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The Stability of Basis Properties of Multiple Systems in a
Banach Space With Respect to Certain Transformations
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Abstract. In this paper a method for constructing a basis of a Banach space based on the bases
of subspaces is proposed. The completeness, minimality, uniform minimality and basicity with
the parentheses of the corresponding systems are also studied. The obtained abstract results are
applied to the study of the basis properties of the eigenfunctions of a discontinuous differential
operator of second order.
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1. Introduction

The study of the spectral properties of some discrete differential operators leads to the
development of new methods for constructing bases. In this regard, many mathematicians
have paid attention to the study of basis properties (completeness, minimality, basicity)
of systems of functions of special types, often being eigen and associated functions of
differential operators. At the same time, various methods for studying these properties
were proposed. Among such works are the works of the authors [1-6]. In the case of
discontinuous differential operators, from eigenfunctions arise systems that for the study
of the basicity the previously known methods are not applicable.

In this work is considered an abstract approach to the problem described above. The
stability of the basis properties of multiple systems in a Banach space with respect to
certain transformations is studied, a method for constructing a basis for the whole space
is proposed, based on the bases of subspaces, which has wide application in the spectral
theory of discontinuous differential operators.
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2. Necessary information

Recall the definitions of some notions from the theory of basis in a Banach space. Let
X be a Banach space.

Definition 1. The system {xn}n∈N ⊂ X is called uniformly minimal in X, if

∃δ > 0 : inf
∀u∈L [{xn}n 6=k]

‖xk − u‖ ≥ δ ‖xk‖ , ∀k ∈ N.

Definition 2. If there exists a sequence of indexes, such that {nk}k∈N ⊂ N : nk <
nk+1 , ∀k ∈ N and any element x ∈ X is uniquely represented in the form

x =

∞∑
k=0

nk+1∑
j=nk+1

cjxj (n0 = 0),

then the system {xn}nεN ⊂ X is called a basis with parentheses in X.

For nk = k the system {xn}n∈N forms a usual basis for X.
We need the following easily proved statements.

Statement 1. Let the system {xn}n∈N form a basis with parentheses for X. If the system
{xn}n∈N is uniformly minimal and the sequence {nk+1 − nk}k∈N is bounded, then this
system forms a usual basis for X.

Statement 2. Let the system {xn}n∈N form a Riesz basis with parentheses for a Hilbert
space X. If the sequence {nk+1 − nk}n∈N is bounded and the following condition

sup
n
{‖xn‖ : ‖vn‖} <∞

holds, where {vn}n∈N is a biorthogonal system, then {xn}n∈N forms a usual Riesz basis
for X.

Definition 3. The basis {un}n∈N of Banach space X is called a p-basis, if for any x ∈ X
the condition ( ∞∑

n=1

|〈x, ϑn〉|p
) 1

p

≤M ‖x‖ ,

holds, where {ϑn}n∈N - is a biorthogonal system to {un}n∈N .

Definition 4. The sequences {un}n∈N and {ϕn}n∈N of Banach space X are called a
p-close, if the condition

∞∑
n=1

‖un − ϕn‖p <∞,

holds.
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We will also use the following results from [3,5] (see, also [6-8]).

Theorem 1. [3] Let {xn}n∈N form a q-basis for a Banach space X, and the system
{yn}n∈N is p-close to {xn}n∈N , where 1

p + 1
q = 1. Then the following properties are

equivalent:

i) {yn}n∈N -is complete in X;

ii) {yn}n∈N -is minimal in X;

iii) {yn}n∈N -forms an isomorphic basis to {xn}n∈N for X.

Let X1 = X⊕Cm and {ûn}n∈N ⊂ X1 be some minimal system and
{
ϑ̂n

}
n∈N

⊂ X∗1 =

X∗ ⊕ Cm be its biorthogonal system:

ûn = (un;αn1, ..., αnm) ; ϑ̂n = (ϑn;βn1, ..., βnm) .

