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On the 3D Dynamic Normal Stress Field on the Inter-
face of the Bi-layered Hollow Cylinder Under Action a
Moving Load in the Interior of That

M.A. Mehdiyev

Abstract. The paper studies normal stress field on the interface surface of the bi-layered hollow
cylinder under action on the interior of that the moving load in the 3D state with utilizing the exact
equations and relations of the elastodynamics. It is assumed that in the interior of the cylinder
the point located with respect to the cylinder axis moving forces act and the distribution of these
forces is non-axisymmetric and is located within a certain central angle. To solve the corresponding
mathematical problem the moving coordinate system is used and the Fourier transform of with
respect to the axial coordinate is employed. These transforms are presented in the Fourier series
form with respect to the circumferential coordinate and the coefficients of these series are found
analytically from the corresponding field equations and relations. The inverses of the mentioned
transforms are determined numerically as a result of which normal radial stress acting on the
interface surface between the layers of the cylinder is analyzed. It is examined the influence of the
problem parameters such as moving load velocity, the thicknesses ration of the cylinder’s layers,
the ration of the inner layer thickness to the external radius of the cross-section of this layer and
material properties of the layers to the stress response to the moving load.

1. Introduction

In the paper [1, 2] studied the corresponding 3D dynamic problem for the system consisting
of the hollow cylinder and surrounding elastic medium and the review of the related other
investigations were considered in the papers [1 – 4]. Consequently, the present paper
attempt to develop the investigations started in the paper [1] for the bi-layered hollow
cylinder.
Note that detailed consideration of the dynamics of the bi-material elastic systems has
been made in the monograph [5] from which and from the other reviews made in the
papers [1- 4] follows that up to now the regarding investigations have been made mainly
for axisymmetric cases (except the study carried out in the papers [1, 2]). Therefore, each
investigation on the 3D dynamics of the cylindrical bi-material systems can be taken as
new knowledge in this field which has not only theoretical and application sense.
Taking the foregoing discussion into consideration, in the present paper it is made the
attempt to investigate, within the scope of the 3D elastodynamics, normal interface stress
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on the interface surface of the bi-layered hollow cylinder in the case wherein the interior
of the cylinder the moving load acting within a certain arc and point located with respect
to the axial coordinate moving load acts.

2. Formulation of the problem

We introduce to the consideration a bi-layered hollow cylinder the sketch of which is
illustrated in Fig. 1 and assume that the thicknesses of the walls of the inner and outer
cylindersareh(2)and h(1)respectively, and the external radius of the cross section of the
inner cylinder isR. We denote by the upper index (2) (by the upper index (1) the values
related to the inner (outer) layer of the cylinder and associate the cylindrical system
of coordinates Orzθ(Fig. 1a) with the axis of the cylinder. Moreover, we assume that
in the interior of the inner hollow cylinder a point located with respect to the cylinder
axis and that non-uniformly distributed in the circumferential direction (Fig. 1b) moving
normal forces act and these forces move with constant velocity V in the Oz axis direction.
Thus, within these framework we attempt to investigate the non-axisymmetric dynamic
response of the bi-layered hollow cylinder to the moving forces and analyze the response
of the interface normal stress to these forces.

Fig. 1.The sketch of the considered system (a) and the sketch of the distribu-
tion of the non-axisymmetric normal forces (b)

We write the following complete system of field equations of the 3D elastodynamics,
as well as the corresponding boundary and contact conditions within the framework of
which the present investigation will be made.

