Absence of Positive Solutions of a Semi-linear Parabolic Equation with Lowest Derivatives and Time Periodic Coefficients in External Domains

S.H. Bagirov*, T.Z. Garayev

Abstract

In the exterior of a compact we consider a semi-linear parabolic equation with lowest derivatives and with time periodic coefficients. Depending on degree of nonlinearity and the coefficients of the equation, we find exact estimations on non-existence of positive solutions.

Key Words and Phrases: semi-linear parabolic equation, time periodic global positive solutions, inequality Harnack.
2010 Mathematics Subject Classifications: 35A01
Let Ω be the exterior of some compact in R_{x}^{n}, containing the origin of coordinates. In the cylinder $Q=\Omega \times(-\infty,+\infty)$ consider the following equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=L u+C|x|^{\sigma}|u|^{p-1} u \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
L \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}} \equiv \\
\equiv \operatorname{div}(A \nabla u)(x, t)+B(x, t) \nabla u(x, t), \\
A=A(x, t)=\left(a_{i j}(x, t)\right)_{i, j=1}^{n}, \quad B(x, t)=\left(b_{1}(x, t), \ldots, b_{n}(x, t)\right) .
\end{gathered}
$$

Suppose that $n \geqslant 3, p>1, \sigma>-2$, the coefficients $a_{i j}(x, t), b_{i}(x, t)$ are measurable, T periodic with respect to t functions in $R^{n} \times(-\infty ;+\infty)$ and $a_{i j}(x, t)$ satisfy the following conditions:
I) $A(x, t)$ is a symmetric matrix with the Holder continuous functions $a_{i j}(x, t)$ in $R^{n} \times(-\infty ;+\infty)$ and there exists $\lambda>1$ such that $\lambda^{-1} I \leqslant A(x, t) \leqslant \lambda I$ for all $(x, t) \in$ $R^{n} \times[0, T]$.

We will study the existence of the positive solution of equation (1). Note that the case when $B(x, t) \equiv 0$ was considered in the paper [1], the case when the coefficients are time-independent, in the paper [2].

[^0]A great number of works were devoted to nonlinear elliptic equations of type (1) (see for example $[3,4,7]$). Such equations may occur in geometry [6].

We will determine the conditions on $B(x, t)$ later.
At first we introduce some denotation.
Denote $Q_{T}=\Omega \times(0, T), S_{R}=\{x ;|x|=R\} \times\{-\infty ;+\infty\}, B_{R}=\{x ;|x|<R\}$, $B_{R}^{C}=\{x ;|x|>R\} ; B_{\rho_{1}, \rho_{2}}=\left\{x ; \rho_{1}<x<\rho_{2}\right\}, Q_{T}^{R}=B_{R} \times(0, T), Q_{T}^{R, C}=B_{R}^{C} \times(0, T)$, $Q_{T}^{\rho_{1}, \rho_{2}}=B_{\rho_{1}, \rho_{2}} \times(0, T)$.

We assume that $u(x, t) \in W_{2}^{1,1 / 2}\left(Q_{T}\right)$, if $u(x, t+T) \in u(x, t), u(x, t) \in \in W_{2}^{1,0}\left(Q_{T}\right)$ and $\|u\|^{2}=\sum_{k=-\infty}^{+\infty}|k| \cdot \int_{\Omega}\left|u_{k}(x)\right|^{2} d x<\infty$, where $u_{k}(x)=\frac{1}{T} \int_{0}^{T} u(x, t) e^{-i k \frac{2 \pi}{T} t} d t$.

The space $W_{2}^{1,1 / 2}\left(Q_{T}\right)$ will be a Hilbert space if we define the norm in it by the equality

$$
\begin{equation*}
\|u\|_{W_{2}^{1,1 / 2}\left(Q_{T}\right)}=\left[\|u\|_{2, Q_{T}}^{2}+\left\|u_{x}\right\|_{2, Q_{T}}^{2}+\|u\|^{2}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

where

$$
u_{x} \equiv \nabla u \equiv\left(u_{x_{1}}, \ldots, u_{x_{n}}\right), \quad\|u\|_{2, Q_{T}}^{2}=\int_{Q_{T}}|u(x, t)|^{2} d x d t
$$

Denote by ${ }_{W}^{\stackrel{1}{1,1 / 2}}\left(Q_{T}\right)$ the completion of $C^{0, \infty}\left(Q_{T}\right)$ by the norm (2), where $C^{0, \infty}\left(Q_{T}\right)$ is the set of infinitely smooth, T-periodic with respect to t functions equal to zero in the vicinity of $\partial \Omega$ and infinity.

