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Abstract. The existence of the derivative of simple layer logarithmic potential is shown and some
properties of the operator generated by the derivative of simple layer logarithmic potential are
studied in generalized Hölder spaces.
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1. Introduction

As is known (see [1]), the boundary value problems for vector Laplace equations are
reduced to a singular integral equation which depends on the derivative of simple layer
logarithmic potential

V (x) =

∫
L

−−−→
gradxΦ(x, y) ρ(y)dLy, x = (x1, x2) ∈ L, (1)

where L ⊂ R2 is a simple closed Lyapunov curve with the index 0 < α ≤ 1, ρ(y) is
a continuous function on the curve L, Φ(x, y) is a fundamental solution of the Laplace
equation ∆u = 0, i.e.

Φ(x, y) =
1

2π
ln

1

|x− y|
, x, y ∈ R2, x 6= y,

and ∆ is a Laplace operator.
Counterexamples provided by Lyapunov show (see [2]) that the derivatives for the

simple and double layer potentials with continuous density do not exist in general. It
should be noted that in [3], the boundedness of the operator generated by the direct
value of the derivative of simple layer acoustic potential was proved in generalized Hölder
spaces, and in [4], the acceptable formula for the calculation of derivative of the double
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layer acoustic potential was obtained and the basic properties of the operator generated
by the derivative of double layer acoustic potential were studied in generalized Hölder
spaces. Besides, based on these results, the approximate solutions of integral equations of
boundary value problems for the Helmholtz equation were studied in [5, 6, 7, 8]. However,
some basic properties of the operator (Aρ) (x) = V (x), x ∈ L in generalized Hölder spaces
have not been studied yet. This work is just dedicated to this matter.

2. Main Results

We denote by C (L) a space of all continuous functions on L with the norm ‖ρ‖∞ =
max
x∈L

|ρ (x)|, and we introduce a modulus of continuity of the form

ω(ϕ, δ) = δ sup
τ≥δ

ω̄(ϕ, τ)

τ
, δ > 0,

for the function ϕ(x) ∈ C (L), where ω̄(ϕ, τ) = max
|x−y|≤τ
x,y∈L

|ϕ(x)− ϕ(y)| .

Theorem 1. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and

diamL∫
0

ω(ρ, t)

t
dt < +∞.

Then the integral (1) exists in the sense of the Cauchy principal value, with

sup
x∈L
|V (x) | ≤M∗

‖ρ‖∞ +

diamL∫
0

ω (ρ, t)

t
dt

 .

Proof. Let V (x) = (V1 (x) , V2 (x)) , where

Vm (x) =

∫
L

∂ Φ(x, y)

∂xm
ρ(y) dLy, x = (x1, x2) ∈ L (m = 1, 2) .

Simple calculation yields

Vm (x) =
1

2π

∫
L

ym − xm
|x− y|2

ρ (y) dLy.

Let d > 0 be a radius of a standard circle for L (see [9]), and ~n(x) be an outer unit
normal at the point x ∈ L. Then, for every point x ∈ L, the neighborhood Ld(x) =
{y ∈ L : |y − x| < d} either intersects the line parallel to the normal ~n(x) at one point

∗Hereinafter M denotes a positive constant which can be different in different inequalities.
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only or does not intersect it at all, i.e. the set Ld(x) is uniquely projected onto the interval
Ωd(x) lying on the line Γ(x) tangent to L at the point x. On some part of Ld(x), we choose
a local rectangular coordinate system (u, v) centered at the point x, where the axis v is
directed along the normal ~n(x), and the axis u is directed in the positive direction of the
tangent line Γ(x). It is known that the coordinates of the point x are (0, 0). Besides, in
this coordinate system the neighborhood Ld(x) can be given by the equation v = f(u),
u ∈ Ωd(x), where f ∈ H1,α(Ωd(x)) and f(0) = 0, f ′(0) = 0. Here H1,α(Ωd(x)) denotes
the linear space of all continuously differentiable functions f on Ωd(x), which satisfy the
condition ∣∣f ′(u1)− f ′(u2)

∣∣ ≤Mf |u1 − u2|α ,∀u1, u2 ∈ Ωd(x),

where Mf is a positive constant depending on f , but not on u1 and u2. Let Γd(x) be a
part of the tangent line Γ(x) at the point x ∈ L lying inside a circle of radius d centered
at x. Besides, let ỹ ∈ Γ(x) be a projection of the point y ∈ Ld(x). Then (see [10])

|x− ỹ| ≤ |x− y| ≤ C1 |x− ỹ| , mesLd(x) ≤ C2 mesΓd(x),

where C1 and C2 are positive constants depending only on L, and mesLd(x) denotes the
length of the curve Ld(x).

