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On an Inverse Boundary Value Problem For a Third
Order Partial Differential Equation With Non-classical
Boundary Conditions

A.I. Ismayilov

Abstract. In this work the inverse boundary value problem with unknown time-dependent co-
efficient for a third-order partial differential equation with non-classical boundary conditions is
studied. The definition of the classical solution of the stated problem is given. The essence of
the problem is that it is required together with the solution to determine an unknown coefficient.
The problem is considered in the rectangular domain. When solving the initial inverse boundary
value problem, the transition from the initial inverse problem to some auxiliary inverse problem is
performed. With the help of contraction mappings, the existence and uniqueness of the solution
of an auxiliary problem are proved. Then the transition to the original inverse problem is made
again, and as a result, a conclusion is made about the solvability of the initial inverse problem.
Key Words and Phrases: inverse problem, third order equations, existence and uniqueness of
a classical solution.

1. Introduction

In the present work, by the inverse problem for partial differential equations we mean
such a problem in which, together with the solution, it is required to determine the right-
hand side or (and) one or another coefficient (coefficients) of the equation itself. Inverse
problems arise in the most diverse areas of human activity, such as seismology, mineral
exploration, biology, medicine, quality control of industrial products, etc., which puts
them in a series of actual problems of modern mathematics. If in the inverse problem the
solution and the right-hand side are unknown, then such as inverse problem will be linear;
if the solution and at least one of the coefficients are unknown, then the inverse problem
will be nonlinear

Various inverse problems for particular types of partial differential equations have been
studied in many papers. We note here, first of all, the works of A.N. Tikhonov [1], M.M.
Lavrent’ev [2,3], V.K. Ivanov [4] and their students. For more details, see the monograph
by A.M. Denisov [5].

The goal of this paper is to prove the existence and uniqueness of the solution of an
inverse boundary value problem for a third order differential equation with nonclassical
boundary conditions.
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2. Statement of the inverse boundary value problem

Consider an inverse boundary value problem for the equation

utt(x, t)− a(t)utxx(x, t) = p(t)u(x, t) + q(t)ut(x, t) + f(x, t) (1)

in the domain DT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T} with initial conditions

u(x, 0) = ϕ(x) , ut(x, 0) = ψ(x) (0 ≤ x ≤ 1) , (2)

with Dirichlet boundary condition

u(0, t) = 0 (0 ≤ t ≤ T ) , (3)

with non-classical boundary condition

ux(1, t) + duxx(1, t) = 0 ( 0 ≤ t ≤ T ), (4)

and with an additional condition

u(xi, t) = hi(t) (i = 1, 2; 0 < x1, x2 < 1, x1 6= x2, 0 ≤ t ≤ T ), (5)

where d > 0 is a given number, a(t) > 0, f(x, t), ϕ(x), ψ(x), hi(t) (i = 1, 2)-are given
functions, u(x, t), p(t) and q(t) are required functions.

Let us introduce the notation

C̃2,2(DT ) = {u(x, t) : u(x, t) ∈ C2(DT ), utxx(x, t) ∈ C2(DT )} .

Definition 1. Under the classical solution of the inverse problem (1)-(5) we mean the
triple {u(x, t), p(t) , q(t)} of the functions u(x, t), p(t) , q(t), if u(x, t) ∈ C̃2,2(DT ), p(t) ∈
C[0, T ], q(t) ∈ C[0, T ] and relations (1) - (5) are satisfied in the usual sense.

First consider the following spectral problem [6,7] :

y′′(x) + λ y (x) = 0 (0 ≤ x ≤ 1),

y(0) = 0, y′(1) = dλ y (1), d > 0. (6)

This problem has only eigenfunctions yk(x) =
√

2 sin (
√
λkx) , k = 0, 1, 2, ..., with pos-

itive eigenvalues λ k from the equation ctg
√
λ = d

√
λ. The zero index is assigned to any

eigenfunction, and all the others are numbered in ascending order of eigenvalues.
The following theorem is true.

