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Global Bifurcation From Infinity in Nonlinear Elliptic
Problems with Indefinite Weight

Sh.M. Hasanova

Abstract. In this paper we consider global bifurcation of solutions in nonlinear eigenvalue prob-
lems for semi-linear elliptic partial differential equations with indefinite weight function. We prove
the existence of two pairs of unbounded continua of solutions bifurcating from the points in R×{∞}
corresponding to the positive and negative principal eigenvalues of the linear problem and such
that the continua of each pair consists of positive and negative functions, respectively, in the
neighborhood of these points.
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1. Introduction

In this paper, we consider the following nonlinear eigenvalue problem

Lu ≡ −
n∑

i,j=1

∂
∂xi

(
aij(x) ∂u∂xi

)
+ c(x)u = λa(x)u+ g(x, u,∇u, λ) in Ω,

u = 0 on ∂Ω,

(1)

where Ω be a bounded domain in Rn with a smooth boundary ∂Ω, ∇u = ( ∂u∂x1 ,
∂u
∂x2

, ... , ∂u∂xn )

and λ is a real parameter. We assume that L is uniformly elliptic in Ω and that the
aij(x) ∈ C1(Ω̄), aij(x) = aji(x) for x ∈ Ω, c(x) ∈ C(Ω̄), c(x) ≥ 0 for x ∈ Ω. Let
a(x) ∈ C(Ω) such that |Ωσ

a | > 0 for σ ∈ {+ , −}, where Ωσ
a = {x ∈ Ω : σa(x) > 0} and

|Ωσ
a | = meas{Ωσ

a}. Moreover, the nonlinear term g ∈ C(Ω×R×Rn ×R) and satisfies the
following condition:

g(x, u, v, λ) = o(|u|+ |s|) as |u|+ |v| → ∞, (2)

uniformly in x ∈ Ω and λ ∈ Λ, for every bounded interval Λ ⊂ R.
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Problem (1) with a(x) > 0, x ∈ Ω, and all the coefficients and the nonlinear terms
are smooth was considered by Rabinowitz [9] in a more general case, where, in particu-
lar, it was shown that there exist two unbounded continua of solutions emanating from
asymptotically bifurcation point corresponding to the first eigenvalue of the linear problem
obtained from (1) by setting g ≡ 0 and contained in the classes of positive and negative
functions in near of this point. In the future, Przybycin [8] and Rynne [10] extended the
results of Rabinowitz [9] to the class of nonlinearizable eigenvalue problems for elliptic
partial differential equations with a definite weight.

In the papers [3, 4], problem (1) was studied in the case when the nonlinear term g
satisfies a o(|u| + |∇u|) condition at u = 0. For such a problem, the authors show the
existence of two pairs of unbounded continua of solutions bifurcating from points of the
line of trivial solutions corresponding to the positive and negative principal eigenvalues
of linear problem, and such that the continua of each pair are contained in the classes of
positive and negative functions, respectively.

The purpose of the present paper is extend the result of Rabinowitz concerning the
existence of branches of positive and negative solutions, [9], to the nonlinear problem (1)
with indefinite weight function a(x).

2. The classes P µ
σ and principal eigenvalues of the corresponding linear

problem

For k ∈ N, and α ∈ (0, 1) let Ck, α(Ω) denote the Banach space of the functions in
Ck((Ω) having all their derivatives of order k Hölder continuous with exponent α. We let
| · |k and | · |k, α denote the standard sup-norms on spaces Ck((Ω) and Ck, α(Ω), respectively.
For p > 1, let W k,p(Ω) denote the standard Sobolev space of functions whose distributional
derivatives, up to order k, belong to Lp(Ω). We let || · ||p and || · ||k,p denote the norm on
Lp(Ω) and W k,p(Ω), respectively.

It is known (see [1]) that, if p > N , then there exists a constant γ such that

||u||C1,1−n/p ≤ γ ||u||W 2, p for all u ∈W 2, p(Ω).

Now let α ∈ (0, 1) be the given number and p be a real number such that p > n and
α < 1− n/p. Then W 2, p(Ω) is compactly embedded in C1, α(Ω).

Let E = {u ∈ C1, α
(
Ω
)

: u = 0 on ∂Ω} be the Banach space with the norm || · ||C1, α .
A pair (λ, u) is said to be a solution of problem (1) if u ∈W 2, p(Ω) and (λ, u) satisfies (1).
By virtue of compactly embedding W 2, p(Ω) in C1, α(Ω) we conclude that every solution
of the nonlinear problem (1) belongs to R × E. Thus we may consider the structure of
the set of solutions of problem (1) in R × E. Let P+

σ = {u ∈ E : u > 0 in Ω and ∂u
∂n <

0 on ∂Ω, σ
∫
Ω

au2dx > 0}, where ∂u
∂n is the outward normal derivative of u on ∂Ω.