Let J = {n1, ..., nm} be some set of m natural numbers. Suppose

δ = det ‖βnij‖i,j=1,m .

The following theorem is true.

Theorem 2. [5] Let the system {ûn}n∈N form a basis for X1. In order to the system
{un}n∈NJ

, where NJ = N\J form a basis for X it is necessary and sufficient that the
condition δ 6= 0 be satisfied. In this case the biorthogonal system to {un}n∈NJ

is defined
by

ϑ∗n =
1

δ

∣∣∣∣∣∣∣∣
ϑn ϑn1 . . . ϑnm
βn1 βn11 . . . βnm1

. . . . . . . . . . . .
βnm βn1m . . . βnmm

∣∣∣∣∣∣∣∣ .
In particular, if Xis a Hilbert space and the system {un}n∈N forms a Riesz basis for
X1,then under the condition δ 6= 0, the system {un}n∈NJ

also forms a Riesz basis for X.
For δ = 0 the system {un}n∈NJ

is not complete and is not minimal in X.

3. Stability of the basis properties of systems

Suppose that the direct decomposition X = X1 ⊕ . . . ⊕Xm holds, where Xi,i = 1,m
are Banach spaces. For convenience, the elements of X are identified with vectors:x ∈
X ⇔ x = (x1; ...;xm), where xk ∈ Xk , k = 1,m. The norm in X is defined by the

formula ‖x‖X =
√∑m

i=1 ‖xi‖
2
Xi

. It is clear that X∗ = X∗1 ⊕ . . . ⊕X∗m and for f ∈ X∗ and

x ∈ X it holds < x ; f >=
∑m

i=1 < xi; fi > (< · ; · > −is the value of the functional),
where f = (f1, ..., fm), fk ∈ X∗k , k = 1,m. For xk ∈ Xk let us denote by x̃k the element

from X, which is defined by the formula x̃k =

0, ..., xk︸ ︷︷ ︸
k

, ..., 0

.
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Suppose that a system {uin}n∈N is given in each space Xi, i = 1,m, Consider the
following system in X:

ûin = (a
(n)
i1 u1n, ..., a

(n)
imumn), i = 1,m, n ∈ N, (1)

where a
(n)
ij −are some numbers. Let An =

(
a
(n)
ij

)
i, j=1,m

; ∆n = detAn.

The following theorem is proved.

Theorem 3. Let the system {uin}n∈N be complete (minimal) in Xi, i = 1,m. If ∆n 6=
0 , ∀n ∈ N , then the system {ûin}i=1,m;n∈N is also complete (minimal) in X.

Proof. Let the system {uin}n∈N be complete (minimal) in Xi, i = 1,m. If for any
ϑ ∈ X∗

< ûin, ϑ >= 0 , i = 1, m, n ∈ N,

then from the representation X∗ = X∗1
·
⊕. . . ⊕ X∗m and ϑ = (ϑ1, ..., ϑm)t , ϑi ∈ X∗i , i =

1,m, implies
m∑
j=1

aij < ujn, ϑj >= 0 , i = 1, m. (2)

Since ∆n = det
(
a
(n)
ij

)
6= 0, n ∈ N , then (2) has only trivial solution for each n ∈ N :

< ujn, ϑj >= 0, j = 1, m , n ∈ N.

Then from the completeness of the system {ujn}n∈N in Xj implies that ϑj = 0, j = 1, m,
i.e. ϑ = 0.

Now let the system {uin}n∈N be minimal in Xi, and {ϑin}n∈N ⊂ X∗i be conjugate-
biorthogonal system. Consider the following system in X∗

ϑ̂in =
(
b
(n)
1i ϑ1n; b

(n)
2i ϑ2n; ...; b

(n)
miϑmn

)
=

m∑
s=1

b
(n)
si ϑ̃sn, i = 1, m , n ∈ N,

where the numbers b
(n)
ji − are the elements of the inverse matrix A−1n . We obtain

< ûin, ϑ̂lk >=

m∑
j=1

m∑
s=1

a
(n)
ij b

(k)
sl < ũjn, ϑ̃sk >=

=

m∑
j=1

a
(n)
ij b

(k)
jl < ujn, ϑjk >=

m∑
j=1

a
(n)
ij b

(k)
jl δnk =

m∑
j=1

a
(n)
ij b

(n)
jl δnk = δilδnk , i; l = 1,m;n; k ∈ N.

