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On the Solution of Generalized Fractional Kinetic Equa-
tions Involving Generalized M-Series
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Abstract. This paper refers to further generalizations of fractional kinetic equation. By using the
generalized M -Series, solutions of unified fractional kinetic equations are obtained. Solutions are
obtained in a compact form containing Wright hypergeometric function by using Laplace transform
and Sumudu transform. Certain special cases of our main results are also pointed out.
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1. Introduction

The M -series was introduced by the mathematician M. Sharma [10], and defined as

α

pMq (a1, · · · , ap; b1, · · · ,bq; z) =
α

pMq (z) =
∞∑

k=0

(a1)k· · · (ap)k

(b1)k· · · (bq)k

zk

Γ(α k + 1)
, (1)

where z, α ∈ C,<(α) > 0 and (ai)k , (bj)k (i = 1, · · · , p; j = 1, · · · , q) are the Pochhammer

symbol given by (γ)n = Γ(γ+n)
Γ(γ) .

The series in (1) is convergent for all z if p ≤ q, also if p = q + 1 its convergent
absolutely or conditionally when |z| = 1, and divergent if p > q + 1.

In 2009, the generalization of (1) was introduced and studied by Sharma and Jain [11],
and given as

α,β

M
p,q

(z) =

∞∑
k=0

(a1)k· · · (ap)k

(b1)k· · · (bq)k

zk

Γ(αk + β)
. (2)

The series in (2) is convergent for all z if p ≤ q+<(α), also it is convergent for |z| < δ = αα

if p = q + <(α) and divergent if p > q + <(α).
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Recently, a new generalization of M -series introduced by Faraj et al. [2] in the following
manner:

α, β

M
p, q; m, n

(a1, · · · , ap; b1, · · · , bq; z) =
α, β

M
p, q; m, n

(z) =
∞∑

k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

zk

Γ(αk + β)
, (3)

where z, α, β ∈ C,<(α) > 0 and m,n are non–negative real number.

The series in (3) is absolutely convergent for all values of z provided that pm <
qn+ <(α), moreover if pm = qn+ <(α), the series converges for |z| < δ = αα.

For m = n = 1 and m = n = β = 1, equation (3) reduces to generalized M -series
α,β

M
p,q

(z) and M -series
α

pMq (z), respectively (see (1) and (2)).

Further, if we take p = q = 1, equation (3) reduces to generalized Mittag–Leffler
function introduced by Salim and Faraj [4] and given as

α,β

M
1,1 ; m, n

(z) = E
a1, b1,m
α, β, n

(z) =

∞∑
k=0

(a1)km
(b1)kn

zk

Γ(αk + β)
. (4)

The generalized Wright hypergeometric function was introduced by Wright [14] and defined
as

pΨq(z) = pΨq

[
(ai, αi)1, p

(bj, βj)1,q

; z

]
=
∞∑

k=0

p∏
i=1

Γ(ai + αik)

q∏
j=1

Γ(bj + βjk)

zk

k!
, (5)

where z, ai, bj ∈ C and αi, βj ∈ R− {0} (i = 1, · · · , p; j = 1, · · · , q) .
Haubold and Mathai [3] established a fractional differential equation between the rate

of change of reaction, the destruction rate and the production rate as follows:

dN

dt
= −d(Nt) + p(Nt), (6)

where N = N(t) is the rate of reaction, d(Nt) is the rate of destruction, p(Nt) is the rate
of production and Nt denotes the function defined by Nt (t∗) = N (t− t∗) , t∗ > 0.

A special case of (6), when spatial fluctuations or homogeneities in the quantity N(t)
are neglected, is given by the following differential equation:

dNi

dt
= − ci Ni(t) (7)

with the initial condition that Ni (t = 0) = N0 is the number of density of species i at time
t = 0 and constant ci > 0. If we remove the index i and integrate the standard kinetic
equation (7), we have

N(t)−N0 = − c 0D−1
t N(t), (8)

where 0D−1
t is the standard integral operator.
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Houbold and Mathai [3], obtained the fractional generalization of the standard kinetic
equation (7) as

N(t)−N0 = − cν0D−vt N(t), (9)

where 0D−vt is Riemann–Liouville fractional integral operator defined as follows [5]:

0D−vt f(t) =
1

Γ(ν)

∫ t

0
(t− s)ν−1f(s) ds (t > 0, f(ν) > 0). (10)

The solution of equation (8) is given by (See [3])

N(t) = N0

∞∑
k=0

(− 1)k

Γ(ν k + 1)
(ct)νk. (11)

Further, Saxena and Kalla [6] considered the following fractional kinetic equation

N(t)−N0 f(t) = − cν0D−vt N(t), (<(ν) > 0), (12)

where N(t) denotes the number of density of a given species at time t, N0 = N(0) is the
number of density of that species at time t = 0 and c is a constant.

