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Controlled K-frames and Their Invariance under Com-
pact Perturbation

A. Rahimi∗, Sh. Najafzadeh, M. Nouri

Abstract. K-frames were recently introduced by L. Gǎvruta in Hilbert spaces to study atomic
systems with respect to bounded linear operator. Also controlled frames have been recently intro-
duced by Balazs, Antoine and Grybos in Hilbert spaces to improve the numerical efficiency of in-
teractive algorithms for inverting the frame operator. In this manuscript, the concept of controlled
K-frames will be studied and the stability of Controlled K-frames under compact perturbation
will be discussed.
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1. Introduction

Frames in Hilbert spaces were first proposed by Duffin and Schaeffer to deal with
nonharmonic Fourier series in 1952 [10] and widely studied from 1986 since the great work
by Daubechies et al.[11]. Now frames play an important role not only in the theoretics but
also in many kinds of applications and have been widely applied in signal processing [14],
sampling [12, 13], coding and communications [18], filter bank theory [3], system modeling
[9] and so on. For special applications many other types of frames were proposed, such as
the fusion frames [5, 6] to deal with hierarchical data processing, g-frames [19] by Sun to
deal with all existing frames as united object, oblique dual frames [12] by Elder to deal
with sampling reconstructions, and etc.

The notion of K-frames were recently introduced by L. Gǎvruta to study the atomic
systems with respect to a bounded linear operator K in Hilbert spaces. K-frames are
more general than ordinary frames in sense that the lower frame bound only holds for
the elements in the range of the K, where K is a bounded linear operator in a separable
Hilbert Space H.

One of the newest generalization of frames is controlled frames. Controlled frames have
been introduced recently to improve the numerical efficiency of interactive algorithms for
inverting the frame operator on abstract Hilbert spaces [1], however they have been used
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earlier in [2] for spherical wavelets. This concept generalized for fusion frames in [16] and
for g-frames in [17].

In this paper, the concept of controlled K-frame will be defined and it will be shown
that any controlled K-frame is equivalent to a K-frame, finally we will discuss the stability
of compact perturbation for controlled K-frames.

Throughout this paper H is a separable Hilbert space, B(H) is the family of all linear
operators onH, GL(H) denotes the set of all bounded linear operators which have bounded
inverses and K ∈ B(H).

It is easy to see that if S, T ∈ GL(H), then T ∗, T−1 and ST are also in GL(H). Let
GL+(H) be the set of all positive operators in GL(H).

A bounded operator T ∈ B(H) is called positive (respectively, non-negative), if 〈Tf, f〉 >
0 for all f 6= 0 (respectively, 〈Tf, f〉 ≥ 0 for all f). Every non-negative operator is clearly
self-adjoint. If A ∈ B(H) is non-negative, then there exists a unique non-negative operator
B such that B2 = A. Furthermore B commutes with every operator that commutes with
A. This will be denoted by B = A

1
2 . Let B+(H) be the set of positive operators on H.

For self-adjoint operators T1 and T2, the notation T1 ≤ T2 or T2 − T1 ≥ 0 means

〈T1f, f〉 ≤ 〈T2f, f〉 ,∀f ∈ H.

The following result is needed in the sequel, but straightforward to prove:

Proposition 1.1. [8] Let T : H → H be a linear operator. Then the following condition
are equivalent:

1. There exist m > 0 and M <∞, such that mI ≤ T ≤MI;

2. T is positive and there exist m > 0 and M < ∞, such that m‖f‖2 ≤ ‖T
1
2 f‖2 ≤

M‖f‖2 for all f ∈ H;

3. T is positive and T
1
2 ∈ GL(H);

4. There exists a self-adjoint operator A ∈ GL(H), such that

A2 = T ;

5. T ∈ GL+(H);

6. There exist constants m > 0 and M <∞ and operator
C ∈ GL+(H), such that m′C ≤ T ≤M ′C;

7. For every C ∈ GL+(H), there exist constants m > 0 and
M <∞, such that m′C ≤ T ≤M ′C.

It is well-known that not all bounded operators U on a Hilbert space H are invertible:
an operator U needs to be injective and surjective in order to be invertible. For doing
this, one can use right-inverse operator. The following lemma shows that if an operator
U has closed range, there exists a right-inverse operator U † in the following sense:
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Lemma 1.2. [8] Let H1 and H2 be Hilbert spaces and suppose that U : H2 → H1 is a
bounded operator with closed range RU . Then there exists a bounded operator U † : H1 →
H2 for which

UU †x = x , ∀x ∈ RU .

