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The System of Convolution Equations in Concrete
Banach Space

H.K. Musaev

Abstract. The regularity properties of degenerate abstract convolution-elliptic equations are in-
vestigated. We prove that the corresponding convolution-elliptic operator is R−sectorial and is also
a negative generator of an analytic semigroup. These results permit us to, show the separability of
the differential operators in a E−valued weighted spaces. By using these results integro-differential
equations in concrete weighted Banach space Lp,γ (Rn; lq) are obtained.
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1. Introduction, notations and background

Regularity properties of differential operator equations, especially elliptic and parabolic
type have been studied extensively e.g in [1], [2], [4], [7-8], [12] , [16-18] , [21-22] and
the references therein. Moreover, convolution-differential equations (CDEs) have been
treated e.g. in [4] , [15]. Convolution operators in Banach-valued functıon spaces studied
e.g. in [3] , [10] , [13], [16] , [17] , [18]. However, the convolution-differential operator
equations (CDOEs) are relatively less investigated subject. In [4] the parabolic type
CDEs with bounded operator coefficient was investigated. In [18] regularity properties of
degenerate CDOEs are studied. The main aim of the present paper is to study the maximal
Lp−regularity properties of the following degenerate integro-differential equations

∑
|α|≤l

aα ∗D[α]um +
∞∑
m=1

dm ∗ um = fm, (1.1)

in concrete weighted Banach space Lp,γ (Rn; lq), where l is a natural number, aα = aα (x)
are complex-valued functions, dj = dj (x) , uj = uj(x), fm = fm(x), α = (α1, α2, ..., αn) ,

αk are nonnegative integers, |α| =
n∑
k=1

αk, λ is a complex parameter and A = A (x) is a

linear operator in a Banach space E for x ∈ Rn.
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In this paper, first we establish the uniform separability properties of the linear CDOEs
and the uniform maximal regularity of the infinite system of degenrate integro-differential
equations (1.1). Moreover, we prove that the operator generated by problem linear CDOEs
is R−sectorial. Since the equation (1.1) has an unbounded operator coefficient, some
difficulties occur. This fact is derived by using the representation formula for the solution of
corresponding convolution equation and operator valued multipliers in E− valued weighted
Lp− spaces.

We start by giving the notation and definitions to be used in paper.
Let E be a Banach space and γ = γ(x), x = (x1, x2, ..., xn) be a positive measurable

weighted function on a measurable subset Ω ⊂ Rn. Let Lp,γ(Ω;E) denote the space of
strongly E−valued functions that are defined on Ω with the norm

‖f‖Lp,γ = ‖f‖Lp,γ(Ω;E) =

∫
Ω

‖f(x)‖pE γ(x)dx

1/p

, 1 ≤ p <∞,

‖f‖L∞,γ(Ω;E) = ess sup
x∈Ω

[γ(x) ‖f(x)‖E ] .

The weight γ = γ (x) satisfy an Ap condition, i.e., γ ∈ Ap, p ∈ (1,∞) if there is a
positive constant C such that

sup
Q

 1

|Q|

∫
Q

γ(x)dx


 1

|Q|

∫
Q

γ
−

1

p− 1 (x)dx


p−1

≤ C

for all cubes Q ⊂ Rn (see e.g [11, Ch.9]).
The result [20] implies that the space lq for q ∈ (1,∞) satisfies multiplier condition with

respect to p ∈ (1,∞) and the weight functions γ (x) =
n∏
k=1

|xk|ν for − 1
n < ν < 1

n (p− 1).

Here, N denotes the set of natural numbers. R denotes the set of real numbers. Let C
be the set of complex numbers and

Sϕ = {λ ∈ C, |arg λ| ≤ ϕ} ∪ {0} , 0 ≤ ϕ < π.

Let E1 and E2 be two Banach spaces and let B (E1, E2) denote the space of bounded
linear operators from E1 to E2. For E1 = E2 = E we denote B (E,E) by B (E) .

Let D (A), R (A) denote the domain and range of the linear operator in E, respectively.
Let Ker A denote a null space of A.