Remark 1. It follows from the definition that for each σ ∈ {+ , −} the sets P+
σ , P

−
σ =

−P+
σ and Pσ = P+

σ ∪ P−σ are open subsets of E; for each σ ∈ {+ , −} the sets P+
σ and
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P−σ , and for each ν ∈ {+ , −} the sets P ν+ and P ν− are disjoint. Moreover, if u ∈ ∂P νσ , σ ∈
{+ , −}, ν ∈ {+ , −}, then the function u has either an interior zero in Ω or ∂u

∂n = 0 at
some point on ∂Ω or

∫
Ω

au2dx = 0 [4].

Now we consider the linear eigenvalue problem obtained from (1) by setting h ≡ 0, i.e.
the following spectral problem

Lu = λ a(x)u in Ω,
u = 0 on ∂Ω.

(3)

It should be noted that if the weight function a(x) does not change sign in Ω, then (3)
admits one principal eigenvalue [7], and if a(x) changes sign in Ω, then problem (3) admits
two principal eigenvalues; one positive and the other negative [3].

In [3] the authors obtained the following properties of the eigenfunctions corresponding
to the principal eigenvalues of problem (3).

Theorem 1. (see [3, Lemmas 2.1-2.4, Theorems 2.1, 2.2 and Remark 2.1]) The linear
eigenvalue problem (3) have positive and negative principal eigenvalues λ+

1 and λ−1 , re-
spectively, which are simple and given by the relations

λσ1 = inf {R(u) : u ∈ H1
0 (Ω), σ

∫
Ω

au2dx > 0} for σ ∈ {+ , −},

where H1
0 (Ω) = {u ∈W 1, 2(Ω) : u = 0 on ∂Ω} and R(u) is the Rayleigh quotient [2] defined

as follows:

R(u) =

∫
Ω

aij
∂u
∂xi

∂u
∂xj

dx+
∫
Ω

cu2dx∫
Ω

au2dx
.

Moreover, the corresponding eigenfunction uσ1 (x), x ∈ Ω, σ ∈ {+ , −}, can be chosen so

that uσ1 (x) > 0 for all x ∈ Ω and
∂uσ1 (x)
∂n < 0 for all x ∈ ∂Ω.

Remark 2. It follows from Theorem 1 that uσ1 ∈ P+
σ for each σ ∈ {+ , −}. It should be

noted that uσ1 is made unique by taking ||uσ1 ||C1, α = 1.

3. Global bifurcation of solutions of problem (1) from infinity

The closure of the set of nontrivial solutions of (1) will be denoted by L. We say
(λ,∞) ∈ R×{∞} is a bifurcation point for problem (1) if any neighborhood of this point
contains solutions of problem (1), i.e. there exists a sequence {(λn, un)}∞n=1 ⊂ L such that
λn → λ and |un|1, α →∞ as n→∞ [6].

The main result of this paper is the following theorem.
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Theorem 2. For each σ ∈ {+ , −} and each ν ∈ {+ , −} there exists a component Cν1,σ
of L which contains (λσ1 ,∞) and satisfies the conclusions of Theorem 1.6 and Corollary
1.8 from [9]. Moreover, the neighborhood Q of [9, Corollary 1.8] can be chosen such that

(Cν1,σ ∩Q) ⊂ (R× P νσ ) ∪ {(λσ1 ,∞)}.

Proof. Step 1. We assume that aij ∈ C2(Ω), c, a ∈ C1(Ω) and h ∈ C1(Ω×R×Rn×R).

It follows from the Lp theory for uniformly elliptic partial differential equations [2]
that there exists a unique v = G(λ, u) satisfying

Lv = λa(x)u+ g(x, u,∇u, λ)) in Ω,
v = 0 on ∂Ω.

Since E is compactly embedding in W 2,p
0 (Ω) = W 2,p(Ω) ∩ {u : u = 0 on ∂Ω} the Arzela-

Ascoli Theorem imply that G is compact on R× E.

Denote by w = Lu ∈W 2,p
0 (Ω) the solution of the following problem

Lw = a(x)u in Ω,
w = 0 on ∂Ω.

Then from the above reasoning imply that L is a compact linear map on E. By the
Theorem 1 it follows that λ+

1 and λ−1 are simple principal characteristic values of operator
L.

Suppose that G(λ, u) = G(λ, u)−λLu. From the our above remarks it follows that (1)
is equivalent to the following nonlinear eigenvalue problem

u = λLu+ G(λ, u). (4)

Following the corresponding reasoning carried out in the proof of Theorem 2.28 from [9],
we see that G(λ, u) = o(|u|1, α) as |u|1, α → ∞, uniformly on bounded λ intervals and

|u|21, αG
(
λ, u
|u|21, α

)
is compact. Thus [9, Theorem 1.6 and Corollary 1.8] are applicable

here. The verification of the last statement of this theorem follows as in [9, Theorem 2.4].

Step 2. To complete the proof of this theorem, we approximate equation (1) by
”smoothed equations”, as in [5, Section 4], and apply standard elliptic regularity results
for elliptic operators [2].
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