Obviously, ∫
L

ym − xm
|x− y|2

ρ (y) dLy =

∫
L\Ld(x)

ym − xm
|x− y|2

ρ (y) dLy+

+

∫
Ld(x)

ym − xm
|x− y|2

(ρ(y)− ρ(x)) dLy+

+ρ (x)

∫
Ld(x)

ym − xm
|x− y|2

dLy , x ∈ L (m = 1, 2) . (2)

As we can see, the first integral on the right-hand side of the last equality exists as a
proper integral, while the second one converges as an improper integral, with∣∣∣∣∣∣∣

∫
L/Ld(x)

ym − xm
|x− y|2

ρ (y) dLy

∣∣∣∣∣∣∣ ≤M ‖ρ‖∞ , ∀x ∈ L (m = 1, 2) (3)

and ∣∣∣∣∣∣∣
∫

Ld(x)

ym − xm
|x− y|2

(ρ(y)− ρ(x)) dLy

∣∣∣∣∣∣∣ ≤
≤M

diamL∫
0

ω (ρ, t)

t
dt < +∞, ∀x ∈ L (m = 1, 2) .

(4)
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It remains to prove that the integral∫
Ld(x)

ym − xm
|x− y|2

dLy (m = 1, 2)

exists in the sense of the Cauchy principal value. Let d0 = d/C1. It is clear that (−d0, d0) ⊂
Ωd(x). Using the calculation formula for curvilinear integral, we obtain

∫
Ld(x)

y1 − x1

|x− y|2
dLy =

∫
Ωd(x)\(−d0,d0)

u
√

1 + (f ′(u))2

u2 + (f(u))2 du +

d0∫
−d0

du

u
+

+

d0∫
−d0

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+

d0∫
−d0

u

(
1

u2 + (f(u))2 −
1

u2

)
du.

Denote the integrals on the right-hand side of the last equality by A1,A2, A3 and A4,
respectively.

As we can see, the integral A1 exists as a proper integral, while the integral A2 exists in
the sense of the Cauchy principal value and is equal to zero. Besides, taking into account
that ∣∣f ′(u)

∣∣ ≤M |u|α (5)

(see [9]), we find

|A3| =

∣∣∣∣∣∣∣∣
d0∫
−d0

u (f ′(u))2(
u2 + (f(u))2

) (
1 +

√
1 + (f ′(u))2

)du
∣∣∣∣∣∣∣∣ ≤M

d0∫
−d0

|u|2α−1 du ≤M.

As

| f(u)| = | f(u) − f(0) | ≤M |u| 1+α , (6)

we have

|A4 | =

∣∣∣∣∣∣
d0∫
−d0

u (f(u))2

u2
(
u2 + (f(u))2

) du
∣∣∣∣∣∣ ≤M

d0∫
−d0

|u|2α−1 du ≤M

and ∣∣∣∣∣∣∣
∫

Ld(x)

y2 − x2

|x− y|2
dLy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

Ωd(x)

f (u)
√

1 + (f ′ (u))2

u2 + (f(u))2 du

∣∣∣∣∣∣∣ ≤M
∫

Ωd(x)

|u|α−1 du ≤M.
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So we obtain∣∣∣∣∣∣∣ ρ (x)

∫
Ld(x)

ym − xm
|x− y |2

dLy

∣∣∣∣∣∣∣ ≤M ‖ρ‖∞ , ∀x ∈ L (m = 1, 2) . (7)

Considering the inequalities (3), (4) and (7) in (2), we finish the proof of the theorem.
Now let’s show the validity of the Zygmund estimate for the direct value of the deriva-

tive of simple layer logarithmic potential.

Theorem 2. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and

diamL∫
0

ω(ρ, t)

t
dt < +∞.