A closed linear operator A is said to be ϕ− sectorial (or sectorial for ϕ = 0) in a
Banach space E with bound M > 0 if Ker A = {0}, D (A) and R (A) are dense on E, and∥∥∥(A+ λI)−1

∥∥∥
B(E)

≤ M |λ|−1 for all λ ∈ Sϕ, ϕ ∈ [0, π), where I is an identity operator

in E. Sometimes A+ λI will be written as A+ λ and will be denoted by Aλ. It is known
(see e.g. [19, §1.15.1]) that the fractional powers of the operator A are well defined.

Let E(Aθ) denote the space D(Aθ) with the graph norm
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‖u‖E(Aθ) =
(
‖u‖pE +

∥∥∥Aθu∥∥∥p
E

)1

p , 1 ≤ p <∞, −∞ < θ <∞.

Note that the above norms are equivalent for p ∈ [1,∞) .

Here, S = S(Rn;E) denotes the E−valued Schwartz class, i.e. the space of E−valued
rapidly decreasing smooth functions on Rn, equipped with its usual topology generated
by seminorms. S(Rn;C) will be denoted by just S.

Let S′(Rn;E) denote the space of all continuous linear operators, L : S → E, equipped
with topology of bounded convergence. Recall S(Rn;E) is norm dense in Lp,γ(Rn;E) when
1 < p <∞, γ ∈ Ap.

Let Ω be a domain in Rn. C(Ω, E) and C(m)(Ω;E) will denote the spaces of E−valued
uniformly bounded strongly continuous and m−times continuously differentiable functions
on Ω, respectively.

Here, α = (α1, α2, ..., αn), where αi are integers. An E−valued generalized function
Dαf is called a generalized derivative in the sense of Schwartz distributions of the function
f ∈ S(Rn;E) if

〈Dαf, ϕ〉 = (−1)|α| 〈f,Dαϕ〉

holds for all ϕ ∈ S.
Let F denote the Fourier transform. Throughout this section the Fourier transforma-

tion of a function f will be denoted by f̂ and F−1f = f̌ . It is known that

F (Dα
xf) = (iξ1)α1 ...(iξn)αn f̂ , Dα

ξ (F (f)) = F [(−ix1)α1 ...(−ixn)αnf ]

for all f ∈ S′
(Rn;E).

Suppose E1 and E2 are two Banach spaces. A function Ψ ∈ L∞(Rn;B(E1, E2)) is
called a Fourier multiplier from Lp,γ(Rn;E1) to Lp,γ(Rn;E2) for p ∈ (1,∞) if the map
u → Tu = F−1Ψ(ξ)Fu, u ∈ S(Rn;E1) is well defined and extends to a bounded linear
operator

T : Lp,γ(Rn;E1)→ Lp,γ(Rn;E2).

A Banach space E is called a UMD space (see e.g [5], [6]) if the Hilbert operator

(Hf)(x) = lim
ε→0

∫
|x−y|>ε

f(y)

x− y
dy

is initially defined on S(R;E) and is bounded in Lp(R;E), p ∈ (1,∞) (see e.g. [6], [8]).
UMD spaces include e.g. Lp, lp spaces and Lorentz spaces Lpq, p, q ∈ (1,∞).

A set K ⊂ B(E1, E2) is called R−bounded (see e.g [7], [21]) if there is a constant
C > 0 such that for all T1, T2, ..., Tm ∈ K and u1, u2, ..., um ∈ E1, m ∈ N
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1∫
0

∥∥∥∥∥∥
m∑
j=1

rj(y)Tjuj

∥∥∥∥∥∥
E2

dy ≤ C
1∫

0

∥∥∥∥∥∥
m∑
j=1

rj(y)uj

∥∥∥∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1; 1}−valued random variables on
[0, 1] . The smallest C for which the above estimate holds is called the R−bound of K and
denoted by R (K) .

A Banach space E is said to be a space satisfying the multiplier condition with respect
to weighted function γ and p ∈ (1,∞) (or multiplier condition with respect to p ∈ (1,∞)
when γ (x) ≡ 1) if for any Ψ ∈ C(n) (Rn\ {0} ;B (E)) the R−boundedness of the set{

|ξ||β|Dβ
ξ Ψ (ξ) : ξ ∈ Rn\ {0} , β = (β1, β2, ..., βn) , βk ∈ {0, 1}

}
implies that Ψ is a Fourier multiplier in Lp,γ (Rn;E).