We call the function $u(x, t)$ a generalized solution of the equation (1), if $u(x, t) \in$ $W_{2, l o c}^{1,1 / 2}\left(Q_{T}\right) \cap L_{\infty, l o c}\left(Q_{T}\right), B \nabla u \in L_{1, l o c}\left(Q_{T}\right)$ and for any $\varphi(x, t) \in \in \stackrel{\circ}{W}_{2}^{1,1 / 2}\left(Q_{T}\right)$ the following integral identity is fulfilled:

$$
\begin{gathered}
2 \pi \sum_{k=-\infty}^{+\infty}(i k) \int_{\Omega} u_{k}(x) \varphi_{-k}(x) d x+\int_{Q_{T}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial u}{\partial x_{j}} \frac{\partial \varphi}{\partial x_{i}} d x d t- \\
\quad-\int_{Q_{T}} \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial u}{\partial x_{i}} \varphi d x d t=C \cdot \int_{Q_{T}}|x|^{\sigma}|u|^{p-1} u \varphi d x d t
\end{gathered}
$$

Denote (see [7])

$$
\begin{aligned}
& N_{h}^{\alpha}(b) \equiv \sup _{x, t} \int_{t-h}^{t} \int_{R^{n}}|B(y, s)| \frac{1}{(t-s)^{\frac{n+1}{2}}} \exp \left(-\alpha \frac{|x-y|^{2}}{t-s}\right) d y d s+ \\
& \quad+\sup _{y, s} \int_{s}^{s+h} \int_{R^{n}}|B(x, t)| \frac{1}{(t-s)^{\frac{n+1}{2}}} \exp \left(-\alpha \frac{|x-y|^{2}}{t-s}\right) d x d t
\end{aligned}
$$

where α is a fixed positive constant.

Definition 1. It is said that the vector B satisfies the condition K if

$$
\lim _{h \rightarrow 0} N_{h}^{\alpha}(B)=0
$$

for all $\alpha>0$.
Denote $N_{\infty}^{\alpha}(B) \equiv \lim _{h \rightarrow \infty} N_{h}^{\alpha}(B)$.
Definition 2. Let $H(x) \in L_{1, l o c}\left(R^{n}\right)$. It is said the $H(x)$ belongs to the class $\widehat{K}_{n+1, \infty}$ if

$$
M_{n+1}(H) \equiv \sup _{x \in R^{n}} \int_{R^{n}} \frac{|H(y)|}{|x-y|^{n-1}} d y<\infty
$$

It is easy to show that (see [7]) if $H(x) \in \widehat{K}_{n+1, \infty}$, then for any $\alpha>0 \quad N_{\infty}^{\alpha}(H)<\infty$.
Denote by $\Gamma(x, t ; y, s)$ the weak fundamental solution of the equation

$$
\begin{equation*}
L u-\frac{\partial u}{\partial t}=0 \tag{3}
\end{equation*}
$$

If follows from the results of the papers [7, 8] that if for some $\alpha N_{\infty}^{\alpha}(B)$ is rather small, then equation (2)has a unique fundamental solution $\Gamma(x, t ; y, s)$ and there exist the constants $C_{1}, C_{2}>0$, such that

$$
\begin{gather*}
\frac{1}{C_{1}(t-s)^{n / 2}} \exp \left(-\frac{|x-y|^{2}}{C_{2}(t-s)}\right) \leqslant \Gamma(x, t ; y, s) \leqslant \\
\leqslant \frac{C_{1}}{(t-s)^{n / 2}} \exp \left(-C_{2} \frac{|x-y|^{2}}{t-s}\right) \tag{4}\\
\left|\nabla_{x} G(x, t ; y, s)\right| \leqslant \frac{C_{1}}{(t-s)^{(n+1) / 2}} \exp \left(-C_{2} \frac{|x-y|^{2}}{t-s}\right) \tag{5}
\end{gather*}
$$

for all $x, y \in R^{n}, t>s$

$$
\Gamma(x, t ; y, s)=0 \quad \text { for } \quad t<s
$$

Let $B(x, t)$ satisfy the following conditions:
II) $|B(x, t)| \leqslant C_{3}|V(x)|$, where $V(x) \in \widehat{K}_{n+1, \infty}$ and there exists $\varepsilon>0$ such that $M_{n+1}(V)<\varepsilon$.
III) There exist the constants $C_{4}>0, \beta \in(0,1)$ such that