The operator U † in the Lemma 1.2 is called the pseudo-inverse of U . In the literature,
one will often see the pseudo-inverse of an operator U with closed range defined as the
unique operator U † satisfying that

NU† = R⊥U , RU† = N⊥U , UU †x = x , ∀x ∈ RU .

A sequence {fi}i∈I in H is called a frame for H, if there exist constants 0 < A ≤ B <∞
such that

A‖f‖2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B‖f‖2 , ∀f ∈ H.

If A = B, then {fi}i∈I is called a tight frame and if A = B = 1, then it is called a Parseval
frame. A Bessel sequence {fi}i∈I is only required to fulfill the upper frame bound estimate
but not necessarily the lower estimate.

The frame operator Sf =
∑

i∈I〈f, fi〉fi associated with a frame {fi}i∈I is a bounded,
invertible and positive operator on H. This provides the reconstruction formulas

f = S−1Sf =
∑
i∈I
〈f, fi〉S−1fi =

∑
i∈I
〈f, S−1fi〉fi,∀f ∈ H.

Furthermore, AI ≤ S ≤ BI and B−1I ≤ S−1 ≤ A−1I.

Definition 1.3. Let C ∈ GL(H). A frame controlled by the operator C or C-controlled
frame is a family of vectors {fi}i∈I in H, such that there exist constants 0 < mC ≤MC <
∞, verifying

mC‖f‖2 ≤
∑
i∈I
〈f, fi〉〈Cfi, f〉 ≤MC‖f‖2 , ∀f ∈ H.

The controlled frame operator S is defined by

Sf =
∑
i∈I
〈f, fi〉Cfi,∀f ∈ H.

Because of the higher generality of K-frames, some properties of ordinary frames can not
hold for K-frames, such as the frame operator of a K-frame is not an isomorphism. For
more differences between K-frames and ordinary frames, we refer to [20].

Definition 1.4. Let K ∈ B(H). A sequence {fn}∞n=1 ⊂ H is called a K-frame for H, if
there exist constants A,B > 0 such that

A‖K∗f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2, ∀f ∈ H. (1.1)

we call A and B lower and upper frame bound for K-frame {fn}∞n=1 ⊂ H, respectively if
only the right inequality of the above inequality holds, {fn}∞n=1 ⊂ H is called a K-Bessel
sequence.
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Remark 1.5. If K = I, then K-frame are just the ordinary frame.

Remark 1.6. In the following, we will assume that R(K) is closed, since this can assure
that the pseudo-inverse K† of K exists.

Definition 1.7. [15] Let K ∈ B(H). A sequence {fn}∞n=1 ⊂ H is called an atomic system
for K, if the following conditions are satisfied:

1. {fn}∞n=1 is a Bessel sequence.

2. For any x ∈ H, there exists ax = {an} ∈ l2 such that

Kx =

∞∑
n=1

anfn

where ‖ax‖l2 ≤ C‖x‖, C is positive constant.

Suppose that {fn}∞n=1 is a K-frame for H. Obviously it is a Bessel sequence, so we
can define the following operator

T : l2 → H, Ta =

∞∑
n=1

anfn, a = {an} ∈ l2,

it follows that
T ∗ : H → l2

T ∗f = {〈f, fn〉}∞n=1,∀f ∈ H.
Let S = TT ∗, we obtain

Sf =
∞∑
n=1

〈f, fn〉fn , ∀f ∈ H.

we call T, T ∗ and S the synthesis operator, analysis operator and frame operator for
K-frame {fn}∞n=1, respectively.

Theorem 1.8. Let {fn}∞n=1 be a Bessel sequence in H. Then {fn}∞n=1 is a K-frame for
H, if and only if there exists A > 0 such that

S ≥ AKK∗,

where S is the frame operator for {fn}∞n=1.

Proof. The sequence {fn}∞n=1 is a K-frame for H with frame bounds A,B and frame
operator S if and only if

A‖K∗f‖2 ≤
∞∑
K=1

|〈f, fn〉|2 = 〈Sf, f〉 ≤ B‖f‖2 , ∀f ∈ H, (1.2)

that is
〈AKK∗f, f〉 ≤ 〈Sf, f〉 ≤ 〈Bf, f〉 , ∀f ∈ H.

so the conclusion holds.
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Remark 1.9. Frame operator of a K-frames is not invertible on H in general, but we can
show that it is invertible on the subspace R(K) ⊂ H. In fact, since R(K) is closed, there
exists a pseudo-inverse K† of K, such that KK†f = f , ∀f ∈ R(K) , namely KK†|R(K) =

