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On Some Class of Extremal Manifolds

I.Sh. Jabbarov∗, L.G. Ismailova

Abstract. In this paper it is studied some class of extremal manifolds given by a system of smooth
functions. V. G. Sprindzuk in [11] put question on obtaining the conditions in which a manifold is
extremal. In this paper it is given such a condition in the terms of convergence exponent for some
improper integrals like the special integral of Terry’s problem.
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1. Introduction.

In 1932 Mahler K. had advanced a conjecture about S-numbers. To formulate this con-
jecture let’s introduce some notations. We shall denote by Π a following set of polynomials
with integral coefficients of degree not exceeding n:

Π = {f(x) =
n∑
i=0

aix
i 6= 0|ai ∈ Z}.

The number
H(f) = max(|a0|, |a1|, ..., |an|)

is called to be the height of the polynomial

f(x) = a0 + a1x+ · · ·+ anx
n

with real coefficients. Let α be a transcendental number. Then f(α) 6= 0. Consider
some real number H > 0, and take all polynomials from the class Π with the heights not
exceeding H(f) ≤ H. Mahler had proven that the inequality

‖f(α)‖ > H−nκ;h(f) ≤ H

is satisfied for all polynomials in the class Π with the height not exceeding H for almost
all real transcendental numbers, in the Lebesgue sense. The value firstly established for
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the constant κ by Mahler was 4+ε, with arbitrarily small positive constant ε. Mahler had
conjectured that it is possible to take κ = 1 + ε. This conjecture was proven by Sprindzuk
V. G. in 1965 by the method of essential and non-essential domains (see [11]).

For a given real number H > 0 the number of polynomials with heights doesn’t ex-
ceeding H is finite. Denote by ωn(α) the supremum of that positive numbers γ > 0, for
which the inequality

|f(α)| < H−γ ; H = H(f) (1)

is satisfied for infinite number of polynomials from Π, when H → ∞. It means that for
arbitrary ε > 0 there is a non-bounded from above sequence H1, H2, ... such that (1) is
satisfied for all such Hm with

γ = ωn(α) + ε.

This number is defined for every given n, and, by this reason, one can define the number
(finite or infinite)

g = lim
n→∞

ωn(α)

n
.

Note that for transcendental numbers due to Dirichlet’s principle we always have
ωn(α) ≥ n and therefore, g ≥ 1. The Mahler hypothesis is consisted in the statement
that ωn(α) = n for almost all transcendental numbers α.

Consider now the system of inequalities

max (‖α1q‖ , ‖α2q‖ , ..., ‖αnq‖) < q−u, u > 0. (2)

Let u(α1, ..., αn) be defined as a sup of such u > 0 for which (2) is satisfied for infinite
set of natural numbers q. It is not difficult to show that u(α1, ..., αn) ≥ 1/n (see [10]).
From this definition it follows that the inequality (2) is satisfied for infinitely many natural
numbers q when u < 1/n. When u(α1, ..., αn) = 1/n for almost all points of the variety
(α1, ..., αn) ∈ Rn of less dimension, then we call this manifold as an extremal manifold.
By Khintchine’s Transference Principle (see [5, 9]), mentioned above Mahler hypothesis is
equivalent to the hypothesis on extremality of the variety (x, x2, . . . , xn).

In 1993 Karatsuba A. A. advanced an opinion that the question on extremality of some
algebraic varieties could be investigated by using of results on convergence exponent in
the Tarry’s problem (about the problem see [1]). This hypothesis was proven in [7].

Let we are given with some continuously differentiable n-dimensional manifold Γ =
(f1(x̄), ..., fN (x̄)), x̄ ∈ Ω ⊂ Rn, n < N . In this work we continue consideration of condi-
tions supplying the extremality of the manifold. Consider the integral (for some integral
h > 0) ∫ ∞

−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnfn(x̄))dx̄

∣∣∣∣2h dα1dα2 · · · dαn.

The number γ is called to be the convergence exponent for the integral∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnf1(x̄))dx

∣∣∣∣2h dα1dα2 · · · dαn,
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if this integral is convergent when 2h > γ and divergent when 2h < γ. In the section
3 we prove the extremality of above manifold if the last integral has finite exponent of
convergence.

Authors express their sincere thanks to the professor M. Bayramoglu for useful discus-
sions concerning the result of the article.

2. Auxiliary statements

Following lemma is known as Borel-Kantelly’s lemma and plays an important role in
the questions concerning extremality of manifolds (see[10]).