Then for every m = 1, 2 and for any two points x′ , x′′ ∈ L the following estimates hold:∣∣Vm(x′)− Vm(x′′)
∣∣ ≤

≤Mρ

hα + ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 if 0 < α < 1,

∣∣Vm(x′)− Vm(x′′)
∣∣ ≤

Mρ

h |lnh|+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 if α = 1,

where h = |x′ − x′′ |, and Mρ is a positive constant depending only on L and ρ.

Proof. Let 0 < α < 1 and m = 1. Consider any two points x′, x′′ ∈ L such that h is
sufficiently small. It is not difficult to see that

V1(x′)− V1(x′′) =
1

2π

∫
L

(
(y1 − x′1) (ρ (y)− ρ (x′))

|x′ − y|2
−

− (y1 − x′′1) (ρ (y)− ρ (x′′))

|x′′ − y|2

)
dLy+

+

ρ (x′)

2π

∫
L

y1 − x′1
|x′ − y|2

dLy −
ρ (x′′)

2π

∫
L

y1 − x′′1
|x′′ − y|2

dLy

 .

Denote two terms on the right-hand side of the last equality by F (x′, x′′) and G(x′, x′′),
respectively.
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Estimate the integral F (x′, x′′).

F (x′, x′′) =

∫
L\Ld(x′)

(
(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
− (y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2

)
dLy+

+

∫
Lh/2(x′)

(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
dLy −

∫
Lh/2(x′′)

(y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2
dLy−

−
∫

Lh/2(x′)

(y1 − x′′1) (ρ (y)− ρ (x′′))

2π |x′′ − y|2
dLy +

∫
Lh/2(x′′)

(y1 − x′1) (ρ (y)− ρ (x′))

2π |x′ − y|2
dLy+

+

∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

(
y1 − x′1

) (
ρ (y)− ρ

(
x′
))
×

×
(

1

2π |x′ − y|2
− 1

2π |x′′ − y|2

)
dLy+

+

∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

(x′′1 − x′1) (ρ (y)− ρ (x′))

2π |x′′ − y|2
dLy+

+
(
ρ
(
x′′
)
− ρ

(
x′
)) ∫
Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′))

y1 − x′′1
2π |x′′ − y|2

dLy.

Denote the terms on the right-hand side of the last equality by F1(x′, x′′), F2(x′, x′′),
F3(x′, x′′), F4(x′, x′′), F5(x′, x′′), F6(x′, x′′), F7(x′, x′′) and F8(x′, x′′), respectively.

Obviously, |F1(x′, x′′)| ≤M ‖ρ‖∞ h.

Using the calculation formula for curvilinear integral, we have

∣∣F2(x′, x′′)
∣∣ ≤M h∫

0

ω (ρ, t)

t
dt,

∣∣F3(x′, x′′)
∣∣ ≤M h∫

0

ω (ρ, t)

t
dt.

Besides, considering the inequalities

h/2 ≤
∣∣y − x′′∣∣ ≤ 3 h/2, y ∈ Lh/2(x′),

we obtain ∣∣F4(x′, x′′)
∣∣ ≤M ω (ρ, 3h/2)

h
mesLh/2(x′) ≤M ω (ρ, h) .

Similarly, taking into account the inequality

h/2 ≤
∣∣y − x′∣∣ ≤ 3 h/2, y ∈ Lh/2(x′′),



On the Properties of Operator Generated by the Direct Value 17

we obtain |F5(x′, x′′)| ≤M ω (ρ, h).
For every y ∈ Ld(x′)\(Lh/2(x′)

⋃
Lh/2(x′′)) we have∣∣x′ − y∣∣ ≤ ∣∣x′ − x′′∣∣+

∣∣x′′ − y∣∣ ≤ 3
∣∣x′′ − y∣∣

and ∣∣x′′ − y∣∣ ≤ 3
∣∣x′ − y∣∣ ,

then ∣∣F6(x′, x′′)
∣∣ ≤Mh

d∫
h

ω (ρ, t)

t2
dt,

∣∣F7(x′, x′′)
∣∣ ≤Mh

d∫
h

ω (ρ, t)

t2
dt.