2. Solution of generalized fractional kinetic equations by using the
Laplace transform

In this section, we will establish and derive the solution of the generalized kinetic
equations involving the generalized M -series (3) by applying the Laplace transform.

Laplace transform [12] of the function f(t) is defined as

L {f(t) : s} =

∫ ∞

0
e−stf(t) dt, (< (s) > 0). (13)

and convolution theorem is given by

L {f ∗ g} (s) = L

{∫ t

0
f (t− ξ) g (ξ) dξ

}
= L {f (s)} .L {g (s)} . (14)

Laplace transform of the Riemann–Liouville fractional integral operator given by Erdélyi
et al. [1] as

L
{

0D−v
t N(t) : s

}
= s−ν N(s), (15)

and also

L {N(t) : s} = N(s). (16)

The following Lemmas are required to prove our main results.
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Lemma 1. For <(γ),<(σ),< (s) > 0, the following Laplace transform of generalized M -

series
α,β

M
p,q;m,n

(z) holds true:

L

{
tγ−1

α,β

M
p,q;m,n

(tσ) : s

}
= s−γ

Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+2Ψq+1

[
(a1,m), · · · , (ap, m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β, α)
; s−σ

]
, (17)

where p+2Ψq+1(.) is given by (5).

Proof. By taking (3) and (13) into account, we can easily obtain the required result
(17) after a little simplification.

If we take γ = β and σ = α in (17), then a special case of (17) is given by following
lemma.

Lemma 2. For min{< (s) ,<(α),<(β)} > 0, the Laplace transform of (3) is given by

L

{
tβ−1

α,β

M
p,q;m,n

(tα) : s

}
= s−β

Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+1Ψq

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n),
; s−α

]
.

(18)

Theorem 1. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and pm ≤ qn+<(α).
Then, the solution of the following generalized fractional kinetic equation

N(t)−N0 tγ−1
α,β

M
p,q;m,n

(wtσ) = −cν0D−vt N(t) (19)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+2Ψq+2

[
(a1,m), · · · , (ap,m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β,α), (γ + νr, σ)
;wtσ

]
. (20)

Proof. Applying the Laplace transform on both sides of (19). Using (15) and (16) into
account, we get

L {N(t) : s} −N0 L

{
tγ−1

α,β

M
p,q; m,n

(wtσ) : s

}
= −cv L

{
0D
−ν
t N(t) : s

}
N(s) =

N0

1 +
(
c
s

)νL{tγ−1
α,β

M
p,q;m,n

(wtσ) : s

}
Next, by using (17) and the following binomial series expansion[

1 +
(c
s

)ν]−1
=

∞∑
r=0

(−1)r
(c
s

)vr
(c < |s|),
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we obtain

N(s) = N0

∞∑
r=0

(−1)r
(c
s

)νr ∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

1

sγ+σk

N(s) = N0

∞∑
r=0

(−cv)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk)Γ(k + 1)

Γ(αk + β)

wk

k!

1

sγ+νr+σk
. (21)

Now, taking inverse Laplace transform of (21) and using L−1 { s−ν : t} = tν−1

Γ(ν) , (< (v) > 0)

and L−1 {N(s): t} = N(t), we arrive at

L−1 {N(s) : t} = N0

∞∑
r=0

(−cv)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

×Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
L−1

{
1

sγ+νr+σk
: t

}
or

N(t) = N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km · · · (ap)km
(b1)kn · · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

tγ+νr+σk−1

Γ(γ + νr + σk)

= N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(− cvtν)r

×
∞∑

k=0

Γ(a1 + mk) · · ·Γ(ap + mk)

Γ(b1 + nk) · · ·Γ(bq + nk)

Γ(γ + σk) Γ(k + 1)

Γ(αk + β) Γ(γ + νr + σk)

(wtσ)k

k!
.

Finally, by using (5), we get the desired result (20).
This complete the proof of Theorem 1.