Theorem 1. Let f(x, t) ∈ C(DT ), ϕ(x), ψ(x) ∈ C[0, 1], hi(t) ∈ C2[0, T ] (i = 1, 2) ,
h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ), ϕ′(1) + dϕ′′(1) = 0 ,

ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0 , (7)
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ψ(1) +
1

d sin
√
λ0

∫ 1

0
ψ(x) sin(

√
λ0x)dx = 0 , (8)

f(1, t) +
1

d sin
√
λ0

∫ 1

0
f(x, t) sin(

√
λ0x)dx = 0 (0 ≤ t ≤ T ), (9)

and the conditions of matching are satisfied

ϕ(xi) = hi(0 ), ψ (xi) = h′i(0) (i = 1, 2) . (10)

Then the problem of finding a classical solution of problem (1) - (5) is equivalent to the
problem of determining the functions u(x, t) ∈ C̃2,2(DT ), p(t) ∈ C[0, T ], q(t) ∈ C[0, T ],
satisfying the equation (1), conditions (2), (3) and the conditions

u(1, t) +
1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx = 0 ( 0 ≤ t ≤ T ), (11)

h′′i (t)− a(t)utxx(xi, t) = p(t)hi(t) + q(t)h′i(t) + f(xi, t) (i = 1, 2; 0 ≤ t ≤ T ). (12)

Proof. Let {u(x, t), p(t) , q(t)} be any solution of problem (1) - (5). Then from equation
(1), with considering (9), we have:[

utt(1, t) +
1

d sin
√
λ0

∫ 1

0
utt(x, t) sin(

√
λ0x)dx

]
−

−a(t)

[
utxx(1, t) +

1

d sin
√
λ0

∫ 1

0
utxx(x, t) sin(

√
λ0x)dx

]
=

= p(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
+

+q(t)

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ). (13)

Integrating in parts twice, in view of (3), with the help of easy transformations we
find:

uxx(1, t) +
1

d sin
√
λ0

∫ 1

0
uxx(x, t) sin(

√
λ0x)dx =

1

d
(ux (1, t) + duxx (1, t))−

−λ0
[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
. (14)

Substituting (14) into (13), we get:[
utt(1, t) +

1

d sin
√
λ0

∫ 1

0
utt(x, t) sin(

√
λ0x)dx

]
− a(t)

[
1

d
(utx (1, t) + dutxx (1, t))

]
=

= p(t)

[
u(1, t) +

1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx

]
+
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+(q(t)− λ0a(t))

[
ut(1, t) +

1

d sin
√
λ0

∫ 1

0
ut(x, t) sin(

√
λ0x)dx

]
(0 ≤ t ≤ T ). (15)

From (15), by virtue of (4), we find:

ω′′(t)− p(t)ω(t)− q (t)− λ0a(t))ω′(t) = 0 (0 ≤ t ≤ T ) , (16)

where

ω (t) ≡ u(1, t) +
1

d sin
√
λ0

∫ 1

0
u(x, t) sin(

√
λ0x)dx (0 ≤ t ≤ T ) . (17)

Further, by virtue of (2) and in view of (7), (8) we find :

ω (0) = ϕ(1) +
1

d sin
√
λ0

∫ 1

0
ϕ(x) sin(

√
λ0x)dx = 0 ,

ω′ (0) = ψ(1) +
1

d sin
√
λ0

∫ 1

0
ψ(x) sin(

√
λ0x)dx = 0 . (18)

It is obvious that the problem (16), (18) has only a trivial solution, i.e. ω(t) = 0 (0 ≤
t ≤ T ). Therefore, it is clear from (17) that condition (11) is also satisfied.

Further, from (5) it is clear that

ut(xi, t) = h′i(t), utt(xi, t) = h′′i (t) (i = 1, 2; 0 ≤ t ≤ T ) . (19)

Supplying x = xi (i = 1, 2) in equation (1), we have

utt(xi , t)−a(t)utxx(xi , t) = p(t)u(xi , t)+q(t)ut(xi , t)+f(xi , t)(i = 1, 2; 0 ≤ t ≤ T ). (20)

From here, taking into account (5) and (19), we arrive at the fulfilment of (12).
Now, suppose that {u(x, t), p(t), q(t)} is a solution to problem (1) - (3), (11), (12), and

the condition of matching (10) is satisfied.
Then from (15), in view of (11) we have:

utx (1, t) + dutxx (1, t) = 0. (21)