Let’s estimate the term F8(x′, x′′). To do so, we choose on some part of Ld(x
′) a local

rectangular coordinate system (u, v) centered at the point x′, where the axis v is directed
along the normal ~n(x′), and the axis u is directed in the positive direction of the tangent
line Γ(x′). The coordinates of the point x′ are (0 , 0), and the coordinates of the point x′′

are denoted by (u′′, f(u′′)). Let h0 = |u′′| and Ωh/2 (x′, x′′) denote the projection of the
set Lh/2 (x′)

⋃
Lh/2 (x′′) onto the tangent line Γ(x′).

By the calculation formula for curvilinear integral, we obtain

F8(x′, x′′) =
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

u

(√
1 + (f ′ (u))2 − 1

)
u2 + (f(u))2 du+

+
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

(
1

u2 + (f(u))2 −
1

u2

)
u du+

+
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

du

u
.

Taking into account (5), we find√
1 + (f ′ (u))2 − 1 ≤M |u|2α , ∀u ∈ Ωd(x

′).

Besides, by virtue of (6) we obtain∣∣∣∣ 1

u2 + (f(u))2 −
1

u2

∣∣∣∣ ≤M |u|2α−2 , ∀u ∈ Ωd(x
′)\0.

Then ∣∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

u

(√
1 + (f ′ (u))2 − 1

)
u2 + (f(u))2 du

∣∣∣∣∣∣∣∣ ≤Mω (ρ, h)



18 M.N. Bakhshaliyeva

and ∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

(
1

u2 + (f(u))2 −
1

u2

)
u du

∣∣∣∣∣∣∣ ≤Mω (ρ, h) .

As ∫
(−d0,d0)\ (−2h,2h)

du

u
=

−2h∫
−d0

du

u
+

d0∫
2h

du

u
= 0,

we have ∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

∫
Ωd(x′)\Ωh/2(x′,x′′)

du

u

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
ρ (x′′)− ρ (x′)

2π

 ∫
Ωd(x′)\(−d0,d0)

du

u
+

∫
(−2h,2h)\Ωh/2(x′,x′′)

du

u


∣∣∣∣∣∣∣ ≤

≤ ω (ρ, h)

2π

M +M

2h∫
h/C1

du

u

 ≤Mω (ρ, h) ,

and, consequently, |F8(x′, x′′)| ≤M ω (ρ, h).

As a result, summing up the estimates obtained above for Fj(x
′, x′′), j = 1 , 8, we

find:

∣∣F (x′, x′′)
∣∣ ≤M

‖ρ‖∞ h+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+ h

diamL∫
h

ω (ρ, t)

t2
dt

 .

Now let’s estimate the expression G(x′, x′′). It is clear that

G(x′, x′′) =
ρ (x′)− ρ (x′′)

2π

∫
L

y1 − x′1
|x′ − y|2

dLy+

+
ρ (x′′)

2π

 ∫
L\Ld(x′)

y1 − x′1
|x′ − y|2

dLy −
∫

L\Ld(x′)

y1 − x′′1
|x′′ − y|2

dLy

+

+
ρ (x′′)

2π

 ∫
Ld(x′)

y1 − x′1
|x′ − y|2

dLy −
∫

Ld(x′)

y1 − x′′1
|x′′ − y|2

dLy

 .
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Denote the terms on the right-hand side of the last equality by G1(x′, x′′), G2(x′, x′′)
and G3(x′, x′′), respectively.

As the integral ∫
L

y1 − x′1
|x′ − y|2

dLy

converges in the sense of the Cauchy principal value, we have∣∣G1(x′, x′′)
∣∣ ≤M ω (ρ, h) .

Besides, it is clear that ∣∣G2(x′, x′′)
∣∣ ≤M ‖ρ‖∞ h.

As is known, the following relations are true in the sense of the Cauchy principal value:

d0∫
−d0

du

u
= 0 and

u′′+d0−h0∫
u′′−d0+h0

du

u− u′′
= 0.

