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Mathematical Approaches to Ground Objects Classifica-
tion According to Satellite Data
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Abstract. In modern times, many international organizations have been developing research
methods for remote diagnostic of ground objects. Over the last 15-20 years, despite the wide-scale
development of computer programs that allow space designs to be of qualitatively new materials
(up to 0.5 m accuracy) and to process cosmic images, the problem of using satellite imagery for
ground objects classification has not been solved practically.
Comparative mathematical approaches to solving the land classification of satellite data, and com-
parative mathematical approaches to solution are given. Satisfaction with the application of satel-
lite classification according to the satellite data of the classification and recognition methods.
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1. Introduction

Rapid development of computer science and the broad range of software systems (e.g.
Matlab, Mathematics, Mapple, etc.) have enabled the satellite data to be used for different
authentication and recognition issues, or stimulates the accuracy of solving algorithms.
The accuracy of the problem solved depends on many factors. Let’s note some of them.

1) The mathematical specificity of the problem, in other words, the mathematical
model’s realistic relevance, so certain assumptions (restrictions) are taken for the model’s
probability, which in turn creates possible errors;

2) Mathematical problems typically have inverse issues in nature, and these issues are
non-corrupt;

3) The solution of the problem is based on statistical data, the prices of these data are
coincidental and vary depending on many factors; Statistical data is insufficient;

4) Based on the solution of the problem, the division of the classroom is broken and the
classification criteria are different, and finally the solution depends on the chosen method;
and so on.

In general, the task of recognition is as follows. The most common definition of a
class is the following: a class is a collection (family) of objects that have some common
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properties. Information about the properties of an object can be obtained by observations,
measurements, assessments, etc. and represented by a set of features, the values of which
are expressed in numerical scales. Objects belonging to the same class are considered
indistinguishable (equivalent), and each class of objects is characterized by a certain quality
that distinguishes it from other classes. Together, all classes must constitute the initial
set of objects [1].

Spectral images of objects on the earth’s surface are non-stationary, as they depend on
many factors, such as topography, soil type, climate, geographical location. To increase
the reliability of decisions, it is necessary to use a priori information about the geometry
of the survey, on the one hand, and the contextual information of the images themselves
- on the other.

For this reason, the application of new approaches and the comparative analysis of the
obtained results with known outcomes are of great importance both from the theoretical
and the point of view.

2. Methodical basis and calculation methodology

The offered work is devoted to the classification of ground objects (e.g. of soil types,
of aerosol-gas compounds) according to satellite data. The issue is as follows.

The classification of objects of the given area D is known in the coordinates (points)
{Pi : i = 1,m} ⊂ D. Let us point the known classification of objects, in other words,
objects classes with {Mk : k = 1, r} : Mi ∩ Mj = ∅, i 6= j. Thus for ∀i ∈ 1 : m =
{1; 2; ...;m}, ∃k (i) ∈ 1 : r

Pi ⊂Mk(i),

it is true. In addition, at each P ∈ D point the values of Wλk (P ) , k = 1, χ- satellite data
are known in the wave lengths {λk : k = 1, χ}. The problem is to find the class Mk, of
∀P ∈ D point, in other words, to find ∃k (p) ∈ 1 : r number for ∀P ∈ D, so that P ∈Mk(p)

is true.

First of all, it should be noted that, according to satellite data, the issue of ground
objects classification has particular peculiarities. Thus, the variability of ground objects
cover (eg: vegetation - natural or artificial, snow cover, other artificial covers, etc.) causes
the variability of satellite data (at the same time). This, in turn, contributes to the
distortion of the result. Thus, according to the satellite data, the reflection of object cover
is first identified, and in the next step it is necessary to analyze the relationship between
the value of reflection and object classification.

Now let’s look to the problem solving algorithm.

Let’s define the following set of indexes.

Ik = {i ∈ 1 : m/Pi ∈Mk} , k = 1, r.

It is obvious that,

Ii
⋂
Ij = ∅, i 6= j
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is true. The accuracy of the solution depends, of course, on the fact that the measurement
data, i.e. enough statistical data.

Another peculiarity of the problem is that statistics are not usually sufficient (e.g. in
large areas or in inaccessible areas). In this case, there is a need for new and deeper
analysis methods to increase accuracy.

