L_{2, \gamma}\left(Q_{T}\right)}+\sum_{k=1}^{n}\left\|f^{k}\right\|_{L_{2, \gamma}\left(Q_{T}\right)}\right) . \tag{35}
\end{equation*}
$$

From (34) it follows that the family of functions $\left\{u^{m}(x, t)\right\}, \ldots . m=1,2, \ldots$ is weakly compact in the space $\stackrel{0}{W}_{2, \gamma}^{1,0}\left(Q_{T}\right)$. Thus, there exists such a function $u(x, t) \in \stackrel{0}{W}_{2, \gamma}^{1,0}\left(Q_{T}^{m}\right)$ and sequence $m_{r} \rightarrow \infty$ as $r \rightarrow \infty$ that $u(x, t)$ is a weak limit of $u^{m_{r}}(x, t)$ as $r \rightarrow \infty$ in $\stackrel{0}{1,0}_{W_{2, \gamma}}^{1,}\left(Q_{T}^{m}\right)$. This means that for any function $v(x, t) \in 0_{W_{2, \gamma}}^{1,0}$ the following limit equality is valid:

$$
\lim _{r \rightarrow \infty} B_{Q_{T}}\left(u^{m_{r}}, v\right)=B_{Q_{T}}(u, v)
$$

Moreover, using the above arguments, we can show that

$$
B_{Q_{T}}(u, v)=\int_{Q_{T}^{m}}(-t)^{\gamma} f v d x d t-\int_{Q_{T}^{m}}(-t)^{\gamma} \sum_{k=1}^{n} f^{k} v d x d t .
$$

From the last equality it follows that the function $u(x, t)$ is a weak solution of the first boundary value problem (3)-(4). Furthermore, for the functions $u(x, t)$ the following estimation is valid

$$
\begin{equation*}
\left\|u^{m}\right\|_{0_{W_{2, \gamma}^{1,0}}\left(Q_{T}^{m}\right)} \leq C_{9}\left(\|f\|_{L_{2, \gamma}\left(Q_{T}\right)}+\sum_{k=1}^{n}\left\|f^{k}\right\|_{L_{2, \gamma}\left(Q_{T}\right)}\right) \tag{36}
\end{equation*}
$$

Thereby the existence of the weak solution of the first boundary value problem (3)-(4) is proved. Now prove its uniqueness. It suffices to show that a homogeneous problem has only a trivial solution. Let $u(x, t)$ be the solution of homogeneous problem (3)-(4), i.e. for $f \equiv 0 ; \quad f^{k} \equiv 0 ; \quad k=\overline{1, n}$. Fix an arbitrary $\delta \in(0, T)$ and consider the function $v(x, t) \in W_{2, \gamma}\left(Q_{T+\delta}\right)$ vanishing for $t \leq T$ and $t \geq-\delta$. Let further $K=$ $\Pi_{R} \times(-T-\delta, 0), \quad \Pi_{R}=\left\{x: \quad\left|x_{i}\right|<R, \quad i=\overline{1, n}\right\}$. Continue the function $u(x, t)$ and $v(x, t)$ by zero to $K \backslash Q_{T}$ and denote the obtained continuations again by $u(x, t)$ and $v(x, t)$, respectively. It is easy to see that $u(x, t) \in 0_{W_{2, \gamma}^{1,1}}^{(K)}$, while $v(x, t) \in{ }_{W_{2, \gamma}^{1,1}}^{W_{2, \gamma}}(K)$, Denote for

$$
h \in(0, \delta] \frac{1}{h} \int_{t-h}^{t} v(x, \tau) d \tau \quad \text { by } \quad v_{\bar{h}}(x, \tau)
$$

and put into integral identity (5) instead of the function $u(x, t)$ the function $v_{\bar{h}}(x, \tau)$ and get

$$
\begin{equation*}
B_{K}\left(u, v_{\bar{h}}\right)=0 . \tag{37}
\end{equation*}
$$