$$
\begin{gathered}
\int_{Q_{T}^{R, C}}|\bar{B}|^{2} \varphi^{2} d x d t \leqslant C_{4} \int_{Q_{T}^{R, C}}|\nabla \varphi|^{2} d x d t \\
(1-\beta) \int_{Q_{T}^{R, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial \varphi}{\partial x_{j}} \frac{\partial \varphi}{\partial x_{i}} d x d t-\int_{Q_{T}^{R, C}} \sum_{i, j=1}^{n} \bar{b}(x, t) \frac{\partial \varphi}{\partial x_{i}} \varphi d x d t \geqslant 0
\end{gathered}
$$

for any $\varphi(x, t) \in \stackrel{\circ}{W}_{2}^{1,1 / 2}\left(Q_{T}^{R, C}\right)$, where $\bar{B}:=B \cdot \chi_{Q_{T}^{R, C}}, \chi_{Q_{T}^{R, C}}$ is a characteristic function $Q_{T}^{R, C}$.

Before we pass to the main result, we prove some auxiliary lemmas.
Lemma 1. Let $A(x, t), B(x, t)$ satisfy the conditions I), II), III) and $u(x, t)$ be a nonnegative solution the inequality $L u-\frac{\partial u}{\partial t} \leqslant 0$ be such that $\left.u\right|_{|x|=R_{0}}>0$. Then $u(x, t) \geqslant C_{0}|x|^{2-n}$.

Proof. Let $\Gamma(x, t)$ be a fundamental solution of equation (3) with a singularity in the origin of coordinates.

Consider the function

$$
\begin{equation*}
\Gamma^{\prime}(x, t)=\sum_{q} \Gamma(x, t+T q), \tag{6}
\end{equation*}
$$

where the summation is taken over all integer q. If series (6) converges, then it is a periodic solution of equation (3). According to estimation (4) for $\Gamma(x, t+T q)$ we get

$$
\begin{gathered}
\Gamma^{\prime}(x, t) \geqslant \sum_{q} \frac{1}{C_{1}}(t+T q)^{-n / 2} e^{-\frac{|x|^{2}}{C_{2}(t+T q)}} \geqslant \\
\geqslant C_{5} \int_{-t / T}^{\infty}(t+T s)^{-n / 2} e^{-\frac{|x|^{2}}{C_{2}(t+T s)}} d s-C_{6}|x|^{-n} \geqslant C_{7}|x|^{2-n} .
\end{gathered}
$$

By the results of the paper $[7], u(x, t)$ satisfies the Harnack inequality. Then there exists $C_{0}=$ const >0 such that $u(x, t)-C_{0} \Gamma^{\prime}(x, t)>0$ for $|x|=R_{0}$.

Consider the function

$$
v(x, t)=u(x, t)-C_{0} \Gamma^{\prime}(x, t)+\sigma,
$$

where $0<\sigma<\inf _{|x|=R_{0}}\left(u-C_{0} \Gamma^{\prime}\right)$.
Since, $\Gamma^{\prime}(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$, then for large $\left.R \quad v\right|_{|x|=R}>0$.
Thus in $Q_{T}^{R_{0}, C}$

$$
L v-\frac{\partial v}{\partial t} \leqslant 0 \quad \text { and }\left.\quad v\right|_{|x|=R_{0}}>0,\left.\quad v\right|_{|x|=R}>0 .
$$

Prove that $v>0$ in $Q_{T}^{R_{0}, R}$. In the definition of the solution we take the test function $\varphi(x, t)=\max (-v, 0) \equiv v_{-}$. Then we get:

$$
\begin{gathered}
-\int_{Q_{T}^{R_{0}, R}} v \frac{\partial v}{\partial t} d x d t-\int_{Q_{T}^{R_{0}, R}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v}{\partial x_{j}} \frac{\partial v_{-}}{\partial x_{i}} d x d t+ \\
\quad+\int_{Q_{T}^{R_{0}, R}} \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial v}{\partial x_{i}} v_{-} d x d t \leqslant 0
\end{gathered}
$$

Hence

$$
\begin{gathered}
\beta \int_{Q_{T}^{R_{0}, R}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{-}}{\partial x_{j}} \frac{\partial v_{-}}{\partial x_{i}} d x d t+(1-\beta) \int_{Q_{T}^{R_{0}, R}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{-}}{\partial x_{j}} \frac{\partial v_{-}}{\partial x_{i}} d x d t- \\
-\int_{Q_{T}^{R_{0}, R}} \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial v_{-}}{\partial x_{i}} v_{-} d x d t \leqslant 0 .
\end{gathered}
$$