By virtue of (2) and ϕ′(1) + dϕ′′(1) = 0 it is obvious that

ux (1, 0) + duxx (1, 0) = ϕ′(1) + dϕ′′(1) = 0. (22)

From (21) and (22) we arrive at the fulfilment of (4).
Further, from (12) and (20) we obtain:

d2

dt2
(u(xi, t)− hi(t))− q(t)

d

dt
(u(xi, t)− hi(t))

−p(t)(u(xi, t)− hi(t)) = 0 (i = 1, 2; 0 ≤ t ≤ T ). (23)

By virtue of (2) and condition of matching (10), we have:

u(xi, 0)− hi(0) = ϕ(xi)− hi(0 ) = 0,

ut(xi, 0)− h′i(0) = ψ (xi)− h′i(0) = 0 (i = 1, 2). (24)

From (23) and (24) we conclude that condition (5) is satisfied. The theorem is proved.
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3. Auxiliary facts

Solving the homogeneous problem corresponding to problem (1) - (3), (11), (12), by
the method of separation of variables we arrive at the spectral problem

y′′(x) + λ y(x) = 0 ( 0 ≤ x ≤ 1),

y(0) = 0 , y(1) +
1

d sin
√
λ0

∫ 1

0
y(x) sin(

√
λ0x)dx = 0. (25)

It is known [6] that the spectral problem (25) is equivalent to the spectral problem (6)
without an eigenfunction corresponding to an eigenvalue λ0. Consequently, the spectral
problem (25) has only eigenfunctions yk(x) =

√
2 sin (

√
λkx) , k = 1, 2, ... with positive

eigenvalues λ k, defined from the equation ctg
√
λ = d

√
λ, numbered in increasing order.

Consequently, the spectral problem (25) has only eigenfunctions yk(x) =
√

2 sin (
√
λkx) ,

k = 1, 2, ... with positive eigenvalues λ k, determined from the equation ctg
√
λ = d

√
λ,

numbered in increasing order.
The following statements were formulated and substantiated in [6,7].

Lemma 1. Starting from some number N , the estimate

0 <
√
λk − πk < (dπk)−1 . (26)

Corollary 1. Let vk(x) =
√

2 sin(
√
µkx), where

√
µk = πk, k = 1, 2, 3, .... Then the

following inequalities are true

∞∑
k=N

‖yk(x)− vk(x)‖2L2(0,1)
≤ 1/(9d2). (27)

Lemma 2. Biorthogonally conjugated system {zk(x)} to the system {yk(x)}, k = 1, 2, 3, ...,
is determined by the formula

zk(x) =
√

2(sin(
√
λkx)− sin

√
λk(sin

√
λ0x)/(sin

√
λ0))/(1 + d sin2

√
λk). (28)

Theorem 2. Systems {yk(x)}, k = 1, 2, ..., form a Riesz basis for L2(0, 1).

Now, let ηk(x) =
√

2 cos(
√
λkx), ξk(x) =

√
2 cos(

√
µkx), k = 1, 2, 3, .... Then, simi-

larly to (27), the inequalities

∞∑
k=N

‖ηk(x)− ξk(x)‖2L2(0,1)
≤ 1/(9d2), (29)

are true. Suppose that g(x) ∈ L2(0, 1). Then, in view of (27), we obtain( ∞∑
k=1

(∫ 1

0
g(x)yk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
, (30)
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where

M =

[
N∑
k=1

∫ 1

0
y2k(x)dx+ 2/

(
9d2
)

+ 2

]1/2
. (31)

Similar to (30), taking into account (29), we find:( ∞∑
k=1

(∫ 1

0
g(x)ηk(x)dx

)2
)1/2

≤M ‖g(x)‖L2(0,1)
. (32)

Since the functions {yk(x)}, k = 1, 2, 3, ..., form a Riesz basis for space L2(0, 1), then
it is known that for any function g(x) ∈ L2(0, 1) the equality

g(x) =

∞∑
k=1

gkyk(x), (33)

is true, where

gk =

∫ 1

0
g(x)zk(x)dx (k = 1, 2, ....).