IR(K), so we have I∗R(K) = (K†|R(K))
∗K∗. Hence for any f ∈ R(K), we obtain

‖f‖ = ‖(K†|R(K))
∗K∗f‖ ≤ ‖K†‖.‖K∗f‖,

that is, ‖K∗f‖2 ≥ ‖K†‖−2‖f‖2. Combined with (1.2) we have

〈Sf, f〉 ≥ A‖K∗f‖2 ≥ A‖K†‖−2‖f‖2 , ∀f ∈ R(K). (1.3)

So, from the definition of K-frame we have

A‖K†‖−2‖f‖ ≤ ‖Sf‖ ≤ B‖f‖ , ∀f ∈ R(K), (1.4)

which implies that S : R(K)→ S(R(K)) is a homeomorphism, furthermore, we have

B−1‖f‖ ≤ ‖S−1f‖ ≤ A−1‖K†‖2‖f‖ , ∀f ∈ S(R(K)).

2. Controlled K-frames

Controlled frames for spherical wavelets were introduced in [2] to get a numerically
more efficient approximation algorithm and the related theory. For general frames, it was
developed in [1]. For getting a numerical solution of a linear system of equations Ax = b,
one can solve the system of equations PAx = Pb, where P is a suitable preconditioning
matrix. It was the main motivation for introducing controlled frames in [2]. Controlled
frames extended to g-frames in [17] and for fusion frames in [16]. In this section, the
concept of controlled frames and controlled Bessel sequences will be extended to K-frames
and it will be shown that controlled K-frames are equivalent K-frames.

Definition 2.1. Let C ∈ GL+(H) (C > 0) and let CK = KC. The family {fn}∞n=1

is called C-controlled K-frame for H, if {fn}∞n=1 is a K-Bessel sequence and there exist
constants A > 0 and B <∞ such that

A‖C
1
2K∗f‖2 ≤

∞∑
n=1

〈f, fn〉〈f, Cfn〉 ≤ B‖f‖2 , ∀f ∈ H.

The constants A and B are called C-controlledK-frame bounds. If C = I, the C-controlled
K-frame {fn}∞n=1 is a K-frame for H with bounds A and B.

If the second part of the above inequality holds, it called C-controlled K-Bessel se-
quence with bound B.

The proof of the following lemmas is straightforward.
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Lemma 2.2. Let C > 0 and C ∈ GL+(H). The K-Bessel sequence {fn}∞n=1 is C-
controlled K-Bessel sequence if and only if there exists constant B <∞ such that

∞∑
n=1

〈f, fn〉〈f, Cfn〉 ≤ B‖f‖2 , ∀f ∈ H.

Lemma 2.3. Let C ∈ GL+(H). A sequence {fn}∞n=1 ∈ H is a C-controlled Bessel
sequence for H if and only if the operator

LC : H → H , LCf =
∞∑
n=1

〈f, fn〉Cfn, ∀f ∈ H.

is well defined and there exists constant B <∞ such that

∞∑
n=1

〈f, fn〉〈f, Cfn〉 ≤ B‖f‖2 , ∀f ∈ H.

Remark 2.4. The operator LC : H → H , LCf =
∑∞

n=1〈f, fn〉Cfn, f ∈ H is called the
C-controlled Bessel sequence operator, also LCf = CSf .

The following lemma characterizes C-controlled K-frames in term of their operators.

Lemma 2.5. Let {fn}∞n=1 be a C-controlled K-frame in H, for C ∈ GL+(H). Then

AI‖C
1
2K†‖2 ≤ LC ≤ BI.

Proof. Suppose that {fn}∞n=1 is a C-controlled K-frame with bounds A and B. Then

A‖C
1
2K∗f‖2 ≤

∞∑
n=1

〈f, fn〉〈f, Cfn〉 ≤ B‖f‖2 , ∀f ∈ H.

For f ∈ H
A‖C

1
2K∗f‖2 ≤ 〈f, LCf〉 ≤ B‖f‖2

i.e.

A‖C
1
2K∗‖2I ≤ LC ≤ BI.

The following proposition shows that for evaluation a family {fn}∞n=1 ⊂ H to be a
controlled K-frame it is suffices to check just a simple operator inequality.

Proposition 2.6. Let {fn}∞n=1 be a Bessel sequence in H and C ∈ GL+(H). Then
{fn}∞n=1 is a C-controlled K-frame for H if and only if there exists A > 0 such that
CS ≥ CAKK∗.
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Proof. The sequence {fn}∞n=1 is a controlled K-frame for H with frame bounds A,B
and frame operator S, if and only if

A‖C
1
2K∗f‖2 ≤

∞∑
n=1

〈f, fn〉〈f, Cfn〉 ≤ B‖f‖2 , ∀f ∈ H.