Lemma 1. Let Aq (q = 1, 2, ...) be a sequence of measurable sets in Rn, and

∞∑
q=1

mesAq <∞.

Then the measure of a set E of such points x ∈ Rn which fall into infinite number of sets
Aq equals to zero.

Proof. For every x ∈ E ⊂ Rn and natural n there is a natural number m > n for
which x ∈ Am. Then for any x ∈ E and natural number n ∈ N

x ∈
∞⋃
k=n

Ak.

So,

E ⊂
∞⋃
k=n

Ak.

Since the series of measures is convergent, then for arbitrary ε > 0 there exist a number
n such that

mes
∞⋃
k=n

Ak ≤
∞∑
k=n

mesAk < ε.

From the said above we deduce that mesE = 0. Lemma 1 is proven.
Below we will use the symbol << introduced by Vinogradov I. M. For two quantities

A and B we write A << B if one can find a fixed contant c such that A ≤ cB.
Following lemma belongs to Kavalevskaja E. I. (see [4,8,10]).
Lemma 2. Let m, n, q be natural numbers, fj(x̄), j = 1, ..., N be a real measurable

functions defined in the cube Ω = [0, 1]r, 1 ≤ r ≤ N . Denote by µ(q) the measure of a set
of that x̄ ∈ Ω = [0, 1]r for which

‖fj(x̄)‖ < q−rj (1 ≤ j ≤ N).

Then,

µ(q) << q−r
∑
|c1|<qr1

· · ·
∑

|cN |<qrN

∣∣∣∣∫
Ω
e2πi(c1f1(x̄)+···+cNfN (x̄))dx̄

∣∣∣∣ ;
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here r = r1 + · · ·+ rN , and the constant in the symbol << depends on N only.
Let we are given with some continuously differentiable n-dimensional manifold Γ =

(f1(x̄), ..., fN (x̄)), x̄ ∈ Ω = [0, 1]n, n < N . Taking natural number h such that nh > N
consider the map

ϕj : Ωh → RN

defined by the equalities

ϕj(x̄) = ϕj(x̄1, ..., x̄h) = fj(x̄1) + · · ·+ fj(x̄h); x̄s = (xs1, ..., xsm).

Let the Jacoby matrix of the map (x̄1, ..., x̄) 7→ (ϕ1(x̄), ..., ϕh(x̄)), i. e. the matrix
composed of the gradients of the functions ϕ1(x̄), ..., ϕh(x̄), be the matrix of maximal
rank. It is easy to see that the Jacoby matrix has a view

∂ϕ1

∂x11
· · · ∂ϕ1

∂xhn
...

. . .
...

∂ϕN
∂x11

· · · ∂ϕN
∂xhn

 .

In the work [3] there was proven the following result.
Lemma. If the Jacoby matrix of the map (x̄1, ..., x̄h) 7→ (ϕ1(x̄), ..., ϕh(x̄)) has a

maximal rank for some natural h then the differentiable manifold Γ is extremal.

3. Main results.

Theorem 1. Let g(x̄) =
∑N

i=1 αifi(x̄). Then, in the conditions of the lemma the
following formula is fair∫ ∞

−∞
· · ·
∫ ∞
−∞

(∫
Ω
e2πig(x̄)dx̄

)2h

dα1 · · · dαN =

∫
Π

ds√
G0

,

where the surface integral at the right side of the equality is taken over the surface defined
by system of the equations

f1(x̄1) + f1(x̄2) + · · ·+ f1(x̄h)− f1(x̄h+1)− f1(x̄h+2)− · · · − f1(x̄2h) = 0,

f2(x̄1) + f2(x̄2) + · · ·+ f2(x̄h)− f2(x̄h+1)− f2(x̄h+2)− · · · − f2(x̄2h) = 0,

· · · · · · · · ·

fj(x̄1) + fj(x̄2) + · · ·+ fj(x̄h)− fj(x̄h+1)− fj(x̄h+2)− · · · − fj(x̄2h) = 0, (3)

· · · · · · · · ·

fN (x̄1) + fN (x̄2) + · · ·+ fN (x̄h)− fN (x̄h+1)− fN (x̄h+2)− · · · − fN (x̄2h) = 0

in Ω2h, G0 is a Gram determinant of gradients of functions standing on the left parts of
equations from the system (3).
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Remark. We can describe G0 more explicitly. Let’s designate

Fj(x̄) = fj(x̄1) + fj(x̄2) + · · ·+ fj(x̄h)−

−fj(x̄h+1)− fj(x̄h+2)− · · · − fj(x̄2h)

with x̄ = (x̄1, x̄2, ..., x̄2h) ∈ R2hn. It is easy to see that the gradient vector for the function
Fj(x̄) has a view

∇Fj(x̄) = (∇fj(x̄1),∇fj(x̄2), ...,∇fj(x̄h),

−∇fj(x̄h+1),−∇fj(x̄h+2), ...,−∇fj(x̄2h)).