Further, it is not difficult to see that

gk =

√
2

αk

[∫ 1

0
g(x) sin (

√
λkx)dx− cos

√
λk

d
√
λk sin

√
λ0

∫ 1

0
g(x) sin

√
λ0xdx

]
, (34)

where

αk = 1 + d sin2
√
λk > 1.

Hence, in view of (30) we have:( ∞∑
k=1

g2k

)1/2

≤M0 ‖g(x)‖L2(0,1)
, (35)

where

M0 =

M +
1

d
∣∣sin√λ0∣∣

( ∞∑
k=1

1

λk

)1/2
 √2. (36)

Assume that g(x) ∈ C[0, 1], g′(x) ∈ L2(0, 1), g(0) = 0 and

J(g) ≡ g(1) +
1

d sin
√
λ0

∫ 1

0
g(x) sin(

√
λ0x)dx = 0.

Then from (34) we have:

gk =

√
2

αk

1√
λk

∫ 1

0
g′(x) cos

(√
λkx

)
dx. (37)
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Hence, in view of (29) we obtain:( ∞∑
k=1

(
√
λk |gk| )2

)1/2

≤M
∥∥g′(x)

∥∥
L2(0,1)

. (38)

Let g(x) ∈ C1[0, 1], g′′(x) ∈ L2(0, 1), g(0) = 0 and J(g) = 0. Then from (37) we
obtain:

gk = −
√

2

αk

[
1

λk

∫ 1

0
g′′(x) sin(

√
λkx)dx− cos

√
λk

dλk
√
λk
g′ (1)

]
. (39)

Hence, we get: ( ∞∑
k=1

(λk |gk| )2
)1/2

≤ m
∣∣g′(0)

∣∣+
√

2M
∥∥g′′(x)

∥∥
L2(0,1)

, (40)

where m =
√
2
d

(∑∞
k=1

1
λk

)1/2
.

Now, suppose that g(x) ∈ C2[0, 1], g′′′(x) ∈ L2(0, 1), g(0) = 0, J(g) = 0, g′′(0) = 0
and dg′′(1) + g′(1) = 0 . Then from (39) we have:

gk = −
√

2

αk

1

λk
√
λk

∫ 1

0
g′′′(x) cos(

√
λkx)dx.

Hence, in view of (29) we have :( ∞∑
k=1

(λk
√
λk |gk| )2

)1/2

≤M
∥∥g′′′(x)

∥∥
L2(0,1)

. (41)

1. Denote by B
3
2
, 3
2

2,T [8 ], the set of all functions u(x, t) of the form

u(x, t) =
∞∑
k=1

uk(t)yk(x) ,

considering in DT , where each of the functions uk(t) is continuously differentiable on [0, T ]
and

I(u) ≡

{ ∞∑
k=1

(λk
√
λk ‖uk(t)‖C[0,T ])

2

} 1
2

+

{ ∞∑
k=1

(λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2

} 1
2

< +∞.

The norm on this set is defined as: ‖u(x, t)‖
B

3
2 ,

3
2

2,T

= I(u).

2. By E
3
2
, 3
2

T denote the space consisting of the topological product B
3
2
, 3
2

2,T × C[0, T ] ×
C[0, T ] . Norm of the element z = {u, p, q} is defined by the formula

‖z‖
E

3
2 ,

3
2

T

= ‖u(x, t)‖
B

3
2 ,

3
2

2,T

+ ‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ] .

It is known that B
3
2
, 3
2

2,T and E
3
2
, 3
2

T are Banach spaces.
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4. Solvability of an inverse boundary value problem

Taking into account Lemma 2 and Theorem 2, the first component u(x, t) of the
solution {u(x, t), p(t), q(t)} of the problem (1) - (3), (11), (12) we will be sought in the
form:

u(x, t) =

∞∑
k=1

uk(t)yk(x) , (42)

where

uk(t) =

∫ 1

0
u(x, t)zk(x)dx (k = 1, 2, ...).