Taking into account the equalities $\left(v_{\bar{h}}\right)_{t}=\left(v_{t}\right)_{\bar{h}},\left(v_{\bar{h}}\right)_{i}=\left(v_{i}\right)_{\bar{h}} \quad i=\overline{1, n}$ and also

$$
\begin{gathered}
-\int_{K}(-t)^{\gamma} u\left(v_{t}\right)_{\bar{h}} d x d t=-\int_{K}\left((-t)^{\gamma} u\right)_{h} v_{t} d x d t=\int_{K}\left[\left((-t)^{\gamma} u\right)_{h}\right]_{t} v d x d t, \\
\int_{K}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\delta_{i j}+\lambda \frac{x_{i} x_{j}}{4(-t)}\right) u_{i} u_{i}\left(v_{j}\right)_{\bar{h}} d x d t=\int_{K}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\delta_{i j}+\lambda \frac{x_{i} x_{j}}{4(-t)} u_{i}\right) v_{j} d x d t,
\end{gathered}
$$ where $u_{h}(x, t)=\frac{1}{h} \int_{t}^{t+h} u(x, \tau) d \tau$, assuming $v(x, t)=u_{h}(x, t)$ tending h to zero, from (36) we get

$$
\begin{equation*}
\frac{\lambda n(n+1)-4 \gamma}{8} \int_{Q_{T, \delta}}(-t)^{\gamma-1} u^{2} d x d t-\int_{Q_{T, \delta}}(-t)^{\gamma} \sum_{i, j=1}^{n}\left(\delta_{i j}+\lambda \frac{x_{i} x_{j}}{4(-t)}\right) u_{i} u_{j} d x d t=0 . \tag{38}
\end{equation*}
$$

Now, behaving as in deriving estimation (24), we get that if with respect to number parameters λ and γ conditions (1) and (2) are fulfilled, then $\int_{Q_{T, \delta}}(-t)^{\gamma} u_{x}^{2} d x d t=0$. The last equality yields

$$
\int_{Q_{T, \delta}}(-t)^{\gamma-1} u^{2} d x d t=0 .
$$

With regard to arbitrariness of δ we conclude

$$
\int_{Q_{T}}(-t)^{\gamma-1} u^{2} d x d t=0
$$

Hence it follows that $u(x, t)=0$ almost everywhere in Q_{T}.
In fact in the course of proof we established the estimation of the weak solution of the first boundary value problem (3)-(4). We formulate this statement in the form of a separate theorem.
Theorem 2. If the conditions of the previous theorem are fulfilled then for the weak solution of the first boundary value problem (3)-(4), estimation (35) is valid.

References

[1] O.A. Ladyzhenskaya, V.A. Solonnikov, Uraltseva N.N. linear and quaslinear equations of parabolic type, Moscow, Nauka, 1967.
[2] Yu.A. Alkhutov, Behavior of solutions of second order parabolic equations in noneylindrical domains, Doklady RAN, 345(5), 1995, 583-585.
[3] Yu.A. Alkhutov, I.T. Mamedov, Some properties of the solution of the first boundary value problem for second order parabolic equations with discontinuous coefficients, Dokl. AN SSSR, 284(1), 1985, 477-500.
[4] V.A. Rukavishnikov, U. Rukavishnikova, On the isomorphic mapping of weighted spaces by an elliptic operator with degeneration on the domain boundary, Diff. Urav., 50(3), 2014, 345-351.
[5] A.B. Kostin, Counterexamples in inverse problem for parabolic, elliptic, hyperbolic equations, Zhurnal matematiki I matematicheskoi fiziki, 54(5), 2014, 797-810.
[6] N.J. Jafarov, First boundary value problemfor class of parabolic equations with discontinuous coefficients, the basic coercive estimation in Sobolev weight space, Trans. of NAS of Azerb. Ser. of phys. - tech. and math. sci., XXXV(1), 2015, 51-58.

Nazim J.Jafarov

Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan
E-mail: nazim.jafarov.math@gmail.com
Received 23 August 2018
Accepted 25 September 2018