Now we put

A0 =

 ∇F1(x̄)
...

∇FN (x̄)

 .

Then one can write G0 = det(A0A
T
0 ).

Proof of the theorem 1. Performing easy calculations we get(∫
Ω
e2πig(x̄)dx̄

)h
=

∫
Ω
· · ·
∫

Ω
e2πi(g(x̄1)+···+g(x̄h))dx̄1 · · · dx̄h, (4)

where the function g(x̄) stands for a linear combination of the functions f1(x̄), ..., f1(x̄):

g(x̄) = α1f1(x̄) + · · ·+ αNfN (x̄)

with real coefficients. Consider now the functions

ϕj(x̄) = uj = fj(x̄1) + · · ·+ fj(x̄h), j = 1, ..., N,

with x̄s = (xs1, ..., xsn). Since the considered functions are continuous and the domain
Ω is closed, then there exists a positive number η > 0 such that G ≥ η. Applying the
consequence of the lemma 1 from the work [2,6], we can represent the integral (4) as below∫

Ω
· · ·
∫

Ω
e2πi(α1(f1(x̄1)+···+f1(x̄h))+···+αN (fN (x̄1)+···+fN (x̄h)))dx̄1 · · · dx̄h =

=

∫ M1

m1

· · ·
∫ Mn

mn

(∫
Π

ds√
G

)
e2πi(α1u1+···+αnun)du1 · · · dun, (5)

designating by Π = Π(ū) the surface defined by the system of equations

fj(x̄1) + · · ·+ fj(x̄h) = uj , j = 1, ..., N,

and here the numbers mj , Mj stand for the minimal and maximal values of the function
ϕj(x̄). Then, considering the last integral as a Fourier transformation, we will have by
Parseval identity:∫ ∞

−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+···+αNfN (x̄))dx̄

∣∣∣∣2h dα1 · · · dαN =
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= (2π)N
∫ M1

m1

· · ·
∫ Mn

mn

(∫
Π

ds√
G

)2

du1 · · · dun, (6)

and the equality is understood in the sense that from the convergence of one of its two
parts the convergence of other part follows, and the corresponding values are equal.

Now we will use (6) to prove the statement of the main theorem. Let’s assume that
the right side part of the equality (6) is convergent. Applying the lemma 1, we have:∫

Π(ū)

ds√
G

= lim
h→0

1

(2δ)N

∫
uj−δ<ϕj<uj+δ

dx̄. (7)

Therefore, designating the left part of (6) ϕD(ū), we can, represent the last integral by
the lemma 1 and its corollary write

∫ M1

m1

· · ·
∫ MN

mN

(∫
Π(ū)

ds√
G

)2

dū =

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

=

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū) lim
h→0

1

(2δ)N

∫
uj−δ<ϕj<uj+δ

dx̄dū.

Applying the lemma 3 under integral on the right part it is possible to rearrange the
orders of integration and passing to the limit. For this purpose we put δ = δn with δn → 0
and apply the specified lemma to our integral, when δ = δn:∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

=

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū) lim
n→∞

1

(2δn)N

∫
uj−δn<ϕj<uj+δn

dx̄dū =

= lim
n→0

1

(2δn)N

∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)

∫
uj−δn<ϕj<uj+δn

dx̄dū =

= lim
h→0

1

(2δ)N

∫ M1

m1

· · ·
∫ MN

mN

(∫
Π′(ū)

ds′√
G′

)∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄dū, (8)

where ds′ means an element of the area of the surface defined in Ω by the system of
equations fj(x̄

′
1) + · · · + fj(x̄

′
h) = uj , j = 1, ..., N , and is a Gram determinant for the

system of functions standing at the left side of this system of equations. For the points
x̄′ ∈ Ωh we introduce the function f(x̄′) defining its value at x̄′ ∈ Π′(ū) to be equal to the
inner integral:

f(x̄′) =

∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄.
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Let’s consider, at fixed δ, inner integral in the last chain of equalities (8), i.e. the
integral ∫

Π′(ū)

∫ uj − δ < ϕj < uj + δ
j = 1, ..., N

dx̄

 ds′√
G′

=

∫
Π′(ū)

f(x̄′)
ds′√
G′
.