That is,
〈CAKK∗f, f〉 ≤ 〈CSf, f〉 ≤ 〈Bf, f〉, ∀f ∈ H.

Proposition 2.7. Let {fn}∞n=1 be a C-controlled K-frame and C ∈ GL+(H). Then
{fn}∞n=1 is a K-frame for H.

Proof. Suppose that {fn}∞n=1 is a controlled K-frame with bounds A and B. Then for
any f ∈ H

A‖K∗f‖2 = A‖C−
1
2C

1
2K∗f‖2

≤ A‖C
1
2 ‖2‖C−

1
2K∗f‖2

≤ ‖C
1
2 ‖2

∞∑
n=1

〈f, fn〉〈f, C0fn〉

= ‖C
1
2 ‖2

∞∑
n=1

|〈f, fn〉|2.

Hence for f ∈ H,

A‖C
1
2 ‖−2‖K∗f‖2 ≤

∞∑
n=1

|〈f, fn〉|2

On the other hand for every f ∈ H,

∞∑
n=1

|〈f, fn〉|2 = 〈f, Sf〉

= 〈f, C−1CSf〉
= 〈(C−1CS)

1
2 f, (C−1CS)

1
2 f〉

= ‖(C−1CS)
1
2 f‖2

≤ ‖C−
1
2 ‖2‖(CS)

1
2 f‖2

= ‖C−
1
2 ‖2〈f, CSf〉

≤ ‖C−
1
2 ‖2B‖f‖2.

These inequalities yields that {fn}∞n=1 is aK-frame with boundsA‖C
1
2 ‖−2 andB‖C−

1
2 ‖2.

Proposition 2.8. Let C ∈ GL+(H) be a self adjoint and KC = CK, if {fn}∞n=1 is
K-frame for H, then {fn}∞n=1 is a C-controlled K-frame for H.
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Proof. Suppose that {fn}∞n=1 be a K-frame with bounds A′ and B′. Then for all f ∈ H

A′‖K∗f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B′‖f‖2.

A′‖C
1
2K∗f‖2 = A′‖K∗C

1
2 f‖2 ≤

∞∑
n=1

〈C
1
2 f, fn〉〈C

1
2 f, fn〉

= 〈C
1
2 f,

∞∑
n=1

〈fn, C
1
2 f〉fn〉

= 〈C
1
2 f, C

1
2Sf〉 = 〈f, CSf〉.

Hence A′‖C
1
2K∗f‖2 ≤ 〈f, CSf〉 for every f ∈ H. On the other hand for every f ∈ H,

|〈f, CSf〉|2 = |〈C∗f, Sf〉|2 = |〈Cf, Sf〉|2 ≤ ‖Cf‖2‖Sf‖2 ≤ ‖C‖2‖f‖2B‖f‖2.

Hence
A′‖C

1
2K∗f‖2 ≤ 〈f, CSf〉 ≤ B′‖C‖‖f‖2.

Therefore {fn}∞n=1 is a C-controlled K-frame with bounds A′ and B′‖C‖.

3. Compact Perturbation for Controlled K-frames

One of the most important problems in the studying of frames and its applications
specially on wavelet and Gabor systems is the invariance of these systems under pertur-
bation. At the first, the problem of perturbation studied by Paley and Wiener for bases
and then extended to frames.There are many versions of perturbation of frames in Hilbert
spaces, Banach space, Hilbert C∗-modules and etc. In the last decade, several authors
have generalized the Paley-Wiener perturbation theorem to the perturbation of frames in
Hilbert spaces. The most general result of these was the following obtained by Casazza
and Christensen [4].

Theorem 3.1. [4] Let {xj}j∈J be a frame for a Hilbert space H with frame bounds C and
D. Assume that {yj}j∈J is a sequence of H and that there exist λ1, λ2, µ > 0 such that
max{λ1 + µ√

C
, λ2} < 1. Suppose one of the following conditions holds for any finite scalar

sequence {cj} and every x ∈ H. Then {yj}j∈J is also a frame for H.

1. (
∑

j∈J |〈x, xj − yj〉|2)
1
2 ≤ λ1(

∑
j∈J |〈x, xj〉|2)

1
2 + λ2(

∑
j∈J |〈x, yj〉|2)

1
2 + µ‖x‖

2. ‖
∑n

i=1 cj(xj − yj)‖ ≤ λ1‖
∑n

i=1 cjxj‖+ λ2‖
∑n

i=1 cjyj‖+ µ(
∑n

i=1 |cj |2)
1
2

Moreover, if {xj}j∈J is a Riesz basis for H and {yj}j∈J satisfies (2), then {yj}j∈J is
also a Riesz basis for H.
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Another type of the perturbation of frames is compact perturbation that appeared in
the paper [7] by Christensen and Heil:

Theorem 3.2. [7] Let {xj}j∈J be a frame for a Hilbert space H and {yj}j∈J be a sequence
in H. If the operator

K : `2 → H,K{cj} =
∑

cj(xj − yj)

is well-defined compact operator, then {yj}j∈J is a frame sequence.