Note that, if E is UMD space then it satisfies the multiplier condition with respect to
p ∈ (1,∞) (see e.g. [7] , [10] , [21]).

A sectorial operator A (x) , x ∈ Rn is said to be uniformly R−sectorial in a Banach
space E if there exists a ϕ ∈ [0 , π) such that

sup
x∈Rn

R
({[

A (x) (A (x) + ξI)−1
]

: ξ ∈ Sϕ
})
≤M.

Note that, in Hilbert spaces every norm bounded set is R−bounded. Therefore, in
Hilbert spaces all sectorial operators are R−sectorial.

Let A = A (x) , x ∈ Rn be closed linear operator in E with domain D (A) independent
of x. The Fourier transformation of A (x) is a linear operator with the domain D (A)
defined as

Â (ξ)u (ϕ) = A (x)u (ϕ̂) for u ∈ S′ (Rn;D (A)) , ϕ ∈ S (Rn) .

(For details see e.g [2, Section 3]).

Let E0 and E be two Banach spaces, where E0 is continuously and densely embedded
into E. Let l be a natural number. W l

p,γ (Rn;E0, E) denotes the space of all functions

from S′ (Rn;E0) such that u ∈ Lp,γ (Rn;E0) and the generalized derivatives Dl
ku = ∂lu

∂xlk
∈

Lp,γ (Rn;E) with the norm

‖u‖W l
p,γ(Rn;E0,E) = ‖u‖Lp,γ(Rn;E0) +

n∑
k=1

∥∥∥Dl
ku
∥∥∥
Lp,γ(Rn;E)

<∞.

It is clear that

W l
p,γ (Rn;E0, E) = W l

p,γ (Rn;E) ∩ Lp,γ (Rn;E0) .
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W
[l]
p,γ (Rn;E0, E) denotes the space of all functions from S′ (Rn;E0) such that u ∈ Lp (Rn;E0)

and D
[l]
k u ∈ Lp (Rn;E) with the norm

‖u‖
W

[l]
p,γ(Rn;E0,E)

= ‖u‖Lp(Rn;E0) +

n∑
k=1

∥∥∥D[l]
k u
∥∥∥
Lp(Rn;E)

<∞.

Note that if l ≥ 2, E is a space satisfying the multiplier condition with respect to
weighted function γ and p ∈ (1,∞), then the above definitions are equivalent with usual
definitions, i.e.

‖u‖W l
p,γ(Rn;E0,E) ' ‖u‖Lp,γ(Rn;E0) +

∑
|α|≤l

‖Dαu‖Lp,γ(Rn;E) ,

‖u‖
W

[l]
p,γ(Rn;E0,E)

' ‖u‖Lp(Rn;E0) +
∑
|α|≤l

∥∥∥D[α]u
∥∥∥
Lp(Rn;E)

.

In a similar way as [7, Theorem 3.25] we obtain:
Proposition A. Let E be a UMD space and γ ∈ Ap. Assume Ψh is a set of operator

functions in C(n) (Rn\ {0} ;B (E)) depending on the parameter h ∈ Q ∈ R and there exists
a positive constant K such that

sup
h∈Q

R
({
|ξ||β|DβΨh (ξ) : ξ ∈ Rn\ {0} , βk ∈ {0, 1}

})
≤ K.

Then the set Ψh is a uniformly bounded collection of Fourier multipliers in Lp,γ (Rn;E) .

2. Convolution-elliptic equations

The main aim of the present section is to study the maximal Lp−regularity properties
of the degenerate linear CDOEs∑

|α|≤l

aα ∗D[α]u+ (A+ λ) ∗ u = f(x), x ∈ Rn, (2.1)

in E− valued weighted Lp− spaces, where l is a natural number, aα = aα (x) are complex-

valued functions, α = (α1, α2, ..., αn) , αk are nonnegative integers, |α| =
n∑
k=1

αk, λ is a

complex parameter and A = A (x) is a linear operator in a Banach space E for x ∈ Rn.