Let’s prove that the function f(x̄′) is continuous in Ωh. Let x̄′1, x̄
′
2 ∈ Ωh,x̄′1 =

(x̄11, ..., x̄1h), x̄′2 = (x̄21, ..., x̄2h); x̄ij = (x1
ij , ..., x

n
ij) ∈ Rn, i = 1, 2, and∑

j

∑
s

(xs1j − xs2j)2 ≤ ε

for given ε > 0. Then, denoting u1
j = ϕj(x̄

′
1), u2

j = ϕj(x̄
′
2) (here we use top indexing) we

in accordance with the formula on finite increments have:

∣∣u1
j − u2

j

∣∣ =

∣∣∣∣∣∣
∑

1≤s≤n

∑
1≤i≤h

(
∂fj(x̄

′
i + θ̄)

∂xis
(x′1i

s−x′2i
s
)

)∣∣∣∣∣∣ ≤M√nhε
for some θ̄, if

∑
s

∑
i(x
′
1i
s − x′2i

s)2 ≤ ε, and M stands for maximal value of partial
derivatives of the functions fj(x̄) in the considered domain. Therefore, recalling the defi-
nition of the function f(x̄′), we find:∣∣f(x̄′1))− f(x̄′2)

∣∣ =|
∫
u1
j − δ < ϕj < u1

j + δ

j = 1, ..., N

dx̄−

−
∫
u2
j − δ < ϕj < u21

j + δ

j = 1, ..., N

dx̄ | .

The integrals at the right side of this equality express volumes of pre-images of two cubes
with sufficiently close centers, when ε is small enough. From geometric representations
it is clear that the difference between these volumes coincides with the sum of volumes
of pre-images of parallelepipeds including lateral sides of the two initial cubes. Since the
number of lateral sides is not exceeding 2N , then we have∣∣f(x̄′1)− f(x̄′2)

∣∣ ≤ 2N max
j

∫
u1j−δ−M

√
nhε<ϕj<u1j−δ+M

√
nhε

dx̄+

+2N max
j

∫
u2j+δ−M

√
nhε<ϕj<u2j+δ+M

√
nhε

dx̄.

These integrals can be bounded by a similar way. Estimate first of them. We have∫
u2j+δ−M

√
nhε<ϕj<u2j+δ+M

√
nhε

dx̄ =
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√
nhε

u2j+δ−M
√
nhε

du1

∫ M2

m2

du2 · · ·
∫ MN

mN

duN

∫
Π(ū)

ds√
G
≤

≤ 2

N∏
k=2

(Mk −mk)

√
nhε

η
Π0; Π0 = max

ū

∫
Π(ū)

ds√
G

Since the domain Ω is bounded and the functions are continuous the last expression tends
to 0 as ε → 0. Therefore, the function f(x̄′) is continuous. Applying the consequence to
the lemma 1 of the work [6], we find:∫ M1

m1

· · ·
∫ MN

mN

∫
Π(ū)

dū

∫
uj − δ < ϕj < uj + δ

j = 1, ..., N

dx̄
ds′√
G′

=

∫ M1

m1

· · ·
∫ MN

mN

dū

∫
Π(ū)

f(x̄′)
ds′√
G′

=

∫
−δ < ϕj − ϕ′j < δ

j = 1, ..., N

dx̄dx̄′.

So, from the equality (8) we derive∫ M1

m1

· · ·
∫ MN

mN

ϕD(ū)ϕD(ū)dū =

= lim
h→0

1

(2δ)N

∫
−δ < ϕj − ϕ′j < δ

j = 1, ..., N

dx̄dx̄′ =

∫
Π0

ds√
G0

,

where G0 is defined above.

The left part of the received equality under condition of existence of the right or left
part of (8) coincides with the integral on the right part (8). It is clear that the all of
reasonings performed above can be made in opposite direction. So, the theorem 1 is
proven.

Theorem 2. Let the conditions of the theorem 1 be satisfied. If the integral∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣∣∫
Ω
e2πi(α1f1(x̄)+α2f2(x̄)···+αnfn(x̄))dx

∣∣∣∣2h dα1dα2 · · · dαn,

has finite exponent of convergence, then the manifold Γ = (f1(x̄), f2(x̄), · · · , fn(x̄)) is
extremal.

This theorem is an easy consequence of the theorem 1.
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