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On Strong Law of Large Numbers for the Family of First
Passage Times for the Level in Random Walk Described
by a Non-Linear Function of Autoregression Process of
Order One (AR (1))
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Abstract. In the paper we prove strong law of large numbers for the family of first passage times
for the level in random walk described by a non-linear function of autoregression process of order
one (AR (1)).
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1. Introduction

Let on some probability space (Ω, F, P ) we are given the sequence of independent
identically distributed random variables ξn = ξn (ω) , n ≥ 1, ω ∈ Ω.

As is known ([1]-[9]), autoregression process of order one is determined as the solution
of the equation

Xn = βXn−1 + ξn, n ≥ 1

where β is some fixed number and the initial value of the process X0 is independent of the
innovation {ξn}.

Assume

Tn =

n∑
k=1

XnXk−1 and Tn =
Tn
n
, n ≥ 1.

A number of asymptotic properties of distributed sums Tn, n ≥ 1 were studied in the
paper [1].

Let us consider the family of the first exit times

ta = inf
{
n ≥ 1 : n∆

(
Tn

)
> a

}
(1)
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for the level a ≥ 0, where ∆ (x), x ∈ R = (−∞,∞) is some Borel function.
The family of the stoppage time ta, a ≥ 0 of the form (1) play a significant roll in

applied fields of theory of probability and mathematical statistics ([1-6]). Note that the
boundary value problems related to the family of the first passage time

τa = inf

{
n ≥ 1 : n∆

(
Sn
n

)
> a

}
,

where

Sn =

n∑
k=1

ξk, n ≥ 1

(see [7], [10]) are on the base of classic theory of nonlinear renewal.
In the case ∆ (x) = x the limit theorems for the family of the first exit times ta of the

form (1) were studied in the monograph [10].
In the present paper we prove a theorem on strong law of large numbers for the family

τa, a ≥ 0.

2. Formulation and proof of the main result

For the function ∆ (x) we will suppose that it is positive and twice continuously-
differentiable in R.

In the paper [1] (see also [9], it was proved that under the continuous Eξ1 = 0, Dξ1 = 1,
|β| < 1 and EX2

0 < ∞ it holds the strong law of large numbers for the sequence of the
sums Tn, n ≥ 1:

Tn
n

a.s.→ β

1− β2
= λ as n→∞. (2)

By the made assumptions for the function ∆ (x) we have

n∆
(
Tn

)
= n∆ (λ) + u∆′ (λ)

(
Tn − λ

)
+

+
n

2
∆′′ (λn)

(
Tn − λ

)2
= n∆ (λ) + ∆′ (λ) (Tn − nλ) +

+
1

2
∆′′ (λ)

(
Tn − nλ√

n

)2

,

where λn is an intermediate point between λ and Tn, n ≥ 1.
Assume

Zn = n∆ (λ) + n∆ (λ) + ∆′ (λ) (Tn − nλ) =

n∑
k=1

ηk,

ηk = ∆ (λ) + ∆′ (λ) (XkXk−1 − λ)

and

εn =
1

2
∆′′ (λn)

(
Tn − nλ√

n

)2
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Hn = n∆
(
Tn

)
.

Then we have
Hn = Zn + εn. (3)

By (2),
Zn

n

a.s.→ ∆ (λ) and
εn
n

a.s.→ o (4)

as n→∞, by continuity
∆′′ (λn)

a.s.→ ∆′′ (λ) , n→∞.

Then from (3) and (4) it follows that

Hn

n

a.s.→ ∆ (ν) as n→∞. (5)

It holds

Theorem 1. Let |β| < 1, Eξ1 = 0, Dξ1 = 1 and EX2
0 < ∞. Assume that the above

mentioned conditions are fulfilled for the functions ∆ (x), moreover ∆ (λ) > 0.
Then

ta
a

a.s.→ 1

∆ (λ)
, a→∞.

Proof. From (5) it follows that sup
n
Hn =∞. Hence, by definition of the variable ta it

follows that P (ta <∞) = P

(
sup
n
Hn > a

)
= 1 for all a ≥ 0. Show that

ta
a.s.→ ∞ as a→∞

Indeed, by definition of the variable ta it increases as a function of a. Therefore

P
(
t∞ = lim

a→∞
ta ≤ ∞

)
= 1.

We have
P (t∞ ≤ n) = P

(
lim
a→∞

ta ≤ n
)

=

= lim
a→∞

P (ta ≤ n) = lim
a→∞

P

(
max
k≤n

Hk > a

)
= o

for all n ≥ 1.
This means that for all n ≥ 1

P (t∞ > n) = 1.

Hence it follows that P (t∞ =∞) = 1.
Thus, we have

P
(

lim
a→∞

ta =∞
)

= 1. (6)
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Prove that from (5) and (6) it follows that

Hta
ta

a.s.→ ∆ (ν) as a→∞. (7)

Denote

A =

{
ω :

Hn

n
→ ∆ (ν)

}

B = {ω : ta →∞}

C =

{
ω :

Hta

ta
→ ∆ (ν)

}
.

It is clear that

A ∩B ⊂ C. (8)

Taking into account P (A) = P (B) = 1, we have

P (A ∩B) = P (A) + P (B)− P (A ∪B) = 1

hence

P (A ∪B) = 1.

Then from (8) it follows that P (C) = 1. Thus, (7) is proved. By (7) the statement of
the theorem follows from the following two-sided inequality

Hta−1
ta

≤ a

ta
<
Hta

ta
,

whose validity follows from the definition of the first exit time ta of the form (1) .

From the proved theorem and the well known theorem on convergence of a sequence
of identically integrable random variables (see e.i. [10]) it follows the following result.

Corollary 1. Let the theorem conditions be fulfilled and the family ta
a , a > 0 be identically

integrable. Then

Eta
a
→ 1

∆ (ν)
, a→∞.

Remark 1. Note that the statement of the Corollary in the case ∆ (x) = x was proved in
the paper [4], where the sufficient condition was found for identically integrable family ta

a ,
a > 0.
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