Each P ∈ D point corresponds to the vector P (ω;W1; ...;Wκ) where ω is the ground
class of point P , where Wk, k = 1, κ - is satellite datas. In case of solving the problem,
each vector (W1; ...;Wκ) corresponds to a class. Let’s point this argument with π, i.e.
π (W1; ...;Wκ) = ω. Thus, the mathematical implication of the problem consists in the
construction of π : Rκ →

{
Mk : k = 1, r

}
. The values of the π judgment are sets, i.e.

clusters. In general, the problem does not have this kind of single solution. Since the
solution process is based on statistical data, the value of π is a coincidental number, for

each
−→
W = (W1; ...;Wκ) vector π

(−→
W
)

is a random quantity, i.e. π
(−→
W
)
∈ Mk, k = 1, r

occurs in a probability:
r∑

k=1

Pk

(−→
W
)

= 1.

Another approach to the study of π (•) is the application of phases theory methods.

In this case, the value of π
(−→
W
)

can belong to each Mk class by defining an affiliation

function. We will use Appendix I and II for the determination of π (•) in this case.

I. In this case, it is assumed that the classes are separated by satellite data, otherwise,
there is no single solution to the problem. The center of each class is found by:

−→
W

(k)
0 =

1

|Ik|
∑
i∈Ik

−→
Wi, k ∈ 1 : κ

here |Ik| - the number of elements in Ik.

Should be find Rk > 0 radius, that ORk

(−→
W

(k)
0

)
(
−→
W

(k)
0 center, Rk radius) balls

ORi

(−→
W

(i)
0

)⋂
ORj

(−→
W

(j)
0

)
= ∅, i 6= j

satisfy the condition and Mk ⊂ min
Rk>0

ORk

(−→
W

(k)
0

)
.

For random
−→
W ∈ Rκ (∀P

(
ω;
−→
W
)
∈ D point) if there is ∃k0 ∈ 1 : κ,

−→
W ∈ ORk0

(−→
W

(k0)
0

)
then the corresponding point belongs to the class Mk0 . Otherwise there is a need for
further analysis. For example

k0 = min
1≤k≤κ

∣∣∣−→W −−→W0
(k)
∣∣∣ (1)
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can be taken to p ∈ Mk0 . In the case of (1), if k0 is uniquely determined value, there is
still need for additional analysis.

The closeness of the point or the given
−→
W vector to any Mk class can be defined as a

mean distance from this vector to the Mk class vectors, i.e.,

ρ
(−→
W ;Mk

)
=

1

|Ik|
∑
i∈Ik

∥∥∥−→W −−→Wi

∥∥∥ .
Then

−→
W ∈Mk0 , where

k0 = min
k∈1:κ

ρ
(−→
W ;Mk

)
, (2)

can be accepted. There is a need for further analysis of the case (2), which is uniquely in
relation to k0 number.

II. In this approach, the probability of the point belonging to a particular class can be
determined by the degree of closeness to that class compared to all classes. Obviously, the
closer the point to the class, the greater the probability of belonging to that class. Thus,

the probability that the
−→
W vector belongs to the Mk class (Pk):

Pk =
1

r − 1

1−
ρ
(−→
W ;Mk

)
∑

i∈1:r ρ
(−→
W ;Mi

)
 , k ∈ 1 : r, (3)

can be calculated by formula. According to logic, if the
−→
W vector coincides with an element

of any class, then the probability that this element belongs to that class must be ”1”. But
according to the formula (3) it is not correct. Nevertheless, in the considered assumptions
the probability of being the smallest distance from the point to its class and ultimately
related to the class is greater.

Note that in the formulas (2) and (3), the probability of the distance is, for example,

the dispersion of the difference of Mk with the
−→
W vector and so oncan be taken. In general,

the distance is

ρ̃
(−→
W ;Mk

)
=

1

|Ik|

∑
i∈Ik

αk

∥∥∥−→W −−→Wi

∥∥∥ρ
1/ρ

,

where
∑

αk≥0 αk = 1 - weight coefficients, p ∈ [1; +∞) - numbers.

At the beginning of the article, the broad possibilities of various software systems (eg
Matlab, Mathematics, Mapple, etc.) were noted for the possibility of using satellite data
in different identification and recognition issues. On our part, the possibilities of applying
the automatic classification of ground object class for satellite data of the classification
and recognition methods included in the Matlab software system were investigated. The
pdist, the linkage, and the cluster included in the MATLAB packet programs were used
to perform calculations [2].
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3. The results of calculations

In the present study [4], the remote sensing data shown in his / her scientific work is
used. [4] uses a description of the September 13, 2006, satellite of Quickbird American
satellite, located in Canibek, a geographical area of 49.35-49.43 ◦ and a geographical
latitude of 46.75-46.84 .The images were taken by blue, green, red and NIR spectral
bands. The coverage area is 65 km 2. Surface measurements cover the years 2002-2009
and have been implemented by the author of the thesis. The total area of the survey is
50.6 km2, of which 16.1 km2 is the stationary.