Here, the convolutions aα ∗D[α]u, A ∗ u are defined in the distribution sense (see e.g.
[2]). γ = γ (x) is a positive measurable function on Ω ⊂ Rn and

D[α] = D[α1]
x1 D[α2]

x2 ...D[αn]
xn , D[αi]

xi =

(
γ (x)

∂

∂xi

)αi
.

First we consider the following nondegenerate CDOE



70 H.K. Musaev

∑
|α|≤l

aα ∗Dαu+ (A+ λ) ∗ u = f, (2.2)

where λ are parameters, aα are complex-valued functions defined in (2.1) and A is a
linear operator in a Banach space E.

Condition 2.1. Suppose the following are satisfied:
(1) L(ξ) =

∑
|α|≤l

âα(ξ)(iξ)α ∈ Sϕ1 , ϕ1 ∈ [0,π) for ξ ∈ Rn,

|L(ξ)| ≥ C
n∑
k=1

∣∣âα(l,k)

∣∣ |ξk|l , α(l, k) = (0, 0, ..., l, 0, 0, ..., 0) i.e.αi = 0, i 6= k, αk = l;

(2) âα ∈ C(n)(Rn) and |ξ||β|
∣∣Dβ âα (ξ)

∣∣ ≤ C1, βk ∈ {0, 1} , 0 ≤ |β| ≤ n;

(3) for 0 ≤ |β| ≤ n, ξ, ξ0 ∈ Rn\ {0} ,
[
DβÂ (ξ)

]
Â−1 (ξ0) ∈ C (Rn;B(E)) ,

|ξ||β|
∥∥∥[DβÂ (ξ)

]
Â−1 (ξ0)

∥∥∥ ≤ C2.

In a similar way as [16, Theorem 2.7] we obtain:
Theorem 2.1. Assume that Condition 2.1 holds and E is a Banach space satisfying

the multiplier condition with respect to weighted function γ ∈ Ap and p ∈ (1,∞). Let Â be
a uniformly R−sectorial operator in E with ϕ ∈ [0, π) , λ ∈ Sϕ2 and 0 ≤ ϕ+ϕ1 +ϕ2 < π.
Then, problem (2.2) has a unique solution u and the coercive uniform estimate holds

∑
|α|≤l

|λ|1−
|α|
l ‖aα ∗Dαu‖Lp,γ(Rn;E) + ‖A ∗ u‖Lp,γ(Rn;E) + |λ| ‖u‖Lp,γ(Rn;E) ≤ C ‖f‖Lp,γ(Rn;E)

(2.3)
for all f ∈ Lp,γ (Rn;E) .

Let O be an operator in Lp,γ (Rn;E) generated by problem (2.2) for λ = 0, i.e.

D (O) ⊂W l
p,γ (Rn;E (A) , E) , Ou =

∑
|α|≤l

aα ∗Dαu+A ∗ u.

From Theorem 2.1 we have:
Result 2.1. Assume that the all conditions of Theorem 2.1 hold. Then, for all λ ∈ Sϕ2

the following uniform coercive estimate holds∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗Dα (O + λ)−1
∥∥∥
B(Lp,γ(Rn;E))

+

∥∥∥A ∗ (O + λ)−1
∥∥∥
B(Lp,γ(Rn;E))

+
∥∥∥λ (O + λ)−1

∥∥∥
B(Lp,γ(Rn;E))

≤ C.

Result 2.2. Theorem 2.1, particularly implies that the operator O is uniformly
sectorial in Lp,γ (Rn;E); moreover, if Â is uniformly R−sectorial for ϕ ∈

(
π
2 , π

)
, then

the operator O is a negative generator of an analytic semigroup in Lp,γ (Rn;E) (see e.g.
[19, §1.14.5]).
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From Theorem 2.1 and Proposition A we obtain:

Result 2.3. Let conditions of Theorem 2.1 hold for E ∈ UMD. Then the assertions
of Theorem 2.1 are valid.