Using condition III), we have

$$
\beta \int_{Q_{T}^{R_{0}, R}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{-}}{\partial x_{j}} \frac{\partial v_{-}}{\partial x_{i}} d x d t \leqslant 0
$$

So $v_{-} \equiv 0$. Then $v>0$ in $Q_{T}^{R_{0}, C}$. Tending δ zero, we get

$$
u \geqslant C_{0} \Gamma^{\prime} \geqslant C_{0}|x|^{2-n} \quad \text { for } \quad|x| \geqslant R_{0}
$$

This proves Lemma 1.
Lemma 2. Let the conditions of lemma 1 be fulfilled, $0 \leqslant W(x, t) \in L_{l o c}^{\infty}\left(Q_{T}^{R_{0}, C}\right), \quad W(x, t+$ $T)=W(x, t)$ and $|x|^{2} W(x, t) \rightarrow \infty$ as $x \rightarrow \infty$. Then in the cylinder $Q_{T}^{R_{0}, C}$ there is no positive solution of the inequality

$$
L u+W(x, t) u-\frac{\partial u}{\partial t} \leqslant 0
$$

Proof. Let it be not so, i.e. there exists the positive solution $u(x, t)$. Then in definition of the solution we take the test function in the form φ^{2} / u, where $\varphi \in C_{0}^{\infty}\left(B_{\rho, 2 \rho}\right)$, $0 \leqslant \varphi \leqslant 1, \varphi=1$ for $\frac{5}{4} \rho<|x|<\frac{7}{4} \rho$ and $|\nabla \varphi|<\frac{5}{\rho}$. Then we get

$$
\begin{gathered}
\inf _{Q_{T}^{\rho, 2 \rho}} W(x, t) \cdot \int_{B_{\rho, 2 \rho}} \varphi^{2} d x \leqslant \frac{1}{T} \int_{Q_{T}^{R_{0}, C}} W(x, t) \varphi^{2} d x d t \leqslant \\
\leqslant \frac{1}{T} \mu_{1} \sum_{j=1}^{n} \int_{Q_{T}^{R_{0}, C}}\left(\sum_{i=1}^{n} a_{i j} \frac{\partial \varphi}{\partial x_{i}}-\frac{1}{2} b_{j} \varphi\right)^{2} d x d t \leqslant \\
\leqslant \frac{1}{T} \mu_{1} \int_{Q_{T}^{R_{0}, C}}\left[\sum_{j=1}^{n}\left(\sum_{i=1}^{n} a_{i j} \frac{\partial \varphi}{\partial x_{i}}\right)^{2}+|B|^{2} \cdot \varphi^{2}\right] d x d t \leqslant C_{8} \int_{B_{\rho, 2 \rho}}|\nabla \varphi|^{2} d x .
\end{gathered}
$$

Hence, it follows that $\inf _{Q_{T}^{\rho, 2 \rho}} W(x, t)|x|^{2}$ is bounded for large ρ. This contradicts the condition of lemma 2 .

This proves lemma 2.
In $Q_{T}^{R_{0}, C}$ consider the equation

$$
\begin{equation*}
-\frac{\partial v}{\partial t}+L^{*} v=0 \tag{7}
\end{equation*}
$$

where

$$
L^{*} v \equiv \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial v}{\partial x_{j}}\right)-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i}(x, t) v\right) .
$$

Lemma 3. Let the conditions I), II), III) be fulfilled. There exists $\varepsilon>0$ such that condition II) imply that the equation (7) has in $Q_{T}^{R_{0}, \dot{C}}$ the solution $v(x, t)$, and $C_{9} \leqslant v(x, t) \leqslant C_{10}, 0<C_{9}<C_{10}<\infty$.