The last expressions mean that the system
{
ϑ̂in

}
i=1,m;n∈N

is conjugated to the system

{ûin}i=1,m;n∈N , i.e. the system {ûin}i=1,m;n∈N is minimal in X.
Theorem is proved.
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Theorem 4. Let the system {uin}n∈N be minimal in Xi, i = 1,m. If ∃n0 ∈ N, ∆n0 = 0
then the system {ûin}i=1,m;n∈N is not minimal in X.

Proof. Let for any n0 ∈ N, ∆n0 = 0. We will show that the system {ûin0}i=1,m is

linear dependent. From the condition det
(
a
(n0)
ij

)
= 0 implies that, there are numbers

ci, i = 1, m, which not all equal to zero and such that

m∑
i=1

a
(n0)
ij ci = 0 , j = 1,m.

Then
m∑
i=1

ciûin0 =

m∑
i=1

ci

m∑
j=1

a
(n0)
ij ũjn0

=

=
m∑
j=1

(
m∑
i=1

a
(n0)
ij ci

)
ũjn0

= 0 .

Thus, the system {ûin0}i=1,m is linear dependent, consequently, all of the systems
{ûin}i=1,m;n∈N are linear dependent and especially are not minimal. Theorem is proved.

Theorem 5. Let the system {uin}n∈N be complete and minimal in Xi , for each i ∈ 1 : m.
If ∃n0 ∈ N, ∆n0 = 0, then the system {ûin}i=1,m;n∈N is not complete and is not minimal
in X.

Proof. Non-minimality of the system {ûin}i=1,m;n∈N in X implies from the previ-
ous theorem. We will show that, it is not complete in X. From the condition ∆n0 =

det
(
a
(n0)
ij

)
= 0 implies that, there are numbers cj , j = 1, m, which not all are equal to

zero such that
m∑
j=1

a
(n0)
ij cj = 0 , j = 1,m.

Suppose

ũjn =

0, . . . , ujn︸ ︷︷ ︸
j

, . . . , 0

 ∈ X, j = 1, m.

Then the system {ũjn}j=1,m; n∈N is complete and minimal inX, and its conjugated system
is in the following form

ϑ̃jn =

0, .. . , ϑjn︸ ︷︷ ︸
j

, . .., 0

 , j = 1,m; n ∈ N,
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where
{
ϑjn

}
n∈N

⊂ X∗j−is conjugate system to
{
ujn

}
n∈N

. Consider the following func-

tional

ϑ0 =

m∑
s=1

csϑ̃sn0
.

It is clear that ϑ0 ∈ X ∗ and ϑ0 6= 0. We will show that the functional , ϑ0 annuls the
system {ûin}. Indeed, for n = n0 we obtain

< ûin0 , ϑ0 >=

m∑
j=1

a
(n0)
ij < ũjn0

, ϑ0 >=
m∑
j=1

a
(n0)
ij

m∑
s=1

cs < ũjn0
, ϑ̃sn0

>=

=
m∑
j=1

a
(n0)
ij

m∑
s=1

csδjs =
m∑
j=1

a
(n0)
ij cj = 0.

For n 6= n0 we have

< ũin, ϑ0 >=

m∑
j=1

a
(n)
ij

m∑
s=1

cs < ũjn, ϑ̃sn0 >= 0.

Thus, the system {ûin}i=1,m; n∈N is not complete in X. Theorem is proved.