We find sufficient conditions that guarantee the separability of the problem (2.1). For
this purpose we need the following

Remark 2.1. Consider the following substitution

yk =

xk∫
0

γ−1(z)dz, k = 1, 2, ..., n. (2.4)

It is clear that, under the substitution (2.4), D[α]u transforms to Dαu. Moreover,

the spaces Lp (Rn;E) , W
[l]
p,γ (Rn;E (A) , E) are mapped isomorphically onto the weighted

spaces Lp,γ(Rn;E) and W l
p,γ(Rn;E(A), E) respectively where,

γ = γ̃(y) = γ(x(y)) = γ (x1 (y1) , x2 (y2) , ..., xn (yn)) .

Moreover, under (2.4) the degenerate problem (2.1) considered in Lp (Rn;E) is transformed
into the non degenerate problem (2.2) in Lp,γ(Rn;E), where

aα = aα (y) = aα(γ̃(y)), u = u (y) = ũ(y) = u(γ̃(y)),

A = A (y) = Ã(y) = A(γ̃(y)), f = f (y) = f̃(y) = f(γ̃(y)).

Let

X̃ = Lp (Rn;E) , Ỹ = W [l]
p,γ (Rn;E (A) , E) , p ∈ (1,∞) .

In this section we show the following result:

Theorem 2.2. Assume that Condition 2.1 holds for aα = aα (y) and E is a Banach
space satisfying the multiplier condition with respect to weighted function γ ∈ Ap and
p ∈ (1,∞). Let Â be a uniformly R−sectorial operator in E with ϕ ∈ [0, π) , λ ∈ Sϕ2 and
0 ≤ ϕ + ϕ1 + ϕ2 < π for A = A (y). Then for all f ∈ X̃ there is a unique solution of the
problem (2.1) and the following coercive uniform estimate holds:∑

|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗D[α]u
∥∥∥
X̃

+ ‖A ∗ u‖X̃ + |λ| ‖u‖X̃ ≤ C ‖f‖X̃ . (2.5)

Proof. By Remark 2.1, the degenerate problem (2.1) is transformed into the non
degenerate problem (2.2) considered in the weighted space Lp,γ(Rn;E). Then in view of
Theorem 2.1 we obtain the estimate (2.5).

3. Degenerate convolution equations in the space Lp,γ (Rn; lq)
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Consider the following system of convolution equations

∑
|α|≤l

aα ∗D[α]um +
∞∑
m=1

dm ∗ um = fm, (3.1)

in the concrete Banach space Lp,γ (Rn; lq), where l is a natural number, aα = aα (x) are
complex-valued functions, α = (α1, α2, ..., αn) , αk are nonnegative integers, dm = dm(x),
um = um (x) , fm = fm (x) , x ∈ Rn. The convolutions aα ∗D[α]u, dm ∗ um are defined in
the distribution sense and

D[α] = D[α1]
x1 D[α2]

x2 ...D[αn]
xn , D[αk]

xk
=

(
γ (x)

∂

∂xk

)αk
.

γ (x) =

n∏
k=1

|xk|γ , −
1

n
< γ <

p− 1

n
,

is a positive measurable weighted function.

For 1 < q <∞ we set

lq =

{
ξ; ξ = {ξi}∞i=1 ; ‖ξ‖lq =

( ∞∑
i=1
|ξi|q

)1/q

<∞, ξi − complex numbers

}
.

Moreover, if γ(x) is a positive measurable function, and if 1 < p <∞, then

Lp,γ(Rn; lq) =

{
f ; f = {fi(x)}∞i=1 , ‖f‖Lp,γ(Rn;lq)

=

( ∫
Rn
‖{fi(x)}‖plq γ(x)dx

)1/p

<∞

}
.

Clearly, Lp,γ(Rn; lq) is a Banach space. It is known that

‖f‖Lp,γ(Rn;lq)
=

( ∫
Rn

( ∞∑
i=1
|fi(x)|q

) p
q

γ(x)dx

) 1
p

.