We apply the method of separation of variables to determine the desired functions
uk(t) (k = 1, 2, ...; ). Then from (1) and (2) we have:

u′′k(t) + λka(t)u′k(t) = Fk(t;u, p, q) (k = 1, 2, ...; 0 ≤ t ≤ T ), (43)

uk(0) = ϕk, u
′
k(0) = ψk (k = 1, 2, ...), (44)

where

Fk(t;u, p, q) = fk(t) + p(t)uk(t) + q(t)u′k(t), fk(t) =

∫ 1

0
f(x, t)zk(x)dx,

ϕk =

∫ 1

0
ϕ(x)zk(x)dx, ψk =

∫ 1

0
ψ(x)zk(x)dx (k = 1, 2, ...).

Solving problem (43), (44), we find:

uk(t) = ϕk + ψk

∫ t

0
e−λk

∫ τ
0 a(s)dsdτ +

∫ t

0
Fk(τ ;u, p, q)

(∫ t

τ
e−λk

∫ ζ
τ a(s)dsdξ

)
dτ. (45)

Differentiating twice (45) we get:

u′k(t) = ψke
−λk

∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ (k = 1, 2, ...), (46)

u′′k(t) = −λka(t)ψke
−λk

∫ t
0 a(s)ds−

−λka(t)

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ + Fk(t;u, p, q)(k = 1, 2, ...). (47)

After substituting the expression uk(t) (k = 1, 2, . . .) from (45) into (42), we have:

u(x, t) =

∞∑
k=1

{
ϕk + ψk

∫ t

0
e−λk

∫ τ
0 a(s)dsdτ+

+

∫ t

0
Fk(τ ;u, p, q)

(∫ t

τ
e−λk

∫ ζ
τ a(s)dsdξ

)
dτ

}
yk(x) . (48)
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Now from (12), in view of (42), we get:

p(t) = [h(t)]−1 {h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))−

−a(t)
∞∑
k=1

λku
′
k(t)(h

′
2(t)yk(x1)− h′1(t)yk(x2))

}
, (49)

q(t) = [h(t)]−1 {h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))−

−a(t)
∞∑
k=1

λku
′
k(t)(h1(t)yk(x2)− h2(t)yk(x1))

}
, (50)

where
h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ).

In order to obtain the equation for the second and third components p(t), q(t) of the
solution {u(x, t), p(t), q(t)} of the problem (1)-(3), (11), (12) we substitute the expression
u′k(t) from (46) into (49), (50) respectively, we have:

p(t) = [h(t)]−1 {h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))−

−a(t)

∞∑
k=1

λk(h
′
2(t)yk(x1)− h′1(t)yk(x2))×

×
(
ψke

−λk
∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ

)}
, (51)

q(t) = [h(t)]−1 {h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))−

−a(t)

∞∑
k=1

λk (h1(t)yk(x2)− h2(t)yk(x1))×

×
(
ψke

−λk
∫ t
0 a(s)ds +

∫ t

0
Fk(τ ;u, p, q)e−λk

∫ t
τ a(s)dsdτ

)}
, (52)

Thus, the solution of problem (1)-(3), (11), (12) was reduced to the solution of system
(48), (51), (52) with respect to unknown functions, u(x, t),p(t) and q(t).

To study the question of the uniqueness of the solution of problem (1) - (3), (11), (12),
the following lemma plays an important role.

Lemma 3. If {u(x, t), p(t), q(t)} is any solution of the problem (1)-(3), (11), (12), then
the functions

uk(t) =

∫ 1

0
u(x, t)zk(x)dx(k = 1, 2, ...)

satisfy on [0, T ] the system (45).

Lemma 3 implies that the following holds.
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Corollary 2. Let system (48), (51), (52) have a unique solution. Then the problem (1)-
(3), (11), (12) cannot have more than one solution, i.e. if problem (1)-(3), (11), (12) has
a solution, then it is unique.

Now consider the operator in space E
3
2
, 3
2

T

Φ(u, p, q) = {Φ1(u, p, q),Φ2(u, p, q) , Φ3(u, p, q)} ,

where

Φ1(u, p, q) = ũ(x, t) ≡
∞∑
k=0

ũk(t)Xk(x),Φ2(u, p, q) = p̃(t), Φ3(u, p, q) = q̃(t),

and ũk(t) (k = 1, 2, ...), p̃(t) and q̃(t) are equal, respectively, right sides (45), (51) and
(52).