Theorem 6. If all ∆n = det
(
a
(n)
ij

)
6= 0, n ∈ N , and for each i ∈ 1 : m the system

{uin}n∈N forms a basis in Xi , then the system {ûin}i=1,m;n∈N forms a basis with paren-
theses in X. If, the conditions

sup
n
{‖uin‖ ; ‖ϑin‖} < +∞, i = 1,m, sup

n

{
‖An‖ ,

∥∥A−1n ∥∥} < +∞, (3)

also hold, then the system {ûin}i=1,m;n∈N forms a usual basis in X.

Proof. Let us present the system {ûin} in the following form

ûin =
m∑
j=1

a
(n)
ij ũjn , i = 1,m ; n ∈ N. (4)

As shown above, the conjugated system is in the following form

ϑ̂in =

m∑
j=1

b
(n)
li ϑ̃l n, l = 1,m;n ∈ N, (5)

where the numbers bji are the elements of the inverse matrix A−1. Hence we get (for
x ∈ X )

m∑
i=1

< x, ϑ̂in > ûin =

m∑
i=1

m∑
j=1

m∑
l=1

a
(n)
ij b

(n)
li < x, ϑ̃l n > ũjn =
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=

m∑
j=1

m∑
l=1

(
m∑
i=1

b
(n)
li a

(n)
ij

)
< x, ϑ̃l n > ũjn =

=

m∑
j=1

m∑
l=1

δlj < x, ϑ̃l n > ũjn =

m∑
j=1

< x, ϑ̃jn > ũjn.

Consequently

SN (x) =

N∑
n=1

m∑
i=1

< x, ϑ̂in > ûin =

N∑
n=1

m∑
j=1

< x, ϑ̃jn > ũjn =

=
m∑
j=1

N∑
n=1

< x, ϑ̃jn > ũjn → x, as N →∞.

Thus, the system {ûin}i=1,m ;n∈N forms a basis with parentheses in X.

Now let us assume that the condition (3) be fulfilled. Then

sup
i, n

{
‖ũin‖ ;

∥∥∥ϑ̃in∥∥∥} < +∞, i = 1,m,

And from the representations (4) and (5) we obtain

sup
i, n

{
‖ûin‖ ;

∥∥∥ϑ̂in∥∥∥} < +∞.

Consequently, the system {ûin} is uniformly minimal and by Statement 1 it forms a usual
bases in X.

Theorem 7. If Xi−are Hilbert spaces, and {uin}n∈N is a Riesz basis in Xi , i = 1,m,
then for ∆n 6= 0 , n ∈ N , the system {ûin}i=1,m ;n∈N forms Riesz basis with parentheses
in X, and under the condition (3) it forms a usual Riesz basis in X.

Proof of the theorem implies from the Theorem 6 and Statement 2. Note that, in
particular, when the matrixes An do not depend on n: An = A, n ∈ N, the similar results
were obtained in [9,10].

4. Application to discontinuous differential operators

Consider the following model spectral problem for a second-order discontinuous differ-
ential operator

−y′′ (x) + q (x) y = λy (x) , x ∈ (−1, 0)
⋃

(0, 1) , (6)

with boundary conditions

y (−1) = y (1) = 0,
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y (−0) = y (+0) , (7)

y′ (−0)− y′ (+0) = λmy (0) .

where m 6= 0− is any complex number, q (x) - summable complex-valued function. Such
spectral problems arise when the problem of vibrations of a loaded in the middle of the
string with fixed ends is solved by applying the Fourier method [11,12]. The justification
of the Fourier method requires the study of the basis properties of the eigenfunctions of
the spectral problem in the appropriate spaces of functions (as a rule, in Lebesgue or
Sobolev spaces). Such questions for the problem (6),(7) studied by another method in
[13,14]. Following two theorems are proved in [13].

Theorem 8. [13] Let

d = 4 + (mq2 (0))2 + (mq1 (0))2 + 8mq2 (0)− 2m2q2 (0) q1 (0) 6= 0,

where

q1 (0) =
1

2

∫ 0

−1
q (t) dt

and

q1 (0) =
1

2

∫ 0

−1
q (t) dt.