Let d(x) = {dm(x)} , dm > 0, u = {um} , d ∗ u = {dm ∗ um} , lq(d) =u ∈ lq, ‖u‖lq(d) =

( ∞∑
m=1

|dm (x) ∗ um|q
) 1

q

<∞

 , 1 < q <∞,

X = Lp (Rn; lq) , Y = W [l]
p,γ(Rn; lq(d), lq), B = B (X) ,

and Q denote the differential operator in Lp (Rn; lq) generated by (3.1) , i.e., D (Q) =

W
[l]
p,γ (Rn; lq(d), lq) , Qu =

∑
|α|≤l

aα ∗D[α]u+ d ∗ u

Condition 3.1. Assume that there exist positive constants C1 and C2 such that for
{dm (x)}∞1 ∈ lq for all x ∈ Rn and some x0 ∈ Rn,

C1 |dm (x0)| ≤ |dm (x)| ≤ C2 |dm (x0)| .
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Suppose âα, d̂m ∈ C(n) (Rn) and there exist positive constants M1 and M2 such that

|ξ||β|
∣∣∣Dβ âα(ξ)

∣∣∣ ≤M1, |ξ||β|
∣∣∣Dβ d̂m(ξ)

∣∣∣ ≤M2,

ξ ∈ Rn\ {0} , βk ∈ {0, 1} , 0 ≤ |β| ≤ n.

Applying Theorem 2.2. we have:

Theorem 3.1. Suppose Condition 3.1 and the (1) part of Condition 2.1 are satisfied.
Then:

(a) for all f (x) = {fm (x)}∞1 ∈ Lp (Rn; lq (d)) , for λ ∈ Sϕ, ϕ ∈ [0, π) problem (3.1) has
a unique solution u = {um (x)}∞1 that belongs to Y and the following coercive estimate
holds

∑
|α|≤l

∫
Rn

( ∞∑
m=1

∣∣∣aα ∗D[α]um

∣∣∣q) p
q

dx

 1
p

+

∫
Rn

( ∞∑
m=1

|dm ∗ um|q
) p

q

dx

 1
p

≤ C

∫
Rn

( ∞∑
m=1

|fm|q
) p

q

dx

 1
p

.

(b) For λ ∈ Sϕ there exists a resolvent (Q+ λ)−1 and∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗ [D[α] (Q+ λ)−1
]∥∥∥

B
+

∥∥∥d ∗ (Q+ λ)−1
∥∥∥
B

+
∥∥∥λ (Q+ λ)−1

∥∥∥
B
≤ C.

Proof. In fact, let E = lq and A = [dm (x) δjm] , m, j = 1, 2, ...∞, where δjm is the

Kronecker symbol (δjm = 1 for j = m, δjm = 0 for j 6= m). Then it is easy to see that

Â (ξ) =
[
d̂m (ξ) δjm

]
is uniformly R−sectorial in lq and the all conditions of Theorem 2.2

hold. Moreover, by [20] we get that the space lq satisfies the multiplier condition with
respect to power weighted function γ (x) = |x|γ , − 1

n < γ < p−1
n and p ∈ (1,∞). Therefore,

by virtue of Theorem 2.2 we obtain the
∑
|α|≤l

∥∥aα ∗D[α]u
∥∥
X

+ ‖d ∗ u‖X ≤ C ‖f‖X . From

this we get that assertion (a). Taking into account Theorem 2.2 and Remark 2.1 we have
for all λ ∈ Sϕ there exist the resolvent of operator Q and has the estimate∑
|α|≤l

|λ|1−
|α|
l

∥∥∥aα ∗D[α] (Q+ λ)−1
∥∥∥
B(X)

+
∥∥∥d ∗ (Q+ λ)−1

∥∥∥
B(X)

+
∥∥∥λ (Q+ λ)−1

∥∥∥
B(X)

≤ C.

This means that the assertion (b) is obtained.
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Remark 3.1. There are a lot of sectorial operators in concrete Banach spaces.
Therefore, putting in (2.1) concrete Banach spaces instead of E and concrete sectorial
differential, pseudo differential operators, or finite, infinite matrices, etc. instead of A, by
virtue of Theorem 2.2 we can obtain the maximal regularity properties of different class
of convolution equations.
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