Then the term G3(x′, x′′) can be represented as follows:

G3(x′, x′′) =
ρ(x′′)

2π

− ∫
(−d0,d0)\(u′′−d0+h0,u′′+d0−h0)

du

u− u′′
+

+

∫
Ωd(x′)\(−d0,d0)

(
u

u2 + (f(u))2 −
u− u′′

(u− u′′)2 + (f(u)− f(u′′))2

)√
1 + (f ′(u))2du+

+

∫
(−d0,d0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

u′′
(√

1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+

+

∫
(−d0,d0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

(√
1 + (f ′(u))2 − 1

)
×

×
(u− u′′)

(
(u− u′′)2 − u2 + (f(u)− f(u′′))2 − (f(u))2

)
(
u2 + (f(u))2

) (
(u− u′′)2 + (f(u)− f(u′′))2

) du+

+

h0/2∫
−h0/2

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du+
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+

u′′+h0/2∫
u′′−h0/2

u

(√
1 + (f ′(u))2 − 1

)
u2 + (f(u))2 du−

h0/2∫
−h0/2

(u− u′′)
(√

1 + (f ′(u))2 − 1

)
(u− u′′)2 + (f(u)− f(u′′))2 du−

−

√
1 + (f ′(u′′))2 − 1

1 + (f ′(u′′))2

u′′+h0/2∫
u′′−h0/2

du

u− u′′
−

−
u′′+h0/2∫
u′′−h0/2

(u− u′′)
(√

1 + (f ′(u))2 −
√

1 + (f ′(u′′))2

)
(u− u′′)2 + (f(u)− f(u′′))2 du−

−
(√

1 + (f ′(u′′))2 − 1

) u′′+h0/2∫
u′′−h0/2

1

u− u′′

(
(u− u′′)2

(u− u′′)2 + (f(u)− f(u′′))2 −

− 1

1 + (f ′(u′′))2

)
du+

∫
(−d0,d0)\(u′′−d0+h0,u′′+d0−h0)

(
u

(
1

u2 + (f(u))2 −
1

u2

)
−

−
(
u− u′′

)( 1

(u− u′′)2 + (f(u)− f(u′′))2 −
1

(u− u′′)2

))
du+

+

∫
(u′′−d0+h0,u′′+d0−h0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

u′′
(

1

u2 + (f(u))2 −
1

u2

)
du+

+

∫
(u′′−d0+h0,u′′+d0−h0)\((−h0/2,h0/2)

⋃
(u′′−h0/2,u′′+h0/2))

((
1

u2 + (f(u))2−

− 1

(u− u′′)2 + (f(u)− f(u′′))2

)
+

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) − 1

u2

×

×
(
u− u′′

)
du+

h0/2∫
−h0/2

(
1

u2 + (f(u))2 −
1

u2

)
u du+

+

u′′+h0/2∫
u′′−h0/2

(
1

u2 + (f(u))2 −
1

u2

)
u du+

h0/2∫
−h0/2

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) −

− 1

(u− u′′)2 + (f(u)− f(u′′))2

) (
u− u′′

)
du+
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+

u′′+h0/2∫
u′′−h0/2

 1

(u− u′′)2
(

1 + (f ′(u′′))2
) − 1

(u− u′′)2 + (f(u)− f(u′′))2

 (
u− u′′

)
du

 .
As there exists a point u∗ = u′′ + θ (u− u′′) such that

f(u)− f(u′′) = f ′(u∗) (u− u′′),

where θ ∈ (0, 1), it is not difficult to show that∣∣G3(x′, x′′)
∣∣ ≤M ‖ρ‖∞ hα.

Consequently, ∣∣G(x′, x′′)
∣∣ ≤M (ω(ρ, h) + ‖ρ‖∞ h

α) .

Now, taking into account the estimates derived above for F (x′, x′′) and G(x′, x′′), we
arrive at the conclusion that if 0 < α < 1, then

∣∣V1(x′)− V1(x′′)
∣∣ ≤Mρ

(
hα + ω (ρ, h) +

∫ h

o

ω (ρ, t)

t
dt+ h

∫ diamL

h

ω (ρ, t)

t2
dt

)
.

Similarly, it is not difficult to prove that

∣∣V2(x′)− V2(x′′)
∣∣ ≤Mρ

(
hα + ω (ρ, h) +

∫ h

o

ω (ρ, t)

t
dt+ h

∫ diamL

h

ω (ρ, t)

t2
dt

)
.

It follows from the proof of the theorem that if α = 1, then

∣∣Vm(x′)− Vm(x′′)
∣∣ ≤Mρ

h |lnh|+ ω (ρ, h) +

h∫
o

ω (ρ, t)

t
dt+

+ h

diamL∫
h

ω (ρ, t)

t2
dt

 , m = 1, 2.