Then the spectral problem (6), (7) has two series asymptotically simple eigenvalues λ1, n =
ρ21, n, n = 1, 2, ... and λ2, n = ρ22, n, n = 1, 2, ..., where ρ1, n and ρ2, n have asymptotics

ρ1, n = πn+
α1

n
+ o

(
1

n

)
and

ρ2, n = πn+
α2

n
+ o

(
1

n

)
respectively, and the numbers α1 and α2 are different complex numbers and are defined as
follows:

α1 =
− (2mq2 (0) +mq1 (0)) +

√
d

−2mπ
,

α2 =
− (2mq2 (0) +mq1 (0))−

√
d

−2mπ
,

where 0 ≤ arg
√
d < π.

Theorem 9. [13] Let the function q (x) satisfy the condition of the Theorem 8. Then the
eigen functions y1, n (x) of the problem (6),(7), corresponding to eigen values λ1, n = (ρ1, n)2

and the eigen functions y2, n (x), which correspond to eigen values λ2, n = (ρ2, n)2 have the
following asymptotics:

y1, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

γ1, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(8)
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y2, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

γ2, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(9)

where the numbers γ1, n γ2, n are defined by the formula

γ1, n = 1 +mq1 (0)−mα1π +O

(
1

n

)
,

γ2, n = 1 +mq1 (0)−mα2π +O

(
1

n

)
.

By W k
p (−1, 0)⊕ (0, 1) we denote a space of functions whose constrictions on segments

[−1, 0] and [0, 1] belong to Sobolev spaces W k
p (−1, 0) and W k

p (0, 1), respectively. Let’s
define the operator L in Lp (−1, 1)⊕ C as follows :

D (L) =
{
û ∈ Lp (−1, 1)⊕ C : û = (u; mu (0)) , u ∈W 2

p (−1, 0)
⋃

(0, 1) ,

u (−1) = u (1) = 0, u (−0) = u (+0)} (10)

and for û ∈ D (L)

Lû =
(
−u′′ + q (x)u; u′ (−0)− u′ (+0)

)
. (11)

Lemma 1. Operator L, defined by the formulas (10), (11) is a linear closed operator
with dense definitional domain in Lp (−1, 1) ⊕ C. Eigenvalues of the operator L and
of the problem (6), (7) coincide, and {ŷk}∞k=0 are eigenvectors of the operator L, where
ŷ2n−1 = (y2n−1 (x) ; my2n−1 (0)), ŷ2n = (y2n (x) ; my2n (0)).

Proof. To prove the first part of the lemma we take ŷ = (y; α) ∈ Lp (−1, 1) ⊕ C and
we define the functional F (ŷ) as follows:

F (ŷ) = my (+0)− α.

Let us assume

Uν (ŷ) = Uν (y) , ν = 1, 2, 3,

where

U1 (y) = y (−1) , U2 (y) = y (1) , U3 (y) = y (−0)− y (+0) .

Then F, Uv, v = 1, 2, 3, are bounded linear functionals on W 2
p (−1, 0)

⋃
(0, 1) ⊕ C, but

unbounded on Lp (−1, 1)⊕ C. Therefore , (see, e.g. [15, pp. 27-29]) the set

D (L) =
{
ŷ = (y; α) , y ∈W 2

p (−1, 0)
⋃

(0, 1) , F (ŷ) = Uν (ŷ) = 0, ν = 1, 2, 3
}

is dense everywhere in Lp (−1, 1)⊕C, and L is a closed operator as constriction of corre-
sponding closed maximal operator.

The second part of the lemma is verified directly.
The lemma is proved.
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Theorem 10. In conditions of the Theorem 8 eigenvectors and conjugate vectors of the
operator L, linearized problem (6), (7) form basis in Lp (−1, 1) ⊕ C,and for p = 2 this
basis is a Riesz basis.