As a result of the research, the author carried out the classification of the land at the
271 surface measurement point. It has been shown that there are mixed soil at 101 surface
measurement points and no soil type has been identified at these measuring points. Land
types have been identified at 172 surface measurement points. Land at the measurement
points - A (black earth); B (chestnut soil), C (deserted salt); D (salty) soil types. At the

point P (ω;W1; ...;Wκ), the set of values ω is {A, B, C, D}. Here, the elements of the
−→
W

vector are the indicator of the spectral reflection of the soil at the measuring point and the
numerical values mentioned in the spectral channels (blue, green, red and NIR interval,
MDVI Index). The number of points that the investigator points to different types of soil
is given below.

IA = 23, IB = 45, IC = 56, ID = 45.

In the present case, using the metric distances and classification methods, the classifica-
tion of the above described lands is carried out. The pdist, the linkage, and the cluster
included in the MATLAB packet programs were used to perform calculations [2]. The
number of points to different types was calculated using the possible variants of the met-
ric distance and the classification algorithms. The metric distance used and the name of
the classification algorithms and the results obtained are given in Table 2.

Table 2. Number of points on different types of soil
(according to the selected metric distance and classification algorithms)

The used metric distance and
cluster algorithms

IA IB IC ID

Euclidean distance and ”near-
est neighbor” algorithm

1 158 1 12

Euclidean distance and
”remote neighborhood” algo-
rithm

72 45 12 43

Euclidean distance and
”medium” algorithm

37 112 11 12

Euclidean distance and
”centralization” algorithm

55 49 12 56

Euclidean distance and
”step-by-step” algorithm

37 106 17 12
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Table 2 continuation

The used metric distance
and cluster algorithms

IA IB IC ID

Normalized Euclidean dis-
tance and ”nearest neigh-
bor” algorithm

1 158 1 12

Normalized Euclidean dis-
tance and ”remote neigh-
borhood” algorithm

2 92 12 66

Normalized Euclidean dis-
tance and
”medium” algorithm

39 107 14 12

Normalized Euclidean dis-
tance and
”centralization” algorithm

19 76 12 65

Normalized Euclidean dis-
tance and
”step-by-step” algorithm

38 108 14 12

Distance from the city
neighbourhood and ”near-
est neighbour” algorithm

1 168 2 1

Distance from city neigh-
bourhood and ”remote
neighbour” algorithm

38 86 39 9

Distance from city neigh-
nourhood and ”mid-
contact” algorithm

5 140 14 13

Distance from city neigh-
nourhood and the ”central-
ization” algorithm

9 108 13 42

Distance from city neigh-
nourhood and ”step-by-
step” algorithm

2 154 3 13
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Table 2 continuation

The used metric distance
and cluster algorithms

IA IB IC ID

Mahalanobis distance and
”nearest neighbor” algo-
rithm

1 158 1 12

Mahalanobis distance and
”remote neighbor” algo-
rithm

72 45 12 43

Mahalanobis distance
and the ”mid-contact”
algorithm

37 112 11 12

Mahalanobis distance and
the ”centralization” algo-
rithm

55 49 12 56

Mahalanobis distance and
”step-by-step” algorithm

37 106 17 12

Distance in Minkowski
metric and ”nearest neigh-
bor” algorithm

1 158 1 12

Distance in Minkowski
metric and ”remote neigh-
bor” algorithm

12 16 23 121

Distance in Minkowski
metric and the ”mid-
contact” algorithm

35 114 11 12

Distance in Minkowski
metric and the ”centraliza-
tion” algorithm

55 48 12 57

Distance in Minkowski
metric and
”step-by-step” algorithm

37 112 11 12

It appears from the table that the results obtained from the classifications and methods
used in calculations are not consistent with the type of soil types taken by the author of
the case.

4. Conclusion

According to satellite data, classification of ground object classification is mathemati-
cally correct and there are different mathematical approaches to the solution. The use of
standard clustering methods is not satisfactory for the classification of soil according to
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satellite data. The solution of the problem necessitates the application of non-standard
approaches and the comparative analysis of the obtained results with known outcomes.
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