If we set m = n = 1, then
α,β

M
p,q;m,n

(z) reduces to the generalized M -series
α,β

M
p,q

(z) [11], we

get the generalized fractional kinetic equation with its solution given as follows:

Corollary 1. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0 ; < (α) > 0 andp ≤ q + <(α).
Then, the solution of the equation

N(t)−N0 t
γ−1

α,β

M
p,q

(wtσ) = −cν0D−vt N(t) (22)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(− cvtν)r

× p + 2Ψq+2

[
(a1, l), · · · , (ap, 1), (γ,σ), (1, 1)

(b1, 1), · · · , (bq, 1), (β,α), (γ + νr, σ)
;wtσ

]
. (23)
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If we take β = 1 in (22), the generalized M -series
α,β

M
p,q

(z) reduces to the M -series
α

pMq(z)

[10], we arrive at

Corollary 2. Let c, w, ν, γ, σ ∈ R+;α, t ∈ C; m, n > 0 ; < (α) > 0. Then, the solution
of the equation

N(t) = N0 t
γ−1

α

pMq(wtσ) = −cν0D−vt N(t) (24)

is given by

N(t) = N0 t
γ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=o

(−cvtv)r

× p+2 Ψq+2

[
(a1, l), · · · , (ap, 1), (γ,σ), (1, 1)

(b1, 1), · · · , (bq, 1), (1, α), (γ + νr, σ)
;wtσ

]
. (25)

Further, if we put p = q = l, then
α,β

M
p,q;m,n

(z) reduces to the generalized Mittag–Leffler

function E
a1, b1,m
α, β, n

(z) [4], we obtain

Corollary 3. Let c, w, ν, γ, σ ∈ R+;α, β, t ∈ C; m, n > 0 ; < (α) > 0 andm ≤ n+<(α).
Then, the solution of the equation

N(t)−N0 t
γ−1E

a1, b1,m
α, β, n

(wtσ) = −cν0D−vt N(t) (26)

is given by

N(t) = N0 t
γ−1 Γ(b1)

Γ(a1)

∞∑
r=0

(−cvtv)r 3Ψ3

[
(a1,m), (γ,σ), (1, 1)

(b1, n), (β, α), (γ + νr, σ)
;wtσ

]
. (27)

Theorem 2. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and pm ≤ qn + <(α).
Then, the generalized fractional kinetic equation

N(t)−N0 t
β−1

α,β

M
p,q; m,n

(wtα) = −cν0D−vt N(t) (28)

has the solution

N(t) = N0 t
β−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+1Ψq+1

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n), (β + νr, α)
;wtα

]
. (29)

Proof. The proof of result asserted by Theorem 2 runs parallel to that of Theorem 1.
Here, we make use (18) instead of (17) into account. Therefore, we omit the details of the
proof.

If we put m = n = 1, then
α,β

M
p,q; m,n

(z) reduces to
α,β

M
p,q

(z), we get the following corollary.
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Corollary 4. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and p ≤ q+<(α). Then,
the equation

N(t)−N0 t
β−1

α,β

M
p,q

(wtα) = −cν0D−vt N(t) (30)

has the solution

N(t) = N0 t
β−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r

× p+1Ψq+1

[
(a1, 1), · · · , (ap,1), (1, 1)

(b1, 1), · · · , (bq, 1), (β + νr, α)
;wtα

]
. (31)

If we take β = 1 in (30), we have the solution of generalized fractional kinetic equation

involving M -series
α

pMq(z) as follows:

Corollary 5. Let c, w, ν ∈ R+;α, t ∈ C; m, n > 0;< (α) > 0. Then, the equation

N(t)−N0

α

pMq (wtα) = −cν0D−vt N(t) (32)

has the solution

N(t) = N0
Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞∑
r=0

(−cvtv)r p+1Ψq+1

[
(a1, 1), · · · , (ap,1), (1, 1)

(b1, 1), · · · , (bq, 1), (1 + νr, α)
;wtα

]
.

(33)

Further, if we set p = q = 1 in (28), then
α,β

M
p,q; m,n

(z) reduces to E
a1, b1,m
α, β, n

(z) we have

the following corollary.