Theorem is proved.

Theorem 3. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and∫ diamL

0

ω(ρ, t)

t
dt < +∞.

Then the following estimates hold:

ω (V, h) ≤Mρ

(
hα + ω (ρ, h) +

∫ h
o
ω (ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt
)

if 0 < α < 1,

ω (V, h) ≤Mρ

(
h | ln h |+ ω (ρ, h) +

∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω (ρ,t)
t2

dt
)

if α = 1,

where Mρ is a positive constant depending only on L and ρ.
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Proof. Consider the function

ψ (h) =

{
hα + ω (ρ, h) +

∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt, if 0 < α < 1,

h |lnh|+ ω (ρ, h) +
∫ h
o
ω(ρ,t)
t dt+ h

∫ diamL
h

ω(ρ,t)
t2

dt, if α = 1.

It is not difficult to show that lim
h→0

ψ (h) = 0, the function ψ (h) is non-decreasing, and

the function ψ (h) /h is non-increasing. Then, using Theorem 2, we finish the proof of the
theorem.

Introduce the following classes of functions on (0, diamL]:

χ =

{
ϕ : ϕ ↑, lim

δ→0
ϕ (δ) = 0, ϕ (δ) /δ ↓

}
,

J0 (S) =

ϕ ∈ χ :

diamL∫
0

ϕ (t)

t
dt < +∞

 .

Also consider the function

Z (h, ϕ) =


hα + ϕ (h) +

h∫
o

ϕ(t)
t dt+ h

∫ diamL
h

ϕ(t)
t2
dt, if 0 < α < 1,

h |lnh|+ ϕ (h) +
h∫
o

ϕ(t)
t dt+ h

diamL∫
h

ϕ(t)
t2
dt, if α = 1.

Where there is no misunderstanding, we will sometimes write Z (h), Z (ϕ) instead of
Z (h, ϕ). It is clear that lim

h→0
Z (h) = 0, the function Z (h) is non-decreasing, and the

function Z (h) /h is non-increasing.

Let ϕ ∈ χ. Denote by H (ϕ) the linear space of all continuous functions ρ on L which
satisfy the condition

|ρ (x)− ρ (y)| ≤ Cρϕ (|x− y|) , x, y ∈ L,

where Cρ is a positive constant depending on L and ρ, but not on x and y. It is known
(see [11]) that the space H (ϕ) is a Banach space equipped with the norm

‖ρ‖H(ϕ) = sup
x∈L
|ρ (x)|+ sup

x,y∈L
x 6=y

|ρ (x)− ρ (y)|
ϕ (|x− y|)

.

Theorem 3 implies

Theorem 4. Let ϕ ∈ J0 (L). Then the operator (Aρ) (x) = V (x), x ∈ L, acts boundedly
from H (ϕ) to H (Z (ϕ)), and

‖V ‖H(Z(ϕ)) ≤M ‖ρ‖H(ϕ) .
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Denote by Hβ (L) the space of all continuous functions f on L which satisfy the Hölder
condition

|f (x)− f (y) | ≤Mf |x− y|β , ∀x, y ∈ L,

where 0 < β ≤ 1 and Mf is a positive constant depending on f , but not on x and y. It is
known (see [11]) that the space Hβ (L) is a Banach space equipped with the norm

‖f‖β = sup
x∈L
|f (x)|+ sup

x,y∈L
x 6=y

|f (x)− f (y)|
|x− y|β

.

Corollary 1. Let L be a simple closed Lyapunov curve with the index 0 < α ≤ 1 and
ρ ∈ Hβ (L), 0 < β ≤ 1. The following assertions are true:

(a) if α < β, then V ∈ Hα (L) and ‖V ‖α ≤M ‖ρ‖β;

(b) if β ≤ α < 1, then V ∈ Hβ (L) and ‖V ‖β ≤M ‖ρ‖β;

(c) if α = 1, β < 1, then V ∈ Hβ (L) and ‖V ‖β ≤M ‖ρ‖β;

(d) if α = 1, β = 1, then V ∈ Hγ (L) and ‖V ‖γ ≤M ‖ρ‖1, where γ ∈ (0, 1).
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