Proof. From the Lemma 1 implies that , L is a dense defined closed operator with
compact resolvent. Then the system {ŷn}∞n=0 of eigenvectors of the operator L is minimal

in Lp (−1, 1)⊕ C, and its conjugate system
{
ϑ̂n

}∞
n=0

is the system of eigenvectors of the

conjugate operator L∗ and is in the form

ϑ̂n = (ϑn, m̄ϑn (0)) , n = 0, 1, ...,

here ϑn (x) , n = 0, 1, ..., are eigenfunctions of the conjugate spectral problem

−ϑ′′ + q (x)ϑ = λϑ, (12)

ϑ (−1) = ϑ (1) = 0 ; ϑ (−0) = ϑ (+0) ; ϑ′ (−0)− ϑ′ (+0) = λm̄ϑ (0) . (13)

By the similar way, for the problem (12), (13) we obtain, that for ϑn (x) hold following
formulas:

ϑ1, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

µ1, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(14)

ϑ2, n (x) =

{
sinπnx+ O

(
1
n

)
, x ∈ [−1, 0] ,

µ2, n sinπnx+ O
(
1
n

)
, x ∈ [0, 1] ,

(15)

where µ1,n, µ2,n are the normalization numbers and for which holds

µ1,n = a1 +O

(
1

n

)
, µ2,n = a2 +O

(
1

n

)
,

and a1a2 6= 0. Denote

e1, n (x) =

{
sinπnx, x ∈ [−1, 0] ,
γ1, n sinπnx, x ∈ [0, 1] ,

(16)

e2, n (x) =

{
sinπnx, x ∈ [−1, 0] ,
γ2, n sinπnx, x ∈ [0, 1] ,

(17)

and consider the system {ên}∞n=0, where

ê0 = (0; 1) , ê2n = (e2,n; 0) , ê2n−1 = (e1,n; 0) , n ∈ N.

Then {ên}∞n=0 is basis in Lp (−1, 1)⊕C, besides for 1 < p ≤ 2, from the formulas (16),(17)
implies, that according to inequality Hausdorf-Young for trigonometric system (see., for
example, [16] ) for each f̂ ∈ Lp (−1, 1)⊕ C the inequality( ∞∑

B=0

∣∣∣〈f̂ , ên〉∣∣∣q)
1
q

≤ c
∥∥∥f̂∥∥∥

Lq⊕C
,
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is fulfilled and from the formulas (8),(9) implies that∑
n

‖ŷn − ên‖pLp⊕C <∞.

Then by Theorem 1 the system {ŷn}∞n=0 also forms a basis in Lp (−1, 1) ⊕ C isomorphic
to {ên}∞n=0. If p > 2 (1 < q < 2), then in this case from the formulas (14),(15) implies

that, the system
{
ϑ̂n

}∞
n=0

is q- close to {ên}∞n=0:∑
n

∥∥∥ϑ̂n − ên∥∥∥q
Lq⊕C

<∞,

and for each ĝ ∈ Lq (−1, 1)⊕ C( ∞∑
B=0

|〈g, ên〉|p
) 1

p

≤ c ‖ĝ‖Lq⊕C ,

and by Theorem 1 the system
{
ϑ̂n

}∞
n=0

forms a basis in Lq (−1, 1)⊕C and consequently,

the system {ŷn}∞n=0 forms a basis in Lp (−1, 1)⊕ C isomorphic to {ên}∞n=0.

As noted in the Theorem 8, α1 6= α2, because, although one of these numbers does not
equal zero. With this in mind and applying the Theorem 2 and 7, we obtain, that right is
next

Theorem 11. If α1 6= 0, then for sufficiently great values of n0 we eliminate y1, n0 (x), and
if α2 6= 0, then for sufficiently great values of n0 we eliminate y2, n0 (x) from the system of
the eigen and conjugate functions of the problem (6), (7) we obtain a basis in Lp (−1, 1),
and for p = 2 we obtain a Riesz basis in L2 (−1, 1).
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