Using easy transformations, we find that inequalities( ∞∑
k=1

(
λk
√
λk ‖ũk(t)‖C[0,T ]

)2) 1
2

≤
√

5

( ∞∑
k=1

(
λk
√
λk |ϕk|

)2) 1
2

+

+
√

5T

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+
√

5T

√T (∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

 , (53)

( ∞∑
k=1

(
λk
√
λk
∥∥ũ′k(t)∥∥C[0,T ]

)2) 1
2

≤ 2

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+2T

√T (∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

 , (54)
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‖p̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+
√
T

(∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

  , (55)

‖q̃(t)‖C[0,T ] ≤
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h1(t) (h′′2(t)− f(x2, t))− h2(t)(h′′1(t)− f(x1, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2

‖a(t)(|h1(t)|+ |h2(t))|‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk |ψk|

)2) 1
2

+

+
√
T

(∫ T

0

∞∑
k=1

(
λk
√
λk |fk(τ)|

)2
dτ

) 1
2

+

+T ‖p(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk ‖uk(t)‖C[0,T ]

)2) 1
2

+

+ T ‖q(t)‖C[0,T ]

( ∞∑
k=1

(
λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2) 1
2

  , (56)

are true. Suppose that the data of the problem (1) - (3), (11), (12) satisfy the following
conditions:

1) ϕ(x) ∈ C2 [0, 1] , ϕ′′′(x) ∈ L2(0, 1), ϕ(0) = 0 , J(ϕ) = 0 , ϕ′′(0) = 0 ,

dϕ′′(1) + ϕ′(1) = 0 .

2) ψ(x) ∈ C2 [0, 1] , ψ′′(x) ∈ L2(0, 1), ψ(0) = 0 , J(ψ) = 0 , ψ′′(0) = 0 ,

dψ′′(1) + ψ′(1) = 0 .
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3) f(x, t), fx(x, t), fxx(x, t) ∈ C(DT ), fxxx(x, t) ∈ L2(DT ), f (0, t) = 0, J (f) = 0,
fxx(0, t) = 0,

dfxx(1, t) + fx(1, t) = 0 (0 ≤ t ≤ T ) .

4) 0 < a(t) ∈ C[0, T ], hi(t) ∈ C1[0, T ] (i = 1, 2),

h(t) ≡ h1(t)h′2(t)− h2(t)h′1(t) 6= 0 (0 ≤ t ≤ T ).

Then from (53) - (56), in view of (41), respectively, we obtain:

‖ũ(x, t)‖
B

3
2 ,

3
2

2,T

≤ A1(T ) +B1(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (57)

‖p̃(t)‖C[0,T ] ≤ A2(T ) +B2(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (58)

‖q̃(t)‖C[0,T ] ≤ A3(T ) +B3(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (59)

where
A1(T ) =

√
5M

∥∥ϕ′′′(x)
∥∥
L2(0,1)

+ (
√

5T + 2)M
∥∥ϕ′′′(x)

∥∥
L2(0,1)

+

+(
√

5T + 2)
√
TM ‖fxxx(x, t)‖L2(DT )

, B1 (T ) = (
√

5T + 2)T,

A2(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×{
∥∥h′2(t) (h′′1(t)− f(x1, t))− h′1(t) (h′′2(t)− f(x2, t))

∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

[
M
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+
√
TM ‖fxxx(x, t)‖L2(DT )

] }
,

B2(T ) =
√

2
∥∥h−1(t)∥∥

C[0,T ]
T

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

,

A3(T ) =
∥∥∥[h(t)]−1

∥∥∥
C[0,T ]

×

×
{∥∥h1(t) (f(x2, t)− a1(t)h′2(t)

)
− h2(t)

(
f(x1, t)− a1(t)h′1(t)

)∥∥
C[0,T ]

+

+
√

2

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(|h1(t)|+

∣∣h′2(t))∣∣∥∥C[0,T ]

[
M
∥∥ψ′′′(x)

∥∥
L2(0,1)

+

+
√
TM ‖fxxx(x, t)‖L2(DT )

] }
,

B3(T ) =
√

2
∥∥h−1(t)∥∥

C[0,T ]
T

( ∞∑
k=1

λ−1k

) 1
2 ∥∥a(t)(

∣∣h′1(t)∣∣+
∣∣h′2(t))∣∣∥∥C[0,T ]

.