Proof. Let $R<R_{0}$. Consider the following problem:

$$
\begin{gather*}
-\frac{\partial \omega}{\partial t}+\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x, t) \frac{\partial \omega}{\partial x_{i}}\right)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i}^{m}(x, t)(\omega+1)\right) \tag{8}\\
\left.\omega\right|_{\partial B_{R_{0}, R}}=0, \quad \omega(x, t+T)=\omega(x, t) \tag{9}
\end{gather*}
$$

where

$$
b_{i}^{(m)}(x, t)=\left\{\begin{array}{cll}
m & \text { if } \quad b>m \\
b_{i}(x, t) & \text { if } & b \leqslant m
\end{array}\right.
$$

Problem (8), (9) has the solution (see [9]) from the class $\stackrel{\circ}{W}_{2}^{1,1 / 2}\left(Q_{T}^{R_{0}, R}\right) \cap \quad L_{\infty}\left(Q_{T}^{R_{0}, R}\right)$.
Let $G_{R}(x, t ; y, s)$ be the Green function of the equation

$$
\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x, t) \frac{\partial u}{\partial x_{j}}\right)=\frac{\partial u}{\partial t} \text { in } \quad Q_{T}^{R_{0}, R} .
$$

Then we can write the solution of problem (8), (9) in the form

$$
\begin{gathered}
\omega_{m, R}(x, t)=\int_{-\infty}^{t} \int_{B_{R_{0}, R}} G_{R}(x, t ; y, s) \nabla_{y}\left(B^{m}(y, s)\right)\left(\omega_{m, R}(y, s)+1\right) d y d s= \\
=-\int_{-\infty}^{t} \int_{B_{R_{0}, R}} \nabla_{y} G_{R}(x, t ; y, s) B^{m}(y, s)\left(\omega_{m, R}(y, s)+1\right) d y d s .
\end{gathered}
$$

Using estimation (5), for the derivatives of the fundamental solution we get

$$
\left\|\omega_{m, R}\right\|_{\infty} \leqslant\left\|\omega_{m, R}+1\right\|_{\infty} \cdot \int_{-\infty}^{t} \int_{R^{n}} C_{1}(t-s)^{-\frac{n+1}{2}} e^{-C_{2} \frac{|x-y|^{2}}{t-s}}|B(y, s)| d y d s \leqslant
$$

$$
\leqslant C_{1} \cdot\left\|\omega_{m, R}+1\right\|_{\infty} N_{\infty}^{C_{2}}(|b|) \leqslant C_{1} \cdot \varepsilon\left\|\omega_{m, R}+1\right\|_{\infty} .
$$

If we take $\varepsilon<\frac{1}{2 C_{1}}$, we get $\left|\omega_{m, R}\right|<1$. So, there exist the constants R and m independent of $C_{9}, C_{10}>0$ such that $C_{9}<\omega_{m, R}+1<C_{10}$. The function $v_{m, R}=\omega_{m, R}+1$ is the solution of equation (7), and $C_{9}<v_{m, R}<C_{10}$. Then $v_{m, R}$ is weakly compact in $W_{\text {loc }}^{1,1 / 2}\left(Q_{T}^{R_{0}, C}\right)$. Passing to limit as $m, R \rightarrow \infty$, we get the statement of the lemma.

In $Q_{T}^{R_{0}, C}$ we consider the linear equation

$$
\begin{equation*}
-\frac{\partial v}{\partial t}+L v+\alpha_{1} \cdot|x|^{-2} v=0 \tag{10}
\end{equation*}
$$

where $R>1, \quad \alpha_{1}$ is a rather small positive number.
Lemma 4. Let the conditions of lemma 3 be fulfilled, and $v(x, t)$ be a nonnegative solution of equation (10) such that $\left.v\right|_{|x|=R}>0$. Then there exist $C_{11}>0, R_{1}>R$, such that $v(x, t) \geqslant C_{11}|x|^{2-n} \log |x|$ for $|x| \geqslant R_{1}$.

Proof. Let $\varphi(x) \in C_{0}^{1}\left(B_{R}^{C}\right)$, be such that $0 \leqslant \varphi \leqslant 1, \varphi=1$ for $2 R \leqslant|x| \leqslant \rho, \varphi=0$ for $|x| \leqslant \frac{3 R}{2}, x \geqslant 2 \rho,|\nabla \varphi| \leqslant \frac{C}{\rho}$ for $\rho \leqslant|x| \leqslant 2 \rho$.

For $\rho>2 R$ denote $m_{\rho}:=\inf _{|x|=\rho} v(x, t)$. In the definition of the solution take the test function in the form $v_{1} \varphi$, where $v_{1}(x, t)$ is the solution of equation (7) such that $0<C_{9} \leqslant v_{1}(x, t) \leqslant C_{10}, C_{9}, C_{10}=$ const.