Equations of motion:
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Elasticity relations:
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The conventional notation is use in equations (1) and (2).
The corresponding boundary and contact conditions for the case under consideration can
be formulated as follows.
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where in (3)Pα is determined from the following relation∫ +α/2

−α/2
Pα(R− h) cos θdθ = (R− h)P0 = const⇒ Pα = P0/(2 sin(α/2)). (6)

Thus, the investigation of the response of the interface normal stress to the mov-
ing load is reduced to the boundary-contact problem (1) – (5) for solution to which the
method developed in the papers [1,2] is employed. Now we consider some fragments of
the application of the mentioned method for the problem under consideration.
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3. Method of solution

As in the papers [1, 2] for solution to the foregoing mathematical problem, according
to [6], we use the following representation:
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We introduce a moving cylindrical coordinate system O′r′θ′z′ which is connected with
the reference cylindrical coordinate system Orθz through the following relations:

r′ = r, θ′ = θ, z′ = z − V t. (9)
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all the equations and relations rewritten with the moving coordinates.

Below, we will make all mathematical operations with the moving coordinates and will
omit the upper primes over them.
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Substituting the expressions in Eq. (10) into the equations in (8) and into the rewritten
relations in the moving coordinate system, it is obtained the following equations for the
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Using (16), (12), (7) and (2) it is completely determined the Fourier transforms of
the sought values.Finally, using the algorithm developed and applied in the papers [1-4]
the originals of these values are determined. Note that one of the main procedures of

this algorithm is the determination of the unknown constants A
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This completes the consideration of the solution method more detail version of which
is given in the papers [1, 2].

4. Numerical results

In the present paper, we will consider numerical results related to the interface normal
stress acting on the interface surface between the layers of the cylinder. The algorithm for
obtaining numerical results are detailed in the works [1-5 ] and therefore do not consider
here again that. Nevertheless, we note that under obtaining numerical results we take
twenty terms in the series in (12). Moreover, we note that these results are obtained for
the following two cases:
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c
Fig.2. Response of the interface normal stress to the moving load velocity in
Case 1 under R/h(2) = 2(a), 5 (b) and 10 (c)

a b
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c
Fig.3. Response of the interface normal stress to the moving load velocity in
Case 2 under R/h(2) = 2(a), 5 (b) and 10 (c)

The mentioned graphs are presented in Figs. 2 and 3 for Case 1 and Case 2 respectively
for various values of the ratio h(1)/h(2) under R/h(2) = 2 (a), 5 (b) and 10 (c). Note that
these graphs have a discontinuity at certain values of the dimensionless moving velocity

V/c
(2)
2 which indicates the corresponding critical velocities. Moreover note that, in general,

in 3D moving load problems in the subsonic regime there exist two critical velocities,
however, in the axisymmetric moving load problems one.

Thus, it follows from the graphs that before the first critical velocity the absolute values

of the interface dimensionless normal stress σrrh
(2)/P0 increase monotonically with V/c

(2)
2 .

At the same time, an increase in the values of the ratio h(1)/h(2) also causes to increase
the absolute values of the stress and in the cases under consideration for h(1)/h(2) ≥ 7
coincide with the corresponding ones obtained in the paper [1], i.e. with the corresponding
results which were obtained for the “hollow cylinder + surrounding medium” system. This
statement confirms the validity of the calculation algorithm and PC programs used under
obtaining of the present results. Moreover, this statement agrees with the well-known
physicomechanical and engineering considerations.

Comparison of the results obtained for Case 1 (Fig. 2) with corresponding ones ob-
tained for Case 2 (Fig. 3) shows that the absolute values of the stress obtained in Case 2 is
greater significantly than those obtained in Case 1. This situation can be established with
the relation

(
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)
Case1

�
(
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/
E(2)

)
Case2

which also agrees with the engineering
consideration.

With this, we restrict ourselves to consideration of the numerical results related to
the interface normal stresses obtained for problem under consideration and note that this
consideration will be continued in the further works by the author.
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5. Conclusions

Thus, in the present paper, the 3D dynamic problem of the moving load acting in the
interior of the bi-layered hollow cylinder is studied with employing 3D exact equations of
elastodynamics and the numerical results on the response of the interface normal stress to
the moving load velocity are presented and discussed. It is assumed that the forces acting
in the interior of the inner layer of the cylinder is point located with respect to the axial
coordinate and is distributed along a certain arc within the corresponding central angle.
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