On an Inverse Boundary Value Problem For a Third Order Partial Differential Equation 111

From inequalities (57) - (59) we conclude:

‖ũ(x, t)‖
B

3
2 ,

3
2

2,T

+ ‖p̃(t)‖C[0,T ] + ‖q̃(t)‖C[0,T ] ≤

≤ A(T ) +B(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

, (60)

where

A(T ) = A1(T ) +A2(T ) +A3(T ), B(T ) = B1(T ) +B2(T ) +B3(T ).

So, we can prove the following theorem:

Theorem 3. Let the conditions 1)- 4 ) be fulfilled and

B(T )(A(T ) + 2)2 < 1. (61)

Then the problem (1)-(3), (11), (12) has the only solution in a ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤

R = A(T ) + 2) from space E
3
2
, 3
2

T .

Proof. In space E
3
2
, 3
2

T we consider the equation

z = Φz, (62)

where z = {u, p, q}, components Φi(u, p, p )(i = 1, 2, 3) of operator Φ(u, p, q) are defined
by the right-hand sides of equations (48), (51), (52), respectively.

Consider the operator Φ(u, p, q) in the ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤ R = A(T ) + 2) from

E
3
2
, 3
2

T . Similarly to (60), we obtain that for any z, z1, z2 ∈ KR valid the following estimates:

‖Φz‖
E

3
2 ,

3
2

T

≤ A(T ) +B(T )(‖p(t)‖C[0,T ] + ‖q(t)‖C[0,T ]) ‖u(x, t)‖
B

3
2 ,

3
2

2,T

≤

≤ A(T ) +B(T )(A(T ) + 2)2 , (63)

‖Φz1 − Φz2‖
E

3
2 ,

3
2

T

≤ B(T )R
(
‖p1(t)− p2(t)‖C[0,T ] +

+ ‖q1(t)− q2(t)‖C[0,T ] + ‖u1(x, t)− u2(x, t)‖
B

3
2 ,

3
2

2,T

)
. (64)

Then, from estimates (63) and (64), taking into account (61), it follows that the
operator Φ acts in a ball K = KR and is contractive. Therefore, in the ball K = KR,
the operator Φ has a unique fixed point {u, p, q}, which is the unique solution of equation
(62), i.e. is the unique solution of the system (48), (51), (52) in the ball K = KR.

The function u(x, t), as an element of space B
3
2
, 3
2

2,T , is continuous and has continuous
derivatives ux(x, t), uxx(x, t), utx(x, t), utxx(x, t) in DT .



112 A.I. Ismayilov

From (43), by virtue of (38), it is not difficult to see that( ∞∑
k=1

(
√
λk
∥∥u′′k(t)∥∥C[0,T ]

)2

) 1
2

≤
√

2 ‖a(t)‖C[0,T ]


( ∞∑
k=1

(λk
√
λk
∥∥u′k(t)∥∥C[0,T ]

)2

) 1
2

+

+M
∥∥∥‖fx(x, t) + p(t)ux(x, t) + p(t)utx(x, t)‖C[0,T ]

∥∥∥
L2(0,1)

}
.

It follows that utt(x, t) is continuous in DT .
It is easy to verify that equation (1) and conditions (2), (3), (11) and (12) are satisfied

in the usual sense. Consequently, {u(x, t), p(t), q(t)} is the solution of the problem (1) -
(3), (11), (12). By virtue of Corollary 2 of Lemma 3, it is unique in the ball K = KR.
The theorem is proved.

Using Theorem 1, we prove the following

Theorem 4. Let all the conditions of Theorem 3 be satisfied and the conditions of match-
ing

ϕ(xi) = hi(0 ), ψ (xi) = h′i(0) (i = 1, 2) .

Then problem (1) - (5) has a unique classical solution in ball K = KR(‖z‖
E

3
2 ,

3
2

T

≤ R =

A(T ) + 2) of space E
3
2
, 3
2

T .
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