Then we get:

$$
\begin{gathered}
-\sum_{k=-\infty}^{+\infty}(i k) \int_{B_{R}^{C}}\left(v_{1}\right)_{-k} \cdot(v \varphi)_{-k} d x-\int_{Q_{T}^{R_{0}, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial(v \varphi)}{\partial x_{j}} \frac{\partial v_{1}}{\partial x_{i}} d x d t+ \\
+\int_{Q_{T}^{R_{0}, C}} \sum_{i=1}^{n} b_{i}(x, t) v_{1} \cdot \frac{\partial(v \varphi)}{\partial x_{i}} d x d t+\int_{Q_{T}^{R_{0}, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{1}}{\partial x_{i}} v \frac{\partial \varphi}{\partial x_{j}} d x d t- \\
-\int_{Q_{T}^{R_{0}, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v}{\partial x_{j}} v_{i} \frac{\partial \varphi}{\partial x_{i}} d x d t-\int_{Q_{T}^{R_{0}, C}} \sum_{i=1}^{n} b_{i}(x, t) v_{1} \cdot v \frac{\partial \varphi}{\partial x_{i}} d x d t+ \\
+\alpha_{1} \cdot \int_{Q_{T}^{R_{0}, C}} \frac{1}{|x|^{2}} v \cdot v_{1} \cdot \varphi d x d t=0 .
\end{gathered}
$$

Taking into account that $v_{1}(x, t)$ is the solution of equation (7), hence we get,

$$
\begin{aligned}
& \alpha_{1} \cdot \int_{Q_{T}^{R_{0}, C}} \frac{1}{|x|^{2}} v \cdot v_{1} \cdot \varphi d x d t=-\int_{Q_{T}^{R_{0}, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{1}}{\partial x_{i}} v \cdot \frac{\partial \varphi}{\partial x_{j}} d x d t+ \\
& +\int_{Q_{T}^{R_{0}, C}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v}{\partial x_{j}} v_{1} \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t+\int_{Q_{T}^{R_{0}, C}} \sum_{i=1}^{n} b_{i}(x, t) v_{1} \cdot v \frac{\partial \varphi}{\partial x_{i}} d x d t=
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{3 R}{2} \leqslant|x| \leqslant 2 R} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{1}}{\partial x_{j}} v \cdot \frac{\partial \varphi}{\partial x_{j}} d x d t+\int_{\frac{3 R}{2} \leqslant|x| \leqslant 2 R} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v}{\partial x_{j}} v_{1} \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t+ \\
& \quad+\int_{\frac{3 R}{2} \leqslant|x| \leqslant 2 R} \sum_{i=1}^{n} b_{i}(x, t) v_{1} v \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t+\int_{\rho \leqslant|x| \leqslant 2 \rho} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v_{1}}{\partial x_{i}} v \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t+ \\
& \quad+\int_{Q_{T}^{\rho, 2 \rho}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial v}{\partial x_{i}} v_{1} \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t+\int_{\rho \leqslant|x| \leqslant 2 \rho} \sum_{i=1}^{n} b_{i}(x, t) v_{1} \cdot v \cdot \frac{\partial \varphi}{\partial x_{i}} d x d t .
\end{aligned}
$$

Using condition III), the Cacciopoli and Harnack inequality, we get

$$
\begin{align*}
& \alpha_{1} \cdot \int_{Q_{T}^{R_{0}, C}}|x|^{-2} v \cdot v_{1} \cdot \varphi d x d t \leqslant C_{12}+C_{9} m_{\rho} \cdot \rho^{\frac{n}{2}-1}\left\|\psi \nabla v_{1}\right\|+ \\
& +C_{10} \rho^{\frac{n}{2}-1}\|\psi \nabla v\|+C_{13}\||B| \cdot \psi v\| \leqslant C_{12}+C_{14} m_{\rho} \cdot \rho^{n-2}, \tag{11}
\end{align*}
$$

where $\psi \in C_{0}^{1}\left(B_{\frac{3 \rho}{4}, \frac{2 \rho}{4}}\right), 0 \leqslant \psi \leqslant 1$ and $|\nabla \psi| \leqslant \frac{C}{\rho}$.
Estimating the left hand side of (11):

$$
\begin{gather*}
\alpha_{1} \cdot \int_{Q_{T}^{R_{0}, C}}|x|^{-2} v \cdot v_{1} \cdot \varphi d x d t \geqslant \alpha_{2} C_{3} \int_{Q_{T}^{R, C}}|x|^{-2} v d x d t \geqslant \\
\geqslant \alpha_{3} \cdot \int|x|^{-4} d x \geqslant \alpha_{4} \cdot \ln \rho . \tag{12}
\end{gather*}
$$

Combining (11) and (12), we arrive at the inequality $\alpha_{4} \cdot \ln \rho \leqslant C+C_{6} \cdot m_{\rho} \cdot \rho^{n-2}$. Hence, using the Harnack inequality, we get the proof of the lemma.