Corollary 6. Let c, w, ν ∈ R+;α, β, t ∈ C; m, n > 0;< (α) > 0 and m ≤ n + <(α).
Then, the equation

N(t)−N0 t
β−1 E

a1, b1,m
α, β, n

(wtα) = −cν0D−vt N(t) (34)

has the solution

N(t) = N0 t
β−1 Γ(b1)

Γ(a1)

∞∑
r=0

(−cvtv)r 2Ψ2

[
(a1,m), (1, 1)

(b1, n), (β + νr, α)
;wtα

]
. (35)

3. Solution of generalized fractional kinetic equations by using the
Sumudu transform

In this section, we will discuss the solution of the generalized fractional kinetic equation
(18) and (27) involving the generalized M -series [2] by applying another integral transform
(i.e. Sumudu transform) technique.
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Sumudu transform [13] of the function f(t) is defined as

S {f(t) : u} =

∫ ∞

0
e−tf(ut) dt. (36)

The convolution theorem for Sumudu transform is given by

S{f ∗ g : u} = uS{f : u}S{g : u}. (37)

If we apply (37) then, the Sumudu transform of the Riemann–Liouville fractional integral
operator (10) is given by

S
{

0D
−ν
t f (t) : u

}
= uS

{
tν−1

Γ (ν)

}
S {f (t) : u} (38)

and also
S {N(t) : u} = N(u). (39)

Now, we begin by stating and proving the following Lemmas.

Lemma 3. For min{<(γ),<(σ),< (u)} > 0, the Sumudu transform of the generalized

M -series
α,β

M
p,q; m,n

(z) is given by

S

{
tγ−1

α,β

M
p,q;m,n

(tσ) : u

}
= uγ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+2Ψq+1

[
(a1,m), · · · , (ap,m), (γ,σ), (1, 1)

(b1, n), · · · , (bq, n), (β, α)
; uσ

]
. (40)

Proof. By taking (3) and (36) into account, we can easily obtain (40) after a little
simplification.

If we take γ = β and σ = α in (40), then a special case of the above Lemma 3 is given
by

Lemma 4. For min{<(α),<(β),< (u)} > 0, the following Sumuda transform of general-
ized M -series (3) holds true:

S

{
tβ−1

α,β

M
p,q;m,n

(tα) : u

}
= uβ−1 Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)
p+1Ψq

[
(a1,m), · · · , (ap,m), (1, 1)

(b1, n), · · · , (bq, n),
; uα

]
.

(41)

Discussion I. Let c, w, v, γ, σ ∈ R+ and < (u) > 0 with |u| < c−1(c 6= w). Also
α, β, t ∈ C; m,n > 0 ;<(α) > 0 and pm ≤ qn+<(α). Then, the solution of the generalized
fractional kinetic equation (19) is given by (20).

By taking the Sumudu transform on both side of (19). Using (38) and (39), we have

S {N(t) : u} −N0 S

{
tγ−1

α,β

M
p,q;m,n

(wtσ) : u

}
= −cνS

{
0D−vt N(t) : u

}
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N(u) =
N0

1 + cνuν
S

{
tγ−1

α,β

M
p,q;m,n

(wtσ) : u

}
. Next, by using (39) and the binomial series expansion (1 + cνuν)−1 =

∞∑
r=0

( − 1)r(cu)νr,

we obtain

N(u) = N0

∞∑
r=0

(− 1)r(cu)νr
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
uγ+σk−1

= N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!
uγ+vr+σk−1. (42)

Now, taking inverse Sumudu transform of (42) and using

S−1
{
uv−1 : t

}
=
tν−1

Γ(ν)
, (min {<(ν),<(u)} > 0)

and S−1 {N(u) : t} = N(t), we get

S−1 {N(u) : t} = N0

∞∑
r=0

(− cν)r
∞∑

k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

× S−1
{

uγ+νr+σk−1: t
}

or

N(t) = N0

∞∑
r=0

(−cν)r
∞∑
k=0

(a1)km· · · (ap)km

(b1)kn· · · (bq)kn

Γ(γ + σk) Γ(k + 1)

Γ(αk + β)

wk

k!

tγ+νr+σk−1

Γ(γ + νr + σk)
.

Finally, by using (5), we arrive at the desired result (20).

Discussion II. Let c, w, v ∈ R+ and < (u) > 0 with |u| < c−−1(c 6= w). Also
α, β, t ∈ C; m,n > 0 ;<(α) > 0 and pm ≤ qn+<(α). Then, the solution of the generalized
fractional kinetic equation (28) is given by (29).
As in the proof of the Theorem 2, we make use Sumudu transform instead of Laplace
transform into account, then we can obtain desired result (29).

4. Conclusion

In this paper we have introduced a new fractional generalization of the standard ki-
netic equation and derived their solutions in view of generalized M -Series, M -series and
generalized Mittag–Leffler function. We can also obtain the number of special functions
as the special cases of our main results, being of general nature, are shown to be some
unification and extension of many known results given, for example Saxena et al. [7, 8, 9],
Saxena and Kalla [6] etc.



On the Solution of Generalized Fractional Kinetic Equations 97

References
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