The perturbation theorem investigated by X. Xiao, Y. Zhu, L. Gǎvruta to K-frames
[20].

Theorem 3.3. [20] Suppose that {fn}∞n=1 is a K-frame for H, and α, β ∈ [0,∞], such
that max{α+ γ

√
A−1‖K+‖, β} < 1.

If {gn}∞n=1 ⊂ H and satisfy

‖
n∑
k=1

ck(fk − gk)‖ ≤ α‖
n∑
k=1

ckfk‖+ β‖
n∑
k=1

ckgk‖+ γ(

n∑
k=1

|ck|2)
1
2 ,

for any ci, i ∈ N, then {gn}∞n=1 is a PQ(R(K))K-frame for H, with frame bounds

[
√
A‖K+‖−1(1− α)− γ]2

(1 + β)2‖K‖2
,
[
√
B(1 + α) + γ]2

(1− β)2
,

where PQ(R(K)) is a orthogonal projection operator for H to Q(R(K)), Q = UT ∗, T,U
are synthesis operator for {fn}∞n=1 and {gn}∞n=1 respectively.

Motivating the above theorems, we prove compact perturbation for controlled K-
frames.

Theorem 3.4. Let F = {fk}k∈I be a controlled K-frame for H, with operator S and
frame bounds AF , BF . If G = {gk}k∈I is a sequence in H and E = TF − TG be a compact
operator, where TG{ck}k∈I =

∑
k∈I ckgk for {ck}k∈I ∈ `2, then G = {gk}k∈I is a controlled

K-frame for H.

Proof. Let {fk}k∈I be a controlled K-frame with bounds AF , BF , then ‖TF ‖2 ≤ BF .
Let V = TF −E be an operator from l2(I) into H. Because TF and E are bounded, then
operator V is bounded. Therefore ‖V ‖ = ‖V ∗‖. For any f ∈ H,

V ∗f = T ∗f − E∗f = {〈f, fk〉}k∈I − {〈f, fk − gk〉}k∈I

= {〈f, fk〉}k∈I − {〈f, fk〉 − 〈f, gk〉}k∈I = {〈f, gk〉}k∈I .

Therefore
V ({ck}k∈I) =

∑
k∈I

ckgk , SG = V V ∗.

〈f, CSGf〉 = 〈f, CV V ∗f〉 = 〈C
1
2V f,C

1
2V f〉
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= ‖C
1
2V f‖2 = ‖C

1
2 ‖2‖V f‖2 = ‖C

1
2 ‖2‖(TF − E)f‖2

Therefore,

〈f, CSGf〉 ≤ ‖TF − E‖2‖f‖2‖C
1
2 ‖2

≤ (‖TF ‖2 + 2‖TF ‖‖E‖+ ‖E‖2)‖f‖2‖C
1
2 ‖2

≤ (BF + 2
√
BF ‖E‖+ ‖E‖2)‖f‖2‖C

1
2 ‖2

= BF (1 +
‖E‖√
BF

)2‖f‖2‖C
1
2 ‖2.

This inequality shows that {gk}k∈I is aK-Bessel sequence with boundBF (1+
‖E‖√
BF

)2‖C
1
2 ‖2.

In the next step, we prove that SG = V V ∗ is a surjective operator. We have,

V V ∗ = (TF − E)(TF − E)∗ = (TF − E)(T ∗F − E∗)
= TFT

∗
F − TFE∗ − ET ∗F + EE∗

= SF + EE∗ − TFE∗ − ET ∗F s.t SF = TFT
∗
F .

Since E, TF and SF are compact operators, then (EE∗ − TFE∗ −ET ∗F )S−1F is a compact
operator. Therefore (EE∗ − TFE

∗ − ET ∗F )S−1F + I is a bounded operator with closed
range. Thus, V V ∗ = EE∗ − TFE∗ − ET ∗F + SF is a bounded operator with closed range.
Therefore V V ∗ is an operator on span{gk}k∈I . It is clear that V V ∗ is a injective. By

lemma 1.2 it can be deduced that RV V ∗ = N †V V ∗ = span{gk}k∈I . Then SG is a surjective
operator. Therefore G = {gk}k∈I is a Controlled K-frame for span{gk}k∈I .
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