Theorem 1. Let the conditions I), II), III) be fulfilled, and $n \geqslant 3, p>1$, $\sigma>-2$. There exists $\varepsilon>0$, such that conditions II) imply that the equation (1) for $2+\sigma+(2-n)(p-1) \geqslant 0$ has no positive solutions in Q_{T}.

Proof.a) Let at first $2+\sigma+(2-n)(p-1)>0$. Denote $W(x, t)=a_{0}(x, t)|u|^{p-1}$. If $u(x, t)$ is a positive solution of equation (1), then $\left.u\right|_{|x|=R_{0}}>0$ and $L u-\frac{\partial u}{\partial t} \leqslant 0$, where R_{0} is such that $B_{R_{0}}^{C} \subset \Omega$. By lemma 1, $|x|^{2} W(x, t) \geqslant C_{15}|x|^{\sigma}|x|^{(2-n)(p-1)}=C_{15}|x|^{2+\sigma+(2-n)(p-1)}$. Then $|x|^{2} W(x, t) \rightarrow \infty$ as $|x| \rightarrow \infty$. So, by lemma 2 a positive solution does not exist.
b) Let now $2+\sigma+(2-n)(p-1)=0$. If there exists a positive solution of equation (1), then by lemma 1

$$
-\frac{\partial u}{\partial t}+L u+\alpha_{2} \cdot|x|^{-2} u \leqslant 0 .
$$

In $Q_{T}^{R_{0}, \infty}$ consider the equation

$$
\begin{equation*}
-\frac{\partial v}{\partial t}+L v+\alpha_{2} \cdot|x|^{-2} v=0 \tag{13}
\end{equation*}
$$

If $v(x, t)$ is a positive solution of equation (13), then by lemma 4

$$
v(x, t) \geqslant C_{11}|x|^{2-n} \cdot \lg |x| .
$$

Now we show that indeed the equation (13) has a positive solution in $Q_{T}^{R_{0}, \infty}$. For simplicity of notation, we take $R_{0}=1$. Consider the following problem:

$$
\begin{gather*}
-\frac{\partial v_{R}}{\partial t}+L v_{R}+\alpha_{2}|x|^{-2} v_{R}=0 \tag{14}\\
\left.v_{R}\right|_{|x|=1}=1,\left.\quad v\right|_{|x|=R}=0, \quad v_{R}(x, t+\tau)=v_{R}(x, t) \tag{15}
\end{gather*}
$$

It is known that problem (14), (15) has the solution $v_{R}(x, t)$ (see [9]). Prove that $0 \leqslant v_{R} \leqslant 1$ in $Q_{T}^{1, R}$. At first show that $v_{R} \leqslant 1$. Let it be not so. Denote $\varphi(x, t)=\left(v_{R}-1\right)^{+}$ and in the definition of the solution we take the test function $\varphi(x, t)$. Then we get:

$$
\begin{gathered}
2 \pi \sum_{i=-\infty}^{+\infty}(i k) \int_{1<|x|<R} v_{R_{k}}(x) \varphi_{-k}(x) d x+\int_{Q^{\prime}} \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial \varphi}{\partial x_{j}} \frac{\partial \varphi}{\partial x_{i}} d x d t- \\
\quad-\int_{Q^{\prime}} \sum_{i=1}^{n} b_{i}(x, t) \frac{\partial \varphi}{\partial x_{i}} \varphi d x d t-\alpha_{2} \cdot \int_{Q^{\prime}} \frac{1}{|x|^{2}} v_{R}\left(v_{R}-1\right) d x d t=0,
\end{gathered}
$$

where $Q^{\prime}=\operatorname{supp} \varphi \subset Q_{T}^{1, R}$.
Taking the test function in the form

$$
\varphi_{h}(x, t)=h^{-1} \int_{t}^{t+h} \psi(x, \tau) d \tau
$$

is easy to show that the first addend equals zero. Using condition II) and the Hardy inequality, we get

$$
\begin{aligned}
& \alpha \lambda^{-1} \int_{Q^{\prime}}\left|\nabla v_{R}\right|^{2} d x d t+\alpha_{2} \int_{Q^{\prime}} \frac{1}{|x|^{2}} v_{R} d x d t= \\
& =\alpha_{2} \int_{Q^{\prime}} \frac{1}{|x|^{2}} v_{R}^{2} d x d t \leqslant \alpha_{2} C_{16} \int_{Q^{\prime}}\left|\nabla v_{R}\right|^{2} d x d t .
\end{aligned}
$$

Then

$$
\left(\alpha \lambda^{-1}-\alpha_{2} C_{16}\right) \cdot \int_{Q^{\prime}}\left|\nabla v_{R}\right|^{2} d x d t+\alpha_{2} \int_{Q^{\prime}} \frac{1}{|x|^{2}} v_{R} d x d t \leqslant 0 .
$$

Since α_{2} is rather small, then $\alpha \cdot \lambda^{-1}-\alpha_{2} C_{16}>0$.
Hence $v_{R} \equiv 0 \quad Q^{\prime}$. So $v_{R} \leqslant 1$.
Similarly we can show that $v_{R} \geqslant 0$. For any R, the functions $v_{R}(x, t)$ are uniformly bounded. Then by the compactness theorem, as $R \rightarrow \infty$ the functions $v_{R}(x, t)$ converge to some function $v(x, t)$, that will be a sought - for solution of equation (13). Assume

$$
H_{R}(x, t)=u(x, t)-C_{17} v_{R}(x, t),
$$

where $C_{17}=\frac{1}{2} \min _{|x|=1} u(x, t)$.
Then

$$
\begin{gathered}
-\frac{\partial H_{R}}{\partial t}+L H_{R}+\alpha_{2} \cdot|x|^{-2} H_{R} \leqslant 0 \\
\left.H_{R}\right|_{|x|=1}>0,\left.\quad H_{R}\right|_{|x|=R}>0, \quad H_{R}(x, t+T)=H_{R}(x, t) .
\end{gathered}
$$

As above we can show that $H_{R} \geqslant 0$ in $Q_{T}^{1, R}$ for any R. Passing to limit as $R \rightarrow+\infty$, we get $u(x, t) \geqslant v(x, t)$ in $Q_{T}^{R, C}$. Hence

$$
u(x, t) \geqslant C_{11}|x|^{2-n} \lg |x| .
$$

Then as in a), by lemma 2 we get that there is no positive solution in $Q_{T}^{1, C}$. This proves the theorem.

References

[1] Sh.G. Bagyrov, On the existence of positive solution of a second order linear parabolic equation with periodic time coefficients, Diff. Uravn., 43(4), 2007, 562-565. (in Russian)
[2] V. Kondratiev, V. Liskevich, Z. Sobol, O. Us, Heat kernel estimates with applications to an exterior problem for a class of semi-linear equation, J. London Math. Soc., 2(69), 2004, 107-127.
[3] E. Mitidieri, S.Z. Pohozhayev, A priori estimations and no solutions of nonlinear partial equations and inequalities, Proc. of V.A. Steklov Mathematics Institute of NAS, 234, 2001, 9-234.
[4] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure. Appl. Math., 34(4), 1981, 525-598.
[5] V. Kondratiev, V. Liskevich, Z. Sobol, Second-order semilinear elliptic inequalities in exterior domains, J. Diff. Eq., 187, 2003, 429-455.
[6] W.M. Ni, On the elliptic equation, its generalizations, and applications, Indiana Univ. Math. J., 31(4), 1982, 493-529.
[7] Zhang, S. Qi, A Harnack inequality for the equation $\nabla(a \nabla u)+b \nabla u=0$, when $|b| \in$ $K n+1$, Manuscript Math., 89, 1996, 61-77.
[8] Zhang, S. Qi, Gaussian bounds for the fundamental solutions of $\nabla(A \nabla u)+B \nabla u-$ $u t=0$, Manuscript Math., 93, 1997, 381-390.
[9] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Providence, AMS, 1968.

Shirmayil H. Bagirov
Baku State University
23, Z. Khalilov Str., AZ1148, Baku, Azerbaijan
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
9, B. Vahabzadeh Str., AZ1141, Baku, Azerbaijan
E-mail: sh_bagirov@yahoo.com
Tarlan Z. Garayev
Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
9, B.Vahabzadeh Str., AZ1141, Baku, Azerbaijan
E-mail: qarayevtarlan@gmail.com

Received 18 November 2015
Accepted 01 December 2015

[^0]